The method of predict sand liquefaction based on random forest algorithm
-
摘要: 砂土液化的影响因素较多且复杂.以唐山大地震的72个场地的实测液化样本数据为例,在不丢失任何信息的前提下,选取了8个砂土液化的判别指标,通过计算样本数据的Gini系数,采用CART算法的决策树对数据的特征属性进行划分.在此基础之上,通过增加多个决策树构造随机森林的方式,在一定程度上降低了单个决策树学习过度造成的过拟合风险,同时,通过10轮交叉验证的方式确定了决策树的最大高度为5,随机森林中决策树的个数为20时,模型的效果达到最佳.研究结果表明,与抗震设计规范中的标贯试验法判别公式相比,决策树模型和随机森林模型的训练结果和预测结果有显著提高,尤其是随机森林模型在训练样本和预测样本上均没有出现误判,稳定性更高.
-
-
计量
- 文章访问数: 526
- PDF下载数: 33
- 施引文献: 0