-
摘要: 反褶积是提高地震数据分辨率的重要方法。然而, 传统的反褶积方法在增强地震信号高频成分的同时, 也放大了高频噪声的能量, 降低了反褶积之后地震记录的信噪比。分辨率和信噪比的矛盾制约了现有反褶积方法表征薄层结构的能力。为此, 本文提出了一种信号自适应识别多道反褶积算法。该方法从原始地震数据中提取了地震信号识别算子, 并将其作为空间正则化约束引入多道反褶积的目标函数, 在一定程度上实现了具有信号自适应识别能力的高分辨率处理技术。基于地震信号的空间可预测性, 地震信号识别算子从地震数据本身进行估算和提取, 对地震记录具有较强的自适应性能力。模型数据与实际数据的测试分析表明, 本文方法能够有效地抑制高频噪声在反褶积过程中的放大效应, 在提高了分辨率的同时, 较好地保持了地震记录信噪比。Abstract: Deconvolution plays a critical role in enhancing the resolution of seismic data.However, conventional deconvolution methods, though boosting the high-frequency components of seismic signals, amplify the energy of high-frequency noise, thereby reducing the signal-to-noise ratios(SNRs) of seismic records after deconvolution.The contradiction between resolution and SNRs restricts the ability of existing deconvolution methods to characterize thin-layer structures.Hence, this study proposed a multi-channel deconvolution method for self-adaptive signal recognition.The method extracted seismic signal recognition operators from raw seismic data.It introduced them as spatial regularization constraints into the objective function of multi-channel deconvolution, somewhat achieving high-resolution processing with self-adaptive signal recognition capabilities.Based on the spatial predictability of seismic signals, their recognition operators were estimated and extracted directly from seismic data, demonstrating high adaptability to seismic records.As indicated by the test analysis of the model and actual data, the proposed method can effectively suppress the amplification effect of high-frequency noise during deconvolution, thus improving resolution and maintaining the SNRs of seismic records.
-
Key words:
- deconvolution /
- signal recognition /
- high resolution /
- seismic data
-
-
[1] Lines L R, Ulrych T J.The old and the new in seismic deconvolution and wavelet estimation[J].Geophysical Prospecting, 1977, 25(3):512-540.
[2] Oldenburg D W, Scheuer T, Levy S.Recovery of the acoustic impedance from reflection seismograms[J].Geophysics, 1983, 48(10):1318-1337.
[3] Yuan S Y, Wang S X.Influence of inaccurate wavelet phase estimation on seismic inversion[J].Applied Geophysics, 2011, 8(1):48-59.
[4] Berkhout A J.Least-squares inverse filtering and wavelet deconvolution[J].Geophysics, 1977, 42(7):1369-1383.
[5] Cooke D A, Schneider W A.Generalized linear inversion of reflection seismic data[J].Geophysics, 1983, 48(6):665-676.
[6] Zhang R, Sen M K, Srinivasan S.Multi-trace basis pursuit inversion with spatial regularization[J].Journal of Geophysics and Engineering, 2013, 10(3):035012.
[7] Ma M, Wang S X, Yuan S Y, et al.Multichannel spatially correlated reflectivity inversion using block sparse Bayesian learning[J].Geophysics, 2017, 82(4):V191-V199.
[8] Lan T, Liu H, Liu N, et al.Joint inversion of electromagnetic and seismic data based on structural constraints using variational born iteration method[J].IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(1):436-445.
[9] Hamid H, Pidlisecky A.Multitrace impedance inversion with lateral constraints[J].Geophysics, 2015, 80(6):M101-M111.
[10] Anagaw A Y, Sacchi M D.Edge-preserving seismic imaging using the total variation method[J].Journal of Geophysics and Engineering, 2012, 9(2):138-146.
[11] Gholami A.Nonlinear multichannel impedance inversion by total-variation regularization[J].Geophysics, 2015, 80(5):R217-R224.
[12] Wang D H, Gao J H.Multichannel seismic impedance inversion with anisotropic total variation regularization[C]//Qingdao:International Geophysical Conference, Society of Exploration Geophysicists and Chinese Petroleum Society, 2017:128.
[13] Hamid H, Pidlisecky A.Structurally constrained impedance inversion[J].Interpretation, 2016, 4(4):T577-T589.
[14] Clapp R G, Biondi B L, Claerbout J F.Incorporating geologic information into reflection tomography[J].Geophysics, 2004, 69(2):533-546.
[15] Lelièvre P G, Oldenburg D W.A comprehensive study of including structural orientation information in geophysical inversions[J].Geophysical Journal International, 2009, 178(2):623-637.
[16] Zhang Y P, Zhou H, Wang Y F, et al.A novel multichannel seismic deconvolution method via structure-oriented regularization[J].IEEE Transactions on Geoscience and Remote Sensing, 2022, 60:5910410.
[17] Pereg D, Cohen I, Vassiliou A A.Multichannel sparse spike inversion[J].Journal of Geophysics and Engineering, 2017, 14(5):1290-1299.
[18] McNamara D E.Ambient noise levels in the continental United States[J].Bulletin of the Seismological Society of America, 2004, 94(4):1517-1527.
[19] Anvari R, Nazari Siahsar M A, Gholtashi S, et al.Seismic random noise attenuation using synchrosqueezed wavelet transform and low-rank signal matrix approximation[J].IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(11):6574-6581.
[20] Fomel S.Applications of plane-wave destruction filters[J].Geophysics, 2002, 67(6):1946-1960.
[21] Canales L L.Random noise reduction[C]//SEG Technical Program Expanded Abstracts, Society of Exploration Geophysicists, 1984:329.
[22] Claerbout J F, Robinson E A.The error in least-squares inverse filtering[J].Geophysics, 1964, 29(1):118-120.
[23] Abma R, Claerbout J.Lateral prediction for noise attenuation by t-x and f-x techniques[J].Geophysics, 1997, 60(6):1887-1896.
[24] Claerbout J.Multidimensional recursive filters via a helix[J].Geophysics, 1998, 63(5):1532-1541.
-
计量
- 文章访问数: 27
- PDF下载数: 4
- 施引文献: 0