Comparison of soil calcium and magnesium fractions transport in classic karst and non-karst region, Guilin
-
摘要:
文章以桂林典型岩溶区和非岩溶区土壤剖面为研究对象,采用改进的Tessier元素形态连续提取法,测定岩溶区和非岩溶区土壤钙(Ca)和镁(Mg)元素离子交换态(包括水溶态)、碳酸盐结合态、腐殖酸结合态、铁锰氧化物结合态、强有机质结合态(包括部分硫化物)和残渣态等形态,探讨岩溶区和非岩溶区土壤Ca、Mg形态在土壤剖面中的迁移变化特征。结果表明:(1)岩溶区石灰土剖面中,随剖面深度加深,pH值增大,而土壤有机质、全氮(N)、全磷(P)含量减少,Ca元素主要以交换态存在且在各土壤剖面中含量相近,Mg元素主要是以残渣态赋存在土壤剖面中,随着土壤剖面深度腐殖酸结合态百分比减少,存在累积现象;(2)在非岩溶地区酸性土壤中,土壤总钙较低。在土壤剖面0~60 cm以强有机结合态为主,深层剖面(大于60 cm)以残渣态为主;Mg元素有效态含量较低,非岩溶区土壤Mg元素以腐殖酸结合态和残渣态为主,与岩溶区土壤类似,非岩溶区Mg元素在土壤中也存在一定累积。
Abstract:The exposed karst area in the world is about 17.9 million km2, mainly distributed in China, Vietnam, France, Slovenia, the United States and other countries. Covering a total area of 780,000 km2, the karst are in south China is most widely distributed in the world, mainly in the most area of 8 provinces/cities such as Yunnan, Guizhou, Guangxi, Hunan, Hubei, Chongqing, Sichuan and Guangdong. The southern karst area represented by Guilin is a typical karst area in China, where soil is formed by the physical, chemical and biological effects of carbonate rocks in the geological background. Due to the richness of calcium (Ca) and magnesium (Mg) in carbonate rocks, alkaline soil rich in Ca and Mg is distributed in karst areas. But non-karst areas are primarily clastic rock, where soil mainly exists acidic. Besides, Ca in soil is an essential mineral nutrient for plant growth and metabolism. Soil Ca and its morphological changes affect the physicochemical properties of soil, and also affect the uptake of calcium and other nutrients by plants. Magnesium is also an essential mineral element for plant growth, ranking the fourth after nitrogen, phosphorus and potassium. Therefore, plants need to take in Mg, depending on the content and supply mechanism of Mg in soil.With a modified Tessier sequential extraction procedure, soil profiles from typical karst and non-karst areas in Guilin are analyzed to determine different fractions of Ca and Mg,the ion-exchange fraction (including water-soluble state), carbonate-bound fraction, humic acid-bound fraction, Fe-Mn oxides bound fraction, strong organic matter-bound fraction (including some sulfides) and residual fraction. The migration characteristics of Ca and Mg elements in soil from these two types of areas are explored. The vegetation type of sampling sites is mainly forest. During the sampling, a soil profile with 1 m wide, 2 m long and 1.5 m deep was dug. The profile is stratified from the surface to 140 cm, and divided into 7 horizons at intervals of 20 cm. Then soil samples are collected from the bottom layer by layer. A total of 7 soil samples in the limestone soil profile are collected from the depth of 105 cm at intervals of 15 cm. The results showed that in the limestone soil profile of the karst area, the pH value increases with the depth of the profile, while the contents of soil organic matter, total nitrogen (N) and total phosphorus (P) decrease. Except the parent material, the P content of soil is related to other factors in the process of soil formation, among which bioaccumulation and soil formation are important. The weak migration of P, together with the limited availability of limestone soil makes the P content difficulty to leach down from the profile, hence the P content of the surface layer is higher than that of the lower layer. Calcium mainly exists in the exchange fraction and its content is similar in each soil profile, while Mg mainly exists in the residual fraction. There is an accumulation when the percentage of humic acid-bound fraction decreases with the depth of the soil profile. The maximum value of the ion-exchange fraction of Ca occurs in the middle profile at the depth of 45-60 cm. In the karst area, Mg is mainly present in the residual fraction (97.45%) in the limestone soil profile. But Mg content is low in the ion-exchange fraction including the water-soluble fraction (0.61%), the carbonate-bound fraction (0.11%) and the humic acid-bound fraction , accounting for 1.80% of the total amount in the latter three fractions. Compared with the typical karst area, the total Ca content is lower in acidic soil of the non-karst area. The soil profile from 0 cm to 60 cm is dominated by strong organic bound fraction, and the deeper profile (>60 cm) by residual fraction. Calcium in the topsoil in non-karst areas is mainly present in the ion-exchange fraction (including the water-soluble fraction), the Fe-Mn oxide-bound fraction and the strong organic-bound fraction (including some sulfide). The dominance of the ion-exchange fraction (including the water-soluble fraction) indicates the relatively high mobility of Ca. In non-karst areas. The effective content Mg is low, mainly in humic acid-bound fraction and residual fraction. Similar to karst areas. Mg in non-karst areas also accumulates in the soil to some extent. In conclusion, the study explores the morphological migration of Ca and Mg in soil profiles in karst and non-karst areas, and provides scientific support for soil improvement and risk assessment of Ca and Mg leaching in soil.
-
Key words:
- limestone soils /
- acid soils /
- Tessier /
- sequential extraction procedure /
- leach
-
表 1 土壤样品中元素的形态划分与相应提取剂
Table 1. Morphological classification of elements in soil samples and the corresponding extracting reagents
形态划分 提取剂 离子交换态(包括水溶态) 25 mL 1 mol·L−1 NH4Cl 溶液 (pH 为 7.0±0.2) 碳酸盐结合态 25 mL 1 mol·L−1 NaAc 溶液 (pH 为 5.0±0.2) 腐殖酸结合态(松结有机结合态) 50 mL 0.1 mol·L−1 Na4P2O7 溶液 (pH 为 10±0.2) 铁锰氧化物结合态 50 mL 0.25 mol·L−1 NH2OH·HCl-0.25 mol·L−1 HCl 溶液 强有机结合态
(包括部分硫化物态)3 mL 0.02 mol·L−1 HNO3 溶液+ 5 mL φ=30% 的 H2O2(pH=2) +5 mL
1.6 mol·L−1NH4Ac-1.6 mol·L−1 HNO3 溶液表 2 毛村岩溶区和狮赖非岩溶区样地土壤理化性质
Table 2. Physicochemical properties of the soil in Maocun karst site and Shilai non-karst site
土壤剖面/cm pH 有机质 /% 全磷/% 全氮/% 总钙/g·kg−1 总镁/g·kg−1 毛村岩溶区 0~15 6.64±0.1 5.53±0.01 0.041±0.002 0.15±0.02 9.37±0.05 2.20±0.02 15~30 6.94±0.2 3.34±0.01 0.033±0.003 0.09±0.005 8.85±0.01 6.26±0.05 30~45 7.14±0.1 2.75±0.01 0.028±0.002 0.067±0.004 8.14±0.02 5.56±0.05 45~60 7.24±0.2 2.64±0.01 0.026±0.001 0.064±0.005 9.28±0.04 6.74±0.06 60~75 7.27±0.2 2.11±0.01 0.025±0.001 0.06±0.002 7.86±0.05 5.76±0.01 75~90 7.28±0.2 1.89±0.01 0.021±0.001 0.047±0.001 7.49±0.05 5.64±0.04 90~105 7.31±0.1 1.27±0.01 0.021±0.001 0.036±0.001 8.10±0.04 5.64±0.02 狮赖非岩溶区 0~15 4.25±0.1 4.07±0.01 0.599±0.003 0.094±0.005 0.35±0.02 0.68±0.01 15~30 4.20±0.3 2.79±0.02 0.517±0.002 0.069±0.002 0.069±0.01 0.59±0.005 30~45 4.18±0.2 2.42±0.03 0.675±0.005 0.074±0.004 0.009±0.001 0.68±0.01 45~60 4.30±0.2 1.97±0.01 0.567±0.003 0.056±0.008 0.011±0.001 0.64±0.02 60~75 4.56±0.2 1.89±0.01 0.412±0.002 0.050±0.002 0.026±0.002 0.65±0.004 75~90 4.64±0.2 1.47±0.01 0.518±0.003 0.044±0.002 0.088±0.001 0.68±0.02 90~105 4.97±0.2 1.32±0.01 0.583±0.002 0.043±0.001 7.74±0.05 0.72±0.01 -
[1] 袁道先, 蒋勇军, 沈立成, 蒲俊兵, 肖琼. 现代岩溶学[M].北京: 科学出版社, 2016.
YUAN Daoxian, JIANG Yongjun, SHEN Licheng, PU Junbing, XIAO Qiong.Modern karstology[M].Beijing: Scince Press,2016.
[2] 吴刚, 李金英, 曾晓舵. 土壤钙的生物有效性及与其它元素的相互作用[J]. 土壤与环境, 2002, 11(3):319-322.
WU Gang, LI Jinying, ZENG Xiaoduo. Bio-availability of calcium in soil and the interaction with other elements[J]. Soil and Environmental Sciences, 2002, 11(3):319-322.
[3] 孟赐福, 傅庆林, 水建国,吴益伟. 浙江中部红壤施用石灰对土壤交换性钙、镁及土壤酸度的影响[J]. 植物营养与肥料学报, 1999, 5(2):129. doi: 10.3321/j.issn:1008-505X.1999.02.005
MENG Cifu, FU Qinglin, SHUI Jianguo, WU Yiwei. Effect of liming on acidity and exchangeable calcium and magnesium of red soil in central Zhejiang[J]. Plant Nutrition and Fertilizer Science, 1999, 5(2):129. doi: 10.3321/j.issn:1008-505X.1999.02.005
[4] 王芳, 刘鹏, 徐根娣. 土壤中的镁及其有效性研究概述[J]. 河南农业科学, 2004, 33(1):33-36.
WANG Fang, LIU Peng, XU Gendi. Overview of magnesium in soil and its availability research[J]. Henan Agricultural Sciences, 2004, 33(1):33-36.
[5] 李士敏, 朱富强, 刘方, 何腾兵. 贵州黄壤旱地有效镁的含量与镁肥盆栽效果分析[J]. 贵州农业科学, 1999, 27(2):31-33. doi: 10.3969/j.issn.1001-3601.1999.02.007
LI Shimin, ZHU Fuqiang, LIU Fang, HE Tengbing. Quantity of available magnesium of dry cultivated land and effects of applying Mg fertilizer on the crops in yellow earth arears of Guizhou[J]. Guizhou Agricultural Sciences, 1999, 27(2):31-33. doi: 10.3969/j.issn.1001-3601.1999.02.007
[6] 李为, 余龙江, 贺秋芳,吴云,袁道先. 微生物及其碳酸酐酶对岩溶土壤系统钙镁元素淋失的影响[J]. 中国岩溶, 2004, 23(1):1-6. doi: 10.3969/j.issn.1001-4810.2004.01.001
LI Wei, YU Longjiang, HE Qiufang, WU Yun,YUAN Daoxian. Microbes and its carbonic anhydrase impact on the leaching to calcium and magnesium elements in calcareous soil system[J]. Carsologica Sinica, 2004, 23(1):1-6. doi: 10.3969/j.issn.1001-4810.2004.01.001
[7] 陈家瑞, 曹建华, 梁毅, 杨慧. 石灰土发育过程中土壤腐殖质组成及其与土壤钙赋存形态关系[J]. 中国岩溶, 2012, 31(1):7-11. doi: 10.3969/j.issn.1001-4810.2012.01.002
CHEN Jiarui, CAO Jianhua, LIANG Yi, YANG Hui. Relationship of the humus components and the calcium form with the development of limestone soil[J]. Carsologica Sinica, 2012, 31(1):7-11. doi: 10.3969/j.issn.1001-4810.2012.01.002
[8] 李菁, 杨程, 靳振江, 朱同彬,曹建华. 断陷盆地区不同土地利用方式土壤钙形态分布特征[J]. 中国岩溶, 2019, 38(6):889-895.
LI Jing, YANG Cheng, JIN Zhenjiang, ZHU Tongbin,CAO Jianhua. Characteristics of calcium fraction distribution in soil under different land use types in karst fault-depression basins[J]. Carsologica Sinica, 2019, 38(6):889-895.
[9] 杨胜天, 黎喜, 娄和震, 罗娅, 李超君. 贵州茂兰喀斯特地区土壤全钙含量空间估算模型与迁移分析[J]. 中国岩溶, 2021, 40(3):449-458.
YANG Shengtian, LI Xi, LOU Hezhen, LUO Ya,LI Chaojun. Spatial estimation model and migration analysis of soil total calcium content in the Maolan karst area, Guizhou Province[J]. Carsologica Sinica, 2021, 40(3):449-458.
[10] 梁建宏, 曹建华, 杨慧, 黄芬. 钙、铁、铝形态对岩溶石灰土磷有效性的影响[J]. 中国岩溶, 2016, 35(2):211-217. doi: 10.11932/karst20160211
LIANG Jianhong, CAO Jianhua, YANG Hui, HUANG Fen. Effects of calcium, iron and aluminum fractions on the phosphorus bioavailability in limestone soil of karst region[J]. Carsologica Sinica, 2016, 35(2):211-217. doi: 10.11932/karst20160211
[11] 吴水木. 中国区域水文地质普查报告: 广西桂林幅[M]. 柳州: 广西地质矿产局, 1983.
WU Shuimu. Report of the Regional Hydrogeological Census of China: Guangxi Guilin Area [M]. Liuzhou: Guangxi Geological Survey, 1983.
[12] 丁梦凯, 胡晓农, 曹建华, 吴夏,黄芬. 桂林毛村不同土地利用方式下土壤呼吸空间变异特征[J]. 环境科学, 2019, 40(2):924-933.
DING Mengkai, HU Xiaonong, CAO Jianhua,WU Xia, HUANG Fen. Spatial variability in soil respiration under different land use patterns in Maocun village, Guilin[J]. Environmental Science, 2019, 40(2):924-933.
[13] 张铮, 孟广礼. 1988年两广地区春季酸雨观测和天气形势分析[J]. 北京大学学报(自然科学版), 1992, 28(1):86-95.
ZHANG Zheng, MENG Guangli. An observation of spring’s acid rain and an analysis of weather situation at the Liangguang’s area of China in 1988[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 1992, 28(1):86-95.
[14] 鲁如坤. 土壤农业化学分析方法[M]. 北京:中国农业科技出版社, 2000.
LU Rukun. Analytical methods for soil and agro-chemistry [M]. Beijing: China Agricultural Science and Technology Press,2000.
[15] Arabinda K Das, Ruma Chakraborty, M.Luisa Cervera,Migwel de la Guardia Metal speciation in solid matrices[J]. Talanta, 1995, 42:1007-1030. doi: 10.1016/0039-9140(95)01557-R
[16] Justyna Poledniok, Franciszek Buhl. Speciation of vanadium in soil[J]. Talanta, 2003, 59:1-8. doi: 10.1016/S0039-9140(02)00322-3
[17] 刘文长, 马玲, 刘洪青, 潘同应,徐厚玲. 生态地球化学土壤样品元素形态分析方法研究[J]. 岩矿测试, 2005, 24(3):181-188. doi: 10.3969/j.issn.0254-5357.2005.03.005
LIU Wenzhang, MA Ling, LIU Hongqing, PAN Tongying, XU Houling. Research on Speciation Analysis of Chemical Elements in Soil Samples for Ecosystem Geochemistry Study[J]. Rock and Mineral Analysis, 2005, 24(3):181-188. doi: 10.3969/j.issn.0254-5357.2005.03.005
[18] 卢玫桂. 广西桂林石灰土的元素生物地球化学特征[D]. 桂林:广西师范大学, 2005.
LU Meigui. The Biochemical Characters of Element in Limestone Soil in Guilin, Guangxi [D]. Guilin: Guangxi Normal University, 2005.
[19] 梁建宏. 岩溶动力系统土壤钙元素迁移机理初步研究[D].桂林: 广西师范大学, 2010.
LIANG Jianhong. Preliminary Study on Migration Mechanism of Calcium in the Soil, Karst Dynamics System[D]. Guilin: Guangxi Normal University, 2010.
[20] 陈浏寰, 覃英凤, 王紫莹, 黄德周,张苑. 土地利用方式下岩溶湿地土壤无机磷形态特征及分析方法适用性探讨[J]. 中国岩溶, 2020, 39(6):845-853.
CHEN Liuhuan, QIN Yingfeng, WANG Ziying, HUANG Dezhou, ZHANG Yuan. Occurrence forms of inorganic phosphorus in soils of karst wetland under different landuses and comparison of two analysis methods[J]. Carsologica Sinica, 2020, 39(6):845-853.
[21] 王敬国. 植物营养的土壤化学[M]. 北京: 北京农业大学出版社, 1995.
WANG Jingguo. Soil chemistry of plant nutrition [M].Beijing: Beijing Agricultural University Press, 1995.
[22] 周卫, 林葆. 土壤中钙的化学行为与生物有效性研究进展[J]. 土壤肥料, 1996(5):19-22.
ZHOU Wei, LIN Bao. Research progress on chemical behavior and bioavailability of calcium in soil[J]. Soils and fertilizers, 1996(5):19-22.
[23] 曹建华, 袁道先, 潘根兴. 岩溶生态系统中的土壤[J]. 地球科学进展, 2003, 18(1): 37-44. doi: 10.3321/j.issn:1001-8166.2003.01.006
Cao Jianhua, Yuan Daoxian, Pan Genxing. Some soil features in karst ecosystem. [J]. Advance in Earth Sciences, 2003, 18(1): 37-044. (in Chinese with English abstract) doi: 10.3321/j.issn:1001-8166.2003.01.006
[24] 顾新运, 许冀泉. 中国土壤胶体研究: V. 滇桂地区石灰岩发育的三种土壤的粘土矿物组成和演变[J]. 土壤学报, 1963, 11(4):411-415.
GU Xinyun, XU Jiquan. Soil Colloid reseaches: V. Clay minerals and their transformations in rendzina, terra fusca and terra rossa of Yunnan and Kwangsi[J]. Acta Pedologica Sinica, 1963, 11(4):411-415.
[25] Barber S A. Soil Nutrient Bioavailability: A Mechanistic Approach[J]. Quarterly Review of Biology, 1995.
[26] Rengel Z, Robinson D L. Modeling Magnesium Uptake from an Acid Soil: I. Nutrient Relationships at the Soil-Root Interface[J]. Soil Science Society of America Journal, 1990, 54(3):785-791. doi: 10.2136/sssaj1990.03615995005400030027x
[27] 王雅妮, 梁洪波, 王树声, 林琪,陈爱国. 陇南植烟土壤交换性镁与烟叶中镁含量特征及关系分析[J]. 中国农学通报, 2015, 31(4):50-54. doi: 10.11924/j.issn.1000-6850.2014-2477
WANG Yani, LIANG Hongbo, WANG Shusheng, LIN Qi, CHEN Aiguo. The Characteristics and Relationship Between Magnesium Content in Flue-cured Tobacco Leaves and Exchangeable Magnesium Content in Soil in Longnan[J]. Chinese Agricultural Science Bulletin, 2015, 31(4):50-54. doi: 10.11924/j.issn.1000-6850.2014-2477
[28] 丁群英. 安徽沿淮地区土壤交换性镁含量及镁对大豆营养的影响[J]. 安徽农学通报, 2002, 8(6):60-62. doi: 10.3969/j.issn.1007-7731.2002.06.029
DING Qunying. Effect of exchange Mg2+ and Mg in soil along Huaihe river on soybean nutrition[J]. Auhui Agricultural Science Bulletin, 2002, 8(6):60-62. doi: 10.3969/j.issn.1007-7731.2002.06.029
[29] 黄鸿翔, 陈福兴, 徐明岗, 秦道株,高菊生. 红壤地区土壤镁素状况及镁肥施用技术的研究[J]. 土壤肥料, 2000(5):19-23.
HUANG Hongxiang, CHEN Fuxing, XU Minggang, QIN Daozhu,GAO Jusheng. Status of magnesium and the techniques of application of magnesium fertilizer in the red earth region[J]. Soils and fertilizers, 2000(5):19-23.
[30] 李延, 刘星辉, 庄卫民. 福建山地龙眼园土壤镁素状况与龙眼缺镁调控措施[J]. 山地学报, 2001, 19(5):460-464. doi: 10.3969/j.issn.1008-2786.2001.05.014
LI Yan, LIU Xinghui, ZHUANG Weiming. Studies on magnesium status in mountain soils of longan orchards and on the control methods for longan magnesium deficiency in Fujian[J]. Journal of Mountain Science, 2001, 19(5):460-464. doi: 10.3969/j.issn.1008-2786.2001.05.014
[31] 杨力, 刘光栋, 宋国菡, 泉维洁,卢桂菊,丁光国. 山东省土壤交换性镁含量及分布[J]. 山东农业科学, 1998(3):8-12.
YANG Li, LIU Guangdong, SONG Guohan, QUAN Weijie,LU Guiju, DING Guangguo. Exchangeable magnesium content in soil and distribution in Shandong province[J]. Shandong Agricultural Sciences, 1998(3):8-12.