瞬变电磁与跨孔CT成像探测岩溶分布及形态特征的应用

代方园, 高扬, 宿庆伟, 胡韬, 耿付强, 董亚楠. 瞬变电磁与跨孔CT成像探测岩溶分布及形态特征的应用——以山东省济南地区为例[J]. 中国岩溶, 2022, 41(2): 308-317, 328. doi: 10.11932/karst20220210
引用本文: 代方园, 高扬, 宿庆伟, 胡韬, 耿付强, 董亚楠. 瞬变电磁与跨孔CT成像探测岩溶分布及形态特征的应用——以山东省济南地区为例[J]. 中国岩溶, 2022, 41(2): 308-317, 328. doi: 10.11932/karst20220210
DAI Fangyuan, GAO Yang, SU Qingwei, HU Tao, GENG Fuqiang, DONG Yanan. Application of transient electromagnetism and cross-hole CT imaging to detect karst distribution and morphological characteristics﹕A case study of Jinan,Shandong Province[J]. Carsologica Sinica, 2022, 41(2): 308-317, 328. doi: 10.11932/karst20220210
Citation: DAI Fangyuan, GAO Yang, SU Qingwei, HU Tao, GENG Fuqiang, DONG Yanan. Application of transient electromagnetism and cross-hole CT imaging to detect karst distribution and morphological characteristics﹕A case study of Jinan,Shandong Province[J]. Carsologica Sinica, 2022, 41(2): 308-317, 328. doi: 10.11932/karst20220210

瞬变电磁与跨孔CT成像探测岩溶分布及形态特征的应用

  • 基金项目: 山东省自然科学基金青年项目(ZR2021QD084);山东省交通运输科技计划(2021B06)
详细信息
    作者简介: 代方园(1989-),男,工程师,一级建造师,主要从事物探及水文勘察工作。E-mail:596677856@qq.com
    通讯作者: 宿庆伟(1986-),男,高级工程师,主要从事水工环地质工作。E-mail: xdcs1214@126.com
  • 中图分类号: P642.25;P631

Application of transient electromagnetism and cross-hole CT imaging to detect karst distribution and morphological characteristics﹕A case study of Jinan,Shandong Province

More Information
  • 文章以山东省济南西南裸露—覆盖型岩溶山区为研究对象,根据钻探资料,将区内岩溶发育形态分为小型溶洞与溶孔,并利用瞬变电磁法、电磁波CT成像两种物探方法,探讨岩溶分布、形态特征与地球物理场的关系。对比瞬变电磁剖面与钻探揭露的岩溶发育段,确定出120 Ω·m作为解译岩溶发育区的分界值,以此圈定岩溶分布区域,之后实施钻孔进行验证,符合性较好;在验证孔及附近钻孔进行电磁波CT成像探测,进一步验证并刻画两孔间的岩溶发育特征。两种物探方法中,电磁波CT的探测数据离散程度较高;两种岩溶发育形态中,小型溶洞的地球物理参数离散程度较大,同时小型溶洞发育区视电阻率平均值较小,视吸收系数平均值较大。

  • 加载中
  • 图 1  研究区水文地质图

    Figure 1. 

    图 2  地表岩溶发育状态

    Figure 2. 

    图 3  地下浅层岩溶发育状态(埋深18.5 m)

    Figure 3. 

    图 4  孔隙地下水动态特征

    Figure 4. 

    图 5  岩溶地下水动态特征

    Figure 5. 

    图 6  钻探及瞬变电磁综合剖面图

    Figure 6. 

    图 7  验证孔岩心照片

    Figure 7. 

    图 8  钻探及电磁波CT成像综合剖面图

    Figure 8. 

    表 1  地下水类型及富水性分级表

    Table 1.  Classification of groundwater and grading of water abundance

    地下水类型含水层代号含水层岩性富水性/
    m3·d−1
    松散岩类孔隙水Q4碎石、粉质黏土、黏土<500
    碳酸盐岩类
    裂隙岩溶水
    Є4O1s白云岩1000~5000
    下载: 导出CSV

    表 2  不同钻孔揭露岩溶发育段物性参数统计表

    Table 2.  Statistics of physical parameters of karst development section exposed by different drilling holes

    孔号钻探揭露岩溶埋深/m视电阻率值/Ω·m
    范围值/平均值
    岩溶发育形态溶洞填充状态
    ZK120.3~23.255.6~70.3/59.8小型溶洞黏性土
    ZK214.4~16.9
    29.7~33.7
    41.4~42.5
    39.6~71.9/60.8
    73.0~86.3/77.5
    96.2~98.2/96.9
    小型溶洞
    溶孔
    溶孔
    无充填
    黏性土
    黏性土
    ZK319.6~21.8
    25.8~27.0
    90.7~100.6/96.4
    80.1~84.8/81.9
    溶孔
    溶孔
    黏性土
    黏性土
    ZK421.7~22.6
    35.7~37.0
    115.1~120/117.7
    113.0~117.5/115.7
    溶孔
    溶孔
    黏性土
    黏性土
    ZK5////
    ZK628.9~30.1
    35.7~36.5
    118.0~139.2/123.5
    124.6~129.8/127.4
    溶孔
    溶孔
    黏性土
    黏性土
    ZK725.9~28.1
    40.1~40.7
    58.7~63.9/59.4
    68.8~73.2/70.4
    小型溶洞
    溶孔
    黏性土
    黏性土
    ZK834.7~36.6
    40.6~41.8
    74.8~77.8/75.3
    75.4~78.4/77.7
    小型溶洞
    小型溶洞
    黏性土
    黏性土
    ZK928.9~29.8
    31.4~32.5
    103.4~110.7/105.6
    100.4~105.6/103.4
    溶孔
    溶孔
    黏性土
    黏性土
    ZK10////
    下载: 导出CSV

    表 3  岩溶发育形态对应视电阻率统计表

    Table 3.  Statistics of apparent resistivity corresponding to different forms of karst development

    岩溶发育形态视电阻率值范围/Ω·m视电阻率值平均值/Ω·m离散系数特征值/Ω·m
    小型溶洞39.6~78.467.543.75%72.3
    溶孔68.8~139.2109.430.84%113.9
    下载: 导出CSV

    表 4  不同钻孔岩溶发育段物性参数统计表

    Table 4.  Statistics of physical parameters of karst development section in different boreholes

    孔号钻探揭露岩溶
    埋深/m
    视吸收系数
    范围值/平均值
    岩溶发育形态溶洞填充状态
    验证孔16.0~17.7
    21.4~23.8
    26.8~30.7
    35.1~35.9
    4.1~5.9/5.4
    5.4~7.6/6.1
    3.3~4.2/3.6
    2.6~3.6/3.1
    小型溶洞
    小型溶洞
    溶孔
    溶孔
    黏性土
    无充填
    黏性土
    黏性土
    ZK319.6~21.8
    25.8~27.0
    1.8~3.7/2.1
    3.1~3.8/3.4
    溶孔
    溶孔
    黏性土
    黏性土
    下载: 导出CSV

    表 5  岩溶发育形态对应视吸收系数统计表

    Table 5.  Statistics of apparent absorption coefficient corresponding to different forms of karst development

    岩溶发育形态视吸收系数范围视吸收系数平均值离散系数特征值
    小型溶洞4.1~7.65.156.06%5.85
    溶孔1.8~4.22.943.65%3.13
    下载: 导出CSV
  • [1]

    张华, 张贵, 王宇, 方永林,代旭升,王波,何绕生,罗为群,蓝芙宁. 岩溶断陷盆地跨孔CT成像探测岩溶孔隙及赋水状态的实验研究[J]. 中国岩溶, 2020, 39(5):737-744.

    ZHANG Hua, ZHANG Gui, WANG Yu, FANG Yonglin,DAI Xusheng,WANG Bo,HE Raosheng,LUO Weiqun,LAN Funing. Experimental study on the detection of karst pores by cross-hole CT imaging and groundwater occurrence in the Luxi karst fault- depression basin[J]. Carsologica Sinica, 2020, 39(5):737-744.

    [2]

    韩鹏. 高密度电阻率法在探测不同充填类型溶洞中的正反演研究[J]. 地质与勘探, 2020, 56(6):1219-1225.

    HAN Peng. Forward Modeling and Inversion of the High-Density Resistivity Method in Detecting Karst Caves of Different Filling Types[J]. Geology and Exploration, 2020, 56(6):1219-1225.

    [3]

    胡富彭, 欧元超, 付茂如. 不同充填介质下的溶洞跨孔电阻率CT探查数值模拟[J]. 中国岩溶, 2019, 38(5):766-773.

    HU Fupeng, OU Yuanchao, FU Maoru. Study on numerical simulation of karst cross-hole resistivity CT exploration at cave with different filling media[J]. Carsologica Sinica, 2019, 38(5):766-773.

    [4]

    汤克轩, 赵楠. 可溶岩地层的地球物理特征及其地质解译[J]. 中国岩溶, 2019, 38(4):578-583.

    TANG Kexuan, ZHAO Nan. Geophysical characteristics and geological interpretation of karst strata[J]. Carsologica Sinica, 2019, 38(4):578-583.

    [5]

    高宗军, 王敏, 成世才, 钱丽丽. 岩溶地面塌陷的水—岩耦合模型[J]. 昆明理工大学学报(理工版), 2009, 34(3):6-11,23.

    GAO Zongjun, WANG Min, CHENG Shicai, QIAN Lili. Water-Rock Coupled Forecasting Model of Karst Collapse[J]. Journal of Kunming University of Science and Technology(Science and Technology), 2009, 34(3):6-11,23.

    [6]

    艾合买提江·阿不都热和曼, 钟建华, 李阳,钟富平,高玉飞. 碳酸盐岩裂缝与岩溶作用研究[J]. 地质论评, 2008, 54(4):485-493,578. doi: 10.3321/j.issn:0371-5736.2008.04.007

    AIHEMAITIJIANG abudureherman, ZHONG Jianhua, LI Yang, ZHONG Fuping,GAO Yufei. Study on effect between karstification and fracture in carbonate rocks[J]. Geological Review, 2008, 54(4):485-493,578. doi: 10.3321/j.issn:0371-5736.2008.04.007

    [7]

    胡政, 田茂中, 陈再谦, 王平易,汪东. 不同岩溶形态场地抗浮水位取值研究[J]. 地下空间与工程学报, 2018, 14(5):1322-1330.

    HU Zheng, TIAN Maozhong, CHEN Zaiqian, WANG Pingyi,WANG Dong. Study on Valuing of Anti-floating Water Level in Different Karst Forms Site[J]. Chinese Journal of Underground Space and Engineering, 2018, 14(5):1322-1330.

    [8]

    杨丽芝, 韩晔, 佟照辉,刘春华,尚浩. 重大工程建设对济南泉水的影响研究[J]. 工程勘察, 2012, 40(5):42-48.

    YANG Lizhi, HAN Ye, TONG Zhaohui, LIU Chunhua,SHANG Hao. Research of the impact of major construction projects to Jinan spring[J]. Geotechnical Investigation & Surveying, 2012, 40(5):42-48.

    [9]

    王强, 牟慧蓉, 刘太福. 北京西山奥陶系岩溶发育特征及成因初探[J]. 北京地质, 1998(3):2-10.

    WANG Qiang, MU Huirong, LIU Taifu. A primary study on the genesis and features of karst from Ordovician system in the Xishan hill of Beijing[J]. Beijing Geology, 1998(3):2-10.

    [10]

    李术才, 苏茂鑫, 薛翊国, 张文俊,邱道宏,林春金. 城市地铁跨孔电阻率CT超前地质预报方法研究[J]. 岩石力学与工程学报, 2014, 33(5):913-920.

    LI Shucai, SU Maoxin, XUE Yiguo, ZHANG Wenjun,QIU Daohong,LIN Chunjin. Study on computed tomography of cross-hole resistivity in urban subway geological prediction[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(5):913-920.

    [11]

    李术才, 刘征宇, 刘斌, 许新冀,王传武,聂利超,孙怀凤,宋杰,王世睿. 基于跨孔电阻率CT的地铁盾构区间孤石探测方法及物理模型试验研究[J]. 岩土工程学报, 2015, 37(3):446-457. doi: 10.11779/CJGE201503008

    LI Shucai, LIU Zhengyu, LIU Bin, XU Xinji,WANG Chuanwu,NIE Lichao,SUN Huaifeng,SONG Jie,WANG Shirui. Boulder detection method for metro shield zones based on cross-hole resistivity tomography and its physical model tests[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(3):446-457. doi: 10.11779/CJGE201503008

    [12]

    周黎明, 陈志学, 周华敏, 付代光. 堤防隐患瞬变电磁三维正演模拟及分析[J]. 长江科学院院报, 2019, 36(10):146-150,156. doi: 10.11988/ckyyb.20190885

    ZHOU Liming, ZHEN Zhixue, ZHOU Huamin,FU Daiguang. Three-dimensional Forward Modeling and Analysis of Transient Electromagnetic for Detecting Embankment's Hidden Danger[J]. Journal of Yangtze River Scientific Research Institute, 2019, 36(10):146-150,156. doi: 10.11988/ckyyb.20190885

    [13]

    孟奇猛. 岩溶场地勘察电测深资料的解释与应用[J]. 工程勘察, 1998(2):73-76.

    MENG Qimeng. Interpretation and Application of Electrical Sounding Material in Karstic Site Investigation[J]. Geotechnical Investigation and Surveying, 1998(2):73-76.

    [14]

    王军, 赵虎, 邬凯. 钻孔式三维激光扫描仪在岩溶空穴形态测量中的应用[J]. 勘察科学技术, 2018(4):56-58. doi: 10.3969/j.issn.1001-3946.2018.04.014

    WANG Jun, ZHAO Hu, WU Kai. Application of Borehole Three-dimensional Laser Scanner in Morphometry of Karst Cavitation[J]. Site Investigation Science and Technology, 2018(4):56-58. doi: 10.3969/j.issn.1001-3946.2018.04.014

    [15]

    李祖能. 基于Voxler平台地震波CT岩溶探测三维建模研究[J]. 土工基础, 2018, 32(1):88-92.

    LI Zuneng. 3D Modeling of the Seismic Wave CT Karst Rock Characteristics Using Voxler Platform[J]. Soil Engineering and Foundation, 2018, 32(1):88-92.

    [16]

    郑智杰, 陈贻祥, 甘伏平. 岩溶区岩土层地球物理性质浅析: 以吉利岩溶塌陷区为例[J]. 地球物理学进展, 2016, 31(2):920-927.

    ZHENG Zhijie, CHEN Yixiang, GAN Fuping. Brief analysis of the geophysical properties of rock and soil in karst area-taking Geely karst collapse area as an example[J]. Progress in Geophysics, 2016, 31(2):920-927.

    [17]

    袁道先. 新形势下我国岩溶研究面临的机遇和挑战[J]. 中国岩溶, 2009, 28(4):329-331. doi: 10.3969/j.issn.1001-4810.2009.04.001

    YUAN Daoxian. Challenges and opportunities for karst research of our country under the new situation[J]. Carsologica Sinica, 2009, 28(4):329-331. doi: 10.3969/j.issn.1001-4810.2009.04.001

    [18]

    梁永平, 申豪勇, 赵春红, 王志恒,唐春雷,赵一,谢浩,石维芝. 对中国北方岩溶水研究方向的思考与实践[J]. 中国岩溶, 2021, 40(3):363-380.

    LIANG Yongping, SHEN Haoyong, ZHAO Chunhong, WANG Zhiheng,TANG Chunlei,ZHAO Yi,XIE Hao,SHI Weizhi. Thinking and practice on the research direction of karst water in northern China[J]. Carsologica Sinica, 2021, 40(3):363-380.

    [19]

    冯亚伟. 山东省岩溶塌陷分布规律及成因机制[J]. 中国岩溶, 2021, 40(2):205-214.

    FENG Yawei. Distribution and genesis of karst collapse in Shandong Province[J]. Carsologica Sinica, 2021, 40(2):205-214.

    [20]

    陈贻祥, 邬健强, 黄奇波, 甘伏平,韩凯,魏巍,郑智杰. 水中自然电场法探测病态水库岩溶渗漏通道: 以金鸡河水库一级水电站为例[J]. 中国岩溶, 2018, 37(6):883-891.

    CHEN Yixiang, WU Jianqiang, HUANG Qibo, GAN Fuping, HAN Kai, WEI Wei, ZHENG Zhijie. Detection of karst leakage passages in sick reservoirs by the self-potential method on the water: An example of the first-class hydropower station on the Jinjihe reservoir[J]. Carsologica Sinica, 2018, 37(6):883-891.

    [21]

    李玉辉. 中国云南石林岩溶形态类型与特征[J]. 中国岩溶, 2002, 21(3):165-172.

    LI Yuhui. Morphological types and their features of Shilin karst in Yunnan, China[J]. Carsologica Sinica, 2002, 21(3):165-172.

    [22]

    陈鸿汉, 朱远峰, 邹胜章. 中国北方岩溶区含水岩溶裂隙介质的序列指示模拟研究[J]. 地球科学, 2002, 27(2):168-172.

    CHEN Honghan, ZHU Yuanfeng, ZOU Shengzhang. Aligned Indicator Conditional Simulation of Probability of Karst-Fissure Media in Karst Area of Northern China[J]. Earth Science, 2002, 27(2):168-172.

    [23]

    潘凯, 谢春庆, 程瑞驭, 徐腾辉. 山区机场场地地下岩溶综合勘察工程实例[J]. 勘察科学技术, 2017(1):28-32.

    PAN Kai, XIE Chunqing, CHENG Ruiyu, XU Tenghui. Engineering Example of Comprehensive Prospecting of Underground Karst in Mountain Airport Area[J]. Site Investigation Science and Technology, 2017(1):28-32.

    [24]

    康志宏, 陈琳, 鲁新便, 杨敏. 塔河岩溶型碳酸盐岩缝洞系统流体动态连通性研究[J]. 地学前缘, 2012, 19(2):110-120.

    KANG Zhihong, CHEN Lin, LU Xinbian,YANG Min. Fluid dynamic connectivity of karst carbonate reservoir with fracture & cave system in Tahe Oilfield[J]. Earth Science Frontiers, 2012, 19(2):110-120.

    [25]

    李苍松, 吴丰收, 赵岩杰, 王福刚,曹玉清. 基于溶蚀实验的微观岩溶形态分形特征和水化学动力学特征研究[J]. 现代隧道技术, 2018, 55(2):110-120.

    LI Cangsong, WU Fengshou, ZHAO Yanjie,WANG Fugang,CAO Yuqing. Fractal and Hydro-Chemical Characteristics of Microscopic Karst Morphology Based on Dissolution Experiments[J]. Modern Tunnelling Technology, 2018, 55(2):110-120.

    [26]

    文欢. 基于正演模拟的溶洞充填性分析[J]. 石化技术, 2016, 23(8):86-87. doi: 10.3969/j.issn.1006-0235.2016.08.060

    WEN Huan. Analysis of Karst Cavern Filling Property Based on Forward Modeling[J]. Petrochemical Industry Technology, 2016, 23(8):86-87. doi: 10.3969/j.issn.1006-0235.2016.08.060

    [27]

    孙海宁, 王晓梅, 刘来祥. AVO技术在识别充填流体溶洞中的应用[J]. 物探与化探, 2008, 32(4):397-400.

    SUN Haining, WANG Xiaomei, LIU Laixiang. The application of AVO to the predication of water-eroded caves filled with liquids for carbonate reservoirs[J]. Geophysical and Geochemical Exploration, 2008, 32(4):397-400.

    [28]

    唐文榜, 刘来祥, 樊佳芳, 韩革华,马学军. 溶洞充填物判识的频率差异分析技术[J]. 石油与天然气地质, 2002, 23(1):41-44. doi: 10.3321/j.issn:0253-9985.2002.01.008

    TANG Wenbang, LIU Laixiang, FAN Jiafang, HAN Gehua,MA Xuejun. Analytic technique of frequency difference for discrimination of Cavity fillers[J]. Oil & Gas Geology, 2002, 23(1):41-44. doi: 10.3321/j.issn:0253-9985.2002.01.008

    [29]

    路洪海, 章程. 济南泉域岩溶水质演变及其对人类活动的响应[J]. 水土保持研究, 2007, 14(6):238-240.

    LU Honghai, ZHANG Cheng. The Variations of Groundwater Quality and Its Relationship with Human Activity[J]. Research of Soil and Water Conservation, 2007, 14(6):238-240.

    [30]

    祁晓凡, 李文鹏, 李海涛, 杨丽芝. 济南岩溶泉域地下水位、降水、气温与大尺度气象模式的遥相关[J]. 水文地质工程地质, 2015, 42(6):18-28.

    QI Xiaofan, LI Wenpeng, LI Haitao, YANG Lizhi. Teleconnections between groundwater levels, precipitation, air temperature of the Jinan karst springs watershed and large scale climatic patterns[J]. Hydrogeology & Engineering Geology, 2015, 42(6):18-28.

    [31]

    代方园, 雷炳霄, 宫亮, 张哲. 电磁波CT技术在济南地铁岩溶勘察中的应用[J]. 山东国土资源, 2020, 36(2):61-66.

    DAI Fangyuan, LEI Bingxiao, GONG Liang, ZHANG Zhe. Application of Electromagnetic Computerized Tomography in Karst Detection along Ji'nan Subway[J]. Shandong Land and Resources, 2020, 36(2):61-66.

  • 加载中

(8)

(5)

计量
  • 文章访问数:  1796
  • PDF下载数:  77
  • 施引文献:  0
出版历程
收稿日期:  2021-05-14
刊出日期:  2022-04-25

目录