Application of transient electromagnetism and cross-hole CT imaging to detect karst distribution and morphological characteristics﹕A case study of Jinan,Shandong Province
-
摘要:
文章以山东省济南西南裸露—覆盖型岩溶山区为研究对象,根据钻探资料,将区内岩溶发育形态分为小型溶洞与溶孔,并利用瞬变电磁法、电磁波CT成像两种物探方法,探讨岩溶分布、形态特征与地球物理场的关系。对比瞬变电磁剖面与钻探揭露的岩溶发育段,确定出120 Ω·m作为解译岩溶发育区的分界值,以此圈定岩溶分布区域,之后实施钻孔进行验证,符合性较好;在验证孔及附近钻孔进行电磁波CT成像探测,进一步验证并刻画两孔间的岩溶发育特征。两种物探方法中,电磁波CT的探测数据离散程度较高;两种岩溶发育形态中,小型溶洞的地球物理参数离散程度较大,同时小型溶洞发育区视电阻率平均值较小,视吸收系数平均值较大。
Abstract:The study area is located in the southern mountainous area of Jinan City, which is an exposed-covered karst mountainous area with low hilly landform surrounded by mountains on the east, west and south sides. The overall terrain is high in the south and low in the north, and is generally a north inclined monoclinic structure with exposed strata of Cambrian,Ordovician and Quaternary. Precipitation in this area is mainly concentrated in July, August and September. The catchment area of nearby rivers is limited and cut off for a long time.The development of surface karst in the study area is ordinary, but the underground shallow karst is relatively developed. There are two types of groundwater,pore water and karst water. The karst water aquifer corresponds to the limestone of Cambrian-Ordovician Sanshanzi formation in which karst is relatively developed. The depth of study area is 50 m with dolomite as its the main lithology. There are two kinds of karst development in this area,small karst caves with the pore diameter greater than 20 cm, fast footage and low sampling rate and dissolved pores with the pore diameter less than 20 cm, normal footage, and high sampling rate. Caves and pores are basically filled with cohesive soil.This study is aimed to calculate the dispersion coefficient and eigenvalue of apparent resistivity and apparent absorption coefficient in karst development area, and to explore a method to analyze the development degree and morphological characteristics of karst cave. The research methods include Transient Electromagnetic Method (TEM), cross-hole electromagnetic tomography and drilling. In TEM, the central loop device, multi-turn small loop emission and point measurement are adopted. The distance between fixed sending points and measuring points of cross-hole electromagnetic tomography is 1.0 m, and data is collected in the four frequency bands of 6, 8, 10 and 12.In this study, the transient electromagnetic profile is compared with the karst development section exposed by drilling, and 120-ohm meter is determined as the boundary value for interpreting the karst development area, so as to delineate the karst distribution area. Then the drilling is carried out for verification, and its result is in conformity with that of TEM. Imaging detection of the cross-hole electromagnetic tomography in the verification hole and nearby boreholes is conducted to further verify and characterize the karst development between these two types of holes. By comparing TEM with drilling, the distribution range, the average value and the characteristic value of apparent resistivity in karst development area are statistically analyzed to delineate the distribution range of karst. Then the imaging of cross-hole electromagnetic tomography is used to precisely divide the distribution and development form of karst. Results show that apparent resistivity of small karst caves in TEM is relatively scattered, but it is larger and concentrated in dissolved pores. Under the same conditions of karst cave, both average resistivity and maximum apparent resistivity of non-filled karst caves are larger than those of the caves filled with cohesive soil.The results of these two geophysical prospecting methods show the same degree of dispersion. The degree of dispersion of small karst caves data is greater than that of dissolved pores, but the performance of data average value and characteristic value is different,with transient electromagnetic method, the average and characteristic values of apparent resistivity in small karst caves are less than those of dissolved pores; however, with cross-hole electromagnetic tomography, they are greater than those in dissolved pores.
-
表 1 地下水类型及富水性分级表
Table 1. Classification of groundwater and grading of water abundance
地下水类型 含水层代号 含水层岩性 富水性/
m3·d−1松散岩类孔隙水 Q4 碎石、粉质黏土、黏土 <500 碳酸盐岩类
裂隙岩溶水Є4O1s 白云岩 1000~5000 表 2 不同钻孔揭露岩溶发育段物性参数统计表
Table 2. Statistics of physical parameters of karst development section exposed by different drilling holes
孔号 钻探揭露岩溶埋深/m 视电阻率值/Ω·m
范围值/平均值岩溶发育形态 溶洞填充状态 ZK1 20.3~23.2 55.6~70.3/59.8 小型溶洞 黏性土 ZK2 14.4~16.9
29.7~33.7
41.4~42.539.6~71.9/60.8
73.0~86.3/77.5
96.2~98.2/96.9小型溶洞
溶孔
溶孔无充填
黏性土
黏性土ZK3 19.6~21.8
25.8~27.090.7~100.6/96.4
80.1~84.8/81.9溶孔
溶孔黏性土
黏性土ZK4 21.7~22.6
35.7~37.0115.1~120/117.7
113.0~117.5/115.7溶孔
溶孔黏性土
黏性土ZK5 / / / / ZK6 28.9~30.1
35.7~36.5118.0~139.2/123.5
124.6~129.8/127.4溶孔
溶孔黏性土
黏性土ZK7 25.9~28.1
40.1~40.758.7~63.9/59.4
68.8~73.2/70.4小型溶洞
溶孔黏性土
黏性土ZK8 34.7~36.6
40.6~41.874.8~77.8/75.3
75.4~78.4/77.7小型溶洞
小型溶洞黏性土
黏性土ZK9 28.9~29.8
31.4~32.5103.4~110.7/105.6
100.4~105.6/103.4溶孔
溶孔黏性土
黏性土ZK10 / / / / 表 3 岩溶发育形态对应视电阻率统计表
Table 3. Statistics of apparent resistivity corresponding to different forms of karst development
岩溶发育形态 视电阻率值范围/Ω·m 视电阻率值平均值/Ω·m 离散系数 特征值/Ω·m 小型溶洞 39.6~78.4 67.5 43.75% 72.3 溶孔 68.8~139.2 109.4 30.84% 113.9 表 4 不同钻孔岩溶发育段物性参数统计表
Table 4. Statistics of physical parameters of karst development section in different boreholes
孔号 钻探揭露岩溶
埋深/m视吸收系数
范围值/平均值岩溶发育形态 溶洞填充状态 验证孔 16.0~17.7
21.4~23.8
26.8~30.7
35.1~35.94.1~5.9/5.4
5.4~7.6/6.1
3.3~4.2/3.6
2.6~3.6/3.1小型溶洞
小型溶洞
溶孔
溶孔黏性土
无充填
黏性土
黏性土ZK3 19.6~21.8
25.8~27.01.8~3.7/2.1
3.1~3.8/3.4溶孔
溶孔黏性土
黏性土表 5 岩溶发育形态对应视吸收系数统计表
Table 5. Statistics of apparent absorption coefficient corresponding to different forms of karst development
岩溶发育形态 视吸收系数范围 视吸收系数平均值 离散系数 特征值 小型溶洞 4.1~7.6 5.1 56.06% 5.85 溶孔 1.8~4.2 2.9 43.65% 3.13 -
[1] 张华, 张贵, 王宇, 方永林,代旭升,王波,何绕生,罗为群,蓝芙宁. 岩溶断陷盆地跨孔CT成像探测岩溶孔隙及赋水状态的实验研究[J]. 中国岩溶, 2020, 39(5):737-744.
ZHANG Hua, ZHANG Gui, WANG Yu, FANG Yonglin,DAI Xusheng,WANG Bo,HE Raosheng,LUO Weiqun,LAN Funing. Experimental study on the detection of karst pores by cross-hole CT imaging and groundwater occurrence in the Luxi karst fault- depression basin[J]. Carsologica Sinica, 2020, 39(5):737-744.
[2] 韩鹏. 高密度电阻率法在探测不同充填类型溶洞中的正反演研究[J]. 地质与勘探, 2020, 56(6):1219-1225.
HAN Peng. Forward Modeling and Inversion of the High-Density Resistivity Method in Detecting Karst Caves of Different Filling Types[J]. Geology and Exploration, 2020, 56(6):1219-1225.
[3] 胡富彭, 欧元超, 付茂如. 不同充填介质下的溶洞跨孔电阻率CT探查数值模拟[J]. 中国岩溶, 2019, 38(5):766-773.
HU Fupeng, OU Yuanchao, FU Maoru. Study on numerical simulation of karst cross-hole resistivity CT exploration at cave with different filling media[J]. Carsologica Sinica, 2019, 38(5):766-773.
[4] 汤克轩, 赵楠. 可溶岩地层的地球物理特征及其地质解译[J]. 中国岩溶, 2019, 38(4):578-583.
TANG Kexuan, ZHAO Nan. Geophysical characteristics and geological interpretation of karst strata[J]. Carsologica Sinica, 2019, 38(4):578-583.
[5] 高宗军, 王敏, 成世才, 钱丽丽. 岩溶地面塌陷的水—岩耦合模型[J]. 昆明理工大学学报(理工版), 2009, 34(3):6-11,23.
GAO Zongjun, WANG Min, CHENG Shicai, QIAN Lili. Water-Rock Coupled Forecasting Model of Karst Collapse[J]. Journal of Kunming University of Science and Technology(Science and Technology), 2009, 34(3):6-11,23.
[6] 艾合买提江·阿不都热和曼, 钟建华, 李阳,钟富平,高玉飞. 碳酸盐岩裂缝与岩溶作用研究[J]. 地质论评, 2008, 54(4):485-493,578. doi: 10.3321/j.issn:0371-5736.2008.04.007
AIHEMAITIJIANG abudureherman, ZHONG Jianhua, LI Yang, ZHONG Fuping,GAO Yufei. Study on effect between karstification and fracture in carbonate rocks[J]. Geological Review, 2008, 54(4):485-493,578. doi: 10.3321/j.issn:0371-5736.2008.04.007
[7] 胡政, 田茂中, 陈再谦, 王平易,汪东. 不同岩溶形态场地抗浮水位取值研究[J]. 地下空间与工程学报, 2018, 14(5):1322-1330.
HU Zheng, TIAN Maozhong, CHEN Zaiqian, WANG Pingyi,WANG Dong. Study on Valuing of Anti-floating Water Level in Different Karst Forms Site[J]. Chinese Journal of Underground Space and Engineering, 2018, 14(5):1322-1330.
[8] 杨丽芝, 韩晔, 佟照辉,刘春华,尚浩. 重大工程建设对济南泉水的影响研究[J]. 工程勘察, 2012, 40(5):42-48.
YANG Lizhi, HAN Ye, TONG Zhaohui, LIU Chunhua,SHANG Hao. Research of the impact of major construction projects to Jinan spring[J]. Geotechnical Investigation & Surveying, 2012, 40(5):42-48.
[9] 王强, 牟慧蓉, 刘太福. 北京西山奥陶系岩溶发育特征及成因初探[J]. 北京地质, 1998(3):2-10.
WANG Qiang, MU Huirong, LIU Taifu. A primary study on the genesis and features of karst from Ordovician system in the Xishan hill of Beijing[J]. Beijing Geology, 1998(3):2-10.
[10] 李术才, 苏茂鑫, 薛翊国, 张文俊,邱道宏,林春金. 城市地铁跨孔电阻率CT超前地质预报方法研究[J]. 岩石力学与工程学报, 2014, 33(5):913-920.
LI Shucai, SU Maoxin, XUE Yiguo, ZHANG Wenjun,QIU Daohong,LIN Chunjin. Study on computed tomography of cross-hole resistivity in urban subway geological prediction[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(5):913-920.
[11] 李术才, 刘征宇, 刘斌, 许新冀,王传武,聂利超,孙怀凤,宋杰,王世睿. 基于跨孔电阻率CT的地铁盾构区间孤石探测方法及物理模型试验研究[J]. 岩土工程学报, 2015, 37(3):446-457. doi: 10.11779/CJGE201503008
LI Shucai, LIU Zhengyu, LIU Bin, XU Xinji,WANG Chuanwu,NIE Lichao,SUN Huaifeng,SONG Jie,WANG Shirui. Boulder detection method for metro shield zones based on cross-hole resistivity tomography and its physical model tests[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(3):446-457. doi: 10.11779/CJGE201503008
[12] 周黎明, 陈志学, 周华敏, 付代光. 堤防隐患瞬变电磁三维正演模拟及分析[J]. 长江科学院院报, 2019, 36(10):146-150,156. doi: 10.11988/ckyyb.20190885
ZHOU Liming, ZHEN Zhixue, ZHOU Huamin,FU Daiguang. Three-dimensional Forward Modeling and Analysis of Transient Electromagnetic for Detecting Embankment's Hidden Danger[J]. Journal of Yangtze River Scientific Research Institute, 2019, 36(10):146-150,156. doi: 10.11988/ckyyb.20190885
[13] 孟奇猛. 岩溶场地勘察电测深资料的解释与应用[J]. 工程勘察, 1998(2):73-76.
MENG Qimeng. Interpretation and Application of Electrical Sounding Material in Karstic Site Investigation[J]. Geotechnical Investigation and Surveying, 1998(2):73-76.
[14] 王军, 赵虎, 邬凯. 钻孔式三维激光扫描仪在岩溶空穴形态测量中的应用[J]. 勘察科学技术, 2018(4):56-58. doi: 10.3969/j.issn.1001-3946.2018.04.014
WANG Jun, ZHAO Hu, WU Kai. Application of Borehole Three-dimensional Laser Scanner in Morphometry of Karst Cavitation[J]. Site Investigation Science and Technology, 2018(4):56-58. doi: 10.3969/j.issn.1001-3946.2018.04.014
[15] 李祖能. 基于Voxler平台地震波CT岩溶探测三维建模研究[J]. 土工基础, 2018, 32(1):88-92.
LI Zuneng. 3D Modeling of the Seismic Wave CT Karst Rock Characteristics Using Voxler Platform[J]. Soil Engineering and Foundation, 2018, 32(1):88-92.
[16] 郑智杰, 陈贻祥, 甘伏平. 岩溶区岩土层地球物理性质浅析: 以吉利岩溶塌陷区为例[J]. 地球物理学进展, 2016, 31(2):920-927.
ZHENG Zhijie, CHEN Yixiang, GAN Fuping. Brief analysis of the geophysical properties of rock and soil in karst area-taking Geely karst collapse area as an example[J]. Progress in Geophysics, 2016, 31(2):920-927.
[17] 袁道先. 新形势下我国岩溶研究面临的机遇和挑战[J]. 中国岩溶, 2009, 28(4):329-331. doi: 10.3969/j.issn.1001-4810.2009.04.001
YUAN Daoxian. Challenges and opportunities for karst research of our country under the new situation[J]. Carsologica Sinica, 2009, 28(4):329-331. doi: 10.3969/j.issn.1001-4810.2009.04.001
[18] 梁永平, 申豪勇, 赵春红, 王志恒,唐春雷,赵一,谢浩,石维芝. 对中国北方岩溶水研究方向的思考与实践[J]. 中国岩溶, 2021, 40(3):363-380.
LIANG Yongping, SHEN Haoyong, ZHAO Chunhong, WANG Zhiheng,TANG Chunlei,ZHAO Yi,XIE Hao,SHI Weizhi. Thinking and practice on the research direction of karst water in northern China[J]. Carsologica Sinica, 2021, 40(3):363-380.
[19] 冯亚伟. 山东省岩溶塌陷分布规律及成因机制[J]. 中国岩溶, 2021, 40(2):205-214.
FENG Yawei. Distribution and genesis of karst collapse in Shandong Province[J]. Carsologica Sinica, 2021, 40(2):205-214.
[20] 陈贻祥, 邬健强, 黄奇波, 甘伏平,韩凯,魏巍,郑智杰. 水中自然电场法探测病态水库岩溶渗漏通道: 以金鸡河水库一级水电站为例[J]. 中国岩溶, 2018, 37(6):883-891.
CHEN Yixiang, WU Jianqiang, HUANG Qibo, GAN Fuping, HAN Kai, WEI Wei, ZHENG Zhijie. Detection of karst leakage passages in sick reservoirs by the self-potential method on the water: An example of the first-class hydropower station on the Jinjihe reservoir[J]. Carsologica Sinica, 2018, 37(6):883-891.
[21] 李玉辉. 中国云南石林岩溶形态类型与特征[J]. 中国岩溶, 2002, 21(3):165-172.
LI Yuhui. Morphological types and their features of Shilin karst in Yunnan, China[J]. Carsologica Sinica, 2002, 21(3):165-172.
[22] 陈鸿汉, 朱远峰, 邹胜章. 中国北方岩溶区含水岩溶裂隙介质的序列指示模拟研究[J]. 地球科学, 2002, 27(2):168-172.
CHEN Honghan, ZHU Yuanfeng, ZOU Shengzhang. Aligned Indicator Conditional Simulation of Probability of Karst-Fissure Media in Karst Area of Northern China[J]. Earth Science, 2002, 27(2):168-172.
[23] 潘凯, 谢春庆, 程瑞驭, 徐腾辉. 山区机场场地地下岩溶综合勘察工程实例[J]. 勘察科学技术, 2017(1):28-32.
PAN Kai, XIE Chunqing, CHENG Ruiyu, XU Tenghui. Engineering Example of Comprehensive Prospecting of Underground Karst in Mountain Airport Area[J]. Site Investigation Science and Technology, 2017(1):28-32.
[24] 康志宏, 陈琳, 鲁新便, 杨敏. 塔河岩溶型碳酸盐岩缝洞系统流体动态连通性研究[J]. 地学前缘, 2012, 19(2):110-120.
KANG Zhihong, CHEN Lin, LU Xinbian,YANG Min. Fluid dynamic connectivity of karst carbonate reservoir with fracture & cave system in Tahe Oilfield[J]. Earth Science Frontiers, 2012, 19(2):110-120.
[25] 李苍松, 吴丰收, 赵岩杰, 王福刚,曹玉清. 基于溶蚀实验的微观岩溶形态分形特征和水化学动力学特征研究[J]. 现代隧道技术, 2018, 55(2):110-120.
LI Cangsong, WU Fengshou, ZHAO Yanjie,WANG Fugang,CAO Yuqing. Fractal and Hydro-Chemical Characteristics of Microscopic Karst Morphology Based on Dissolution Experiments[J]. Modern Tunnelling Technology, 2018, 55(2):110-120.
[26] 文欢. 基于正演模拟的溶洞充填性分析[J]. 石化技术, 2016, 23(8):86-87. doi: 10.3969/j.issn.1006-0235.2016.08.060
WEN Huan. Analysis of Karst Cavern Filling Property Based on Forward Modeling[J]. Petrochemical Industry Technology, 2016, 23(8):86-87. doi: 10.3969/j.issn.1006-0235.2016.08.060
[27] 孙海宁, 王晓梅, 刘来祥. AVO技术在识别充填流体溶洞中的应用[J]. 物探与化探, 2008, 32(4):397-400.
SUN Haining, WANG Xiaomei, LIU Laixiang. The application of AVO to the predication of water-eroded caves filled with liquids for carbonate reservoirs[J]. Geophysical and Geochemical Exploration, 2008, 32(4):397-400.
[28] 唐文榜, 刘来祥, 樊佳芳, 韩革华,马学军. 溶洞充填物判识的频率差异分析技术[J]. 石油与天然气地质, 2002, 23(1):41-44. doi: 10.3321/j.issn:0253-9985.2002.01.008
TANG Wenbang, LIU Laixiang, FAN Jiafang, HAN Gehua,MA Xuejun. Analytic technique of frequency difference for discrimination of Cavity fillers[J]. Oil & Gas Geology, 2002, 23(1):41-44. doi: 10.3321/j.issn:0253-9985.2002.01.008
[29] 路洪海, 章程. 济南泉域岩溶水质演变及其对人类活动的响应[J]. 水土保持研究, 2007, 14(6):238-240.
LU Honghai, ZHANG Cheng. The Variations of Groundwater Quality and Its Relationship with Human Activity[J]. Research of Soil and Water Conservation, 2007, 14(6):238-240.
[30] 祁晓凡, 李文鹏, 李海涛, 杨丽芝. 济南岩溶泉域地下水位、降水、气温与大尺度气象模式的遥相关[J]. 水文地质工程地质, 2015, 42(6):18-28.
QI Xiaofan, LI Wenpeng, LI Haitao, YANG Lizhi. Teleconnections between groundwater levels, precipitation, air temperature of the Jinan karst springs watershed and large scale climatic patterns[J]. Hydrogeology & Engineering Geology, 2015, 42(6):18-28.
[31] 代方园, 雷炳霄, 宫亮, 张哲. 电磁波CT技术在济南地铁岩溶勘察中的应用[J]. 山东国土资源, 2020, 36(2):61-66.
DAI Fangyuan, LEI Bingxiao, GONG Liang, ZHANG Zhe. Application of Electromagnetic Computerized Tomography in Karst Detection along Ji'nan Subway[J]. Shandong Land and Resources, 2020, 36(2):61-66.