微生物诱导碳酸盐岩沉淀过程及作用机理

高旭波, 潘振东, 龚培俐, 江玉, 李成城, 李鸿煜. 微生物诱导碳酸盐岩沉淀过程及作用机理[J]. 中国岩溶, 2022, 41(3): 441-452. doi: 10.11932/karst20220311
引用本文: 高旭波, 潘振东, 龚培俐, 江玉, 李成城, 李鸿煜. 微生物诱导碳酸盐岩沉淀过程及作用机理[J]. 中国岩溶, 2022, 41(3): 441-452. doi: 10.11932/karst20220311
GAO Xubo, PAN Zhendong, GONG Peili, JIANG Yu, LI Chengcheng, LI Hongyu. Process and mechanism of microbial induced carbonate precipitation[J]. Carsologica Sinica, 2022, 41(3): 441-452. doi: 10.11932/karst20220311
Citation: GAO Xubo, PAN Zhendong, GONG Peili, JIANG Yu, LI Chengcheng, LI Hongyu. Process and mechanism of microbial induced carbonate precipitation[J]. Carsologica Sinica, 2022, 41(3): 441-452. doi: 10.11932/karst20220311

微生物诱导碳酸盐岩沉淀过程及作用机理

  • 基金项目: 国家自然科学基金项目:地下水系统中碳酸盐岩体系—砷相互作用研究(41877204);国家自然科学基金青年基金项目:人类活动影响下富钙高氟地下水中氟—钙拮抗的环境生物地球化学过程研究(41902265)
详细信息

Process and mechanism of microbial induced carbonate precipitation

  • 微生物诱导碳酸钙沉淀(microbially induced calcium carbonate precipitation, MICP)是一种在自然界中广泛存在的生物矿化过程。由于MICP具有反应速度快、环境条件要求低、应用范围广、温室气体减排效应显著等特点,在地质、土木、水利、环境多个领域中广泛推广应用。文章在分析国内外相关研究成果的基础上,归纳整理出反硝化过程、硫酸盐还原作用、尿素分解作用等多种微生物诱导下碳酸钙矿化途径和作用机制。以尿素分解菌为代表,重点讨论微生物诱导碳酸盐沉淀过程中pH、温度、离子浓度等环境因素对生成矿物晶型晶貌等方面的影响,总结了MICP的环境应用机制,即环境中的重金属元素通过替换作用替换矿化矿物中的Ca2+或CO32−从而被固定。MICP作为一种简单高效的地质环境过程,在生态环境修复领域具有广阔的应用前景。

  • 加载中
  • 图 1  反硝化诱导碳酸钙沉淀

    Figure 1. 

    图 2  硫酸盐还原诱导碳酸钙沉淀

    Figure 2. 

    图 3  光合作用概念模型图

    Figure 3. 

    图 4  甲烷氧化概念模型图 [13]

    Figure 4. 

    图 5  尿素分解菌诱导生成碳酸钙概念模型图

    Figure 5. 

    图 6  阳离子型矿化过程示意图

    Figure 6. 

    图 7  重金属置换矿化过程示意图

    Figure 7. 

    表 1  尿素分解菌MICP固定阳离子型重金属表

    Table 1.  Cationic heavy metals fixed by urea decomposing bacteria MICP

    重金属类型细菌名称固定率/%文献
    Cd 贪铜菌属
    芽孢杆菌属
    芽孢杆菌属
    芽孢杆菌属
    贪铜菌属
    芽孢杆菌属
    芽孢杆菌属
    芽孢杆菌属
    80.10
    72.64
    76.70
    73.40
    53.30(土壤)
    35.33(土壤)
    42.54(土壤)
    53.80(土壤)
    [44]
    嗜根寡养单胞菌
    孟氏假单胞菌
    八叠球菌
    71.30
    71.30
    97.15
    [45]
    蜡样芽胞杆菌 60.72 [46]
    绿芽胞杆菌
    沙棘绿杆菌
    阴沟肠杆菌
    85.40 [45]
    Ni 蜡样芽胞杆菌 95.78(土壤) [47]
    球孢子孢菌
    巴氏芽孢八叠球菌UR53
    巴氏芽孢八叠球菌UR31
    蜡样芽胞杆菌UR41
    88~99
    88~99
    88~99
    88~99
    [48]
    Pb 芽孢杆菌 26 [49]
    嗜根寡养单胞菌(A323)
    孟氏假单胞菌(C113)
    96.25
    95.93
    [45]
    阴沟肠杆菌 60 [50]
    蜡样芽孢杆菌 85 [51]
    Pb 产黄青霉(真菌) 98.80 [52]
    镰刀菌(真菌)
    曲霉菌(真菌)
    48
    34
    [53]
    Zn 嗜根寡养单胞菌
    孟氏假单胞菌
    八叠球菌
    63.91
    73.81
    94.83
    [45]
    Cu 考克氏菌
    考克氏菌
    97
    95(土壤)
    [54]
    巴氏芽孢杆菌 10 [55]
    贪铜菌 97.7 [56]
    下载: 导出CSV

    表 2  MICP固定阴离子型重金属表

    Table 2.  Table of anionic heavy metals fixed by MICP

    (类)重金属类型细菌名称固定率文献
    As地衣芽孢杆菌100%(As5+)初始浓度3 mmol·L−1
    60%(As5+)初始浓度5 mmol·L−1
    35%(As5+)初始浓度7 mmol·L−1
    100%(As3+)初始浓度1 mmol·L−1
    95%(As3+)初始浓度3 mmol·L−1
    58%(As3+)初始浓度5 mmol·L−1
    [57]
    芽孢八叠球菌96.6%(土壤)[58]
    地衣芽孢杆菌生成1 053 mg/kg的固相(不加Mg)
    生成1 381 mg/kg的固相(加Mg)
    [59]
    Cr产黄青霉菌(真菌)95.30%[52]
    芽孢杆菌98%[60]
    表皮葡萄球菌76.80%[61]
    下载: 导出CSV
  • [1]

    Torres-Aravena álvaro Esteban, Duarte-Nass Carla, Azócar Laura, Mella-Herrera Rodrigo, Rivas Mariella, Jeison David. Can Microbially Induced Calcite Precipitation (MICP) through a Ureolytic Pathway Be Successfully Applied for Removing Heavy Metals from Wastewaters?[J]. Crystals, 2018, 8(11):438. doi: 10.3390/cryst8110438

    [2]

    Anbu P, Kang C H, Shin Y J, So J S. Formations of calcium carbonate minerals by bacteria and its multiple applications[J]. Springerplus, 2016, 5(1):1-26. doi: 10.1186/s40064-015-1659-2

    [3]

    周威, 刘冬, 王延宁, Ankit Garg,林鹏. 基于MICP技术对污染淤泥质土净化修复作用的研究分析[J]. 汕头大学学报:自然科学版, 2020, 35(4):63-68.

    ZHOU Wei, LIU Dong, WANG Yanning, Ankit Garg, LIN Peng. Research and analysis on the purification and remediation of contaminated silty soil based on MICP technology[J]. Journal of Shantou University:Natural Science, 2020, 35(4):63-68.

    [4]

    许朝阳, 张贺, 杨贺, 许宁. MICP技术对Mn Cr污染土壤的修复效果[J]. 扬州大学学报(自然科学版), 2020, 23(2):73-78.

    XU Chaoyang, ZHANG He, YANG He, XU Ning. Effects of MICP technology on remediation of Mn and Cr contaminated soil[J]. Journal of Yangzhou University (Natural Science Edition), 2020, 23(2):73-78.

    [5]

    Dupraz C, Reid R P, Braissant O, Decho A W,Norman R C,Visscher P T. Processes of carbonate precipitation in modern microbial mats[J]. Earth Science Reviews, 2009, 96(3):141-162. doi: 10.1016/j.earscirev.2008.10.005

    [6]

    Castro-Alonso, Montaez-Hernandez L E, Sanchez-Muoz M A. Microbially Induced Calcium Carbonate Precipitation (MICP) and Its Potential in Bioconcrete: Microbiological and Molecular Concepts[J]. Frontiers in Materials, 2019, 6:126. doi: 10.3389/fmats.2019.00126

    [7]

    董发勤, 代群威, 饶瀚云, 王富东,赵学钦,蒋忠诚,张强,李博文,Alexander I.Malov,Enrico Capezzuoli,Augusto Auler 黄龙与黄石钙华微生物沉积作用比较研究[J]. 中国岩溶, 2021, 40(2):264-272.

    DONG Faqin, DAI Qunwei, RAO Hanyun, WANG Fudong, ZHAO Xueqin, JIANG Zhongcheng, ZHANG Qiang, LI Bowen, Alexander IMalov, Enrico Capezzuoli. Comparative study on microbial deposition of travertine between Huanglong and Huangshi[J]. Carsologica Sinica, 2021, 40(2):264-272.

    [8]

    陈筠, 施鹏超, 白文胜, 邬忠虎,杨恒. 微生物矿化作用对红黏土的影响研究[J]. 中国岩溶, 2019, 38(7):612-618.

    CHEN Jun, SHI Pengchao, BAI Wensheng, WU Zhonghu, YANG Heng. Study on the influence of microbial mineralization on red clay[J]. Carsologica Sinica, 2019, 38(7):612-618.

    [9]

    刘璐, 李福春, 李磊, 张宠宏,吕杰杰. 细菌碳酸酐酶促进形成的碳酸盐矿物[J]. 中国岩溶, 2017, 36(4):433-440.

    LIU Lu, LI Fuchun, LI Lei, ZHANG Chonghong, LV Jiejie. Carbonate minerals formed by bacterial carbonic anhydrase[J]. Carsologica Sinica, 2017, 36(4):433-440.

    [10]

    朱纪康, 周杨, 王殿龙, 张家铭. 基于微生物诱导矿化的钙质砂加固影响因素[J]. 地质科技情报, 2019, 38(6):206-211.

    Zhu Jikang, Zhou Yang, Wang Dianlong, Zhang Jiaming. Influencing factors of calcareous sand reinforcement based on microbial-induced mineralization[J]. Geological Science and Technology Information, 2019, 38(6):206-211.

    [11]

    Arias D, Cisternas L A, Rivas M. Biomineralization mediated by ureolytic bacteria applied to water treatment: A review[J]. Crystals, 2017, 7(11):345. doi: 10.3390/cryst7110345

    [12]

    Singh R, Yoon H, Sanford R A, Katz L,Fouke B W,Werth C J. Metabolism-induced CaCO3 biomineralization during reactive transport in a micromodel: Implications for porosity alteration[J]. Environmental science & technology, 2015, 49(20):12094-12104.

    [13]

    Alshalif A F, Irwan J M, Othman N, et al. Isolation of sulphate reduction bacteria (SRB) to improve compress strength and water penetration of bio-concrete[C]//MATEC Web of Conferences. EDP Sciences, 2016, 47: 01016.

    [14]

    Reddy M S. Biomineralization of calcium carbonates and their engineered applications: a review[J]. Frontiers in microbiology, 2013, 4:314.

    [15]

    Perito B, Mastromei G. Molecular basis of bacterial calcium carbonate precipitation.[J]. Progress in Molecular & Subcellular Biology, 2011, 52:113.

    [16]

    Dhami N K, Reddy M S, Mukherjee A. Application of calcifying bacteria for remediation of stones and cultural heritages[J]. Frontiers in microbiology, 2014, 5:304.

    [17]

    McConnaughey T A, Whelan J F. Calcification generates protons for nutrient and bicarbonate uptake[J]. Earth-Science Reviews, 1997, 42(1-2):95-117. doi: 10.1016/S0012-8252(96)00036-0

    [18]

    Ersan Y C. Overlooked strategies in exploitation of microorganisms in the field of building materials[M]//Ecological Wisdom Inspired Restoration Engineering. Springer, Singapore, 2019: 19-45.

    [19]

    Ganendra G, De Muynck W, Ho A, Arvaniti E C, Hosseinkhani B, Ramos J A,Rahier H, Boon N. Formate oxidation-driven calcium carbonate precipitation by Methylocystis parvus OBBP[J]. Applied and environmental microbiology, 2014, 80(15):4659-4667. doi: 10.1128/AEM.01349-14

    [20]

    Seifan M, Samani A K, Berenjian A. Bioconcrete: next generation of self-healing concrete[J]. Applied microbiology and biotechnology, 2016, 100(6):2591-2602. doi: 10.1007/s00253-016-7316-z

    [21]

    Chen Y, Li Y L, Zhou G T, Li H, Lin Y T,Xiao X,Wang F P. Biomineralization mediated by anaerobic methane-consuming cell consortia[J]. Scientific Reports, 2014, 4(1):1-9.

    [22]

    张海丽, 徐品品, 冷立健, 姚池,温志友,刘数华,周文广. 微生物诱导碳酸钙沉积研究与应用[J]. 生物学杂志, 2020, 37(1):86-91. doi: 10.3969/j.issn.2095-1736.2020.01.086

    ZHANG Haili, XU Pinpin, LENG Lijian, YAO Chi, WEN Zhiyou, LIU Shuhua, ZHOU Wenguang. Microbial-induced calcium carbonate deposition and its application[J]. Journal of Biology, 2020, 37(1):86-91. doi: 10.3969/j.issn.2095-1736.2020.01.086

    [23]

    Achal V, Pan X. Characterization of urease and carbonic anhydrase producing bacteria and their role in calcite precipitation[J]. Current microbiology, 2011, 62(3):894-902. doi: 10.1007/s00284-010-9801-4

    [24]

    Achal V, Mukherjee A, Reddy M S. Characterization of two urease-producing and calcifying Bacillus spp. isolated from cement[J]. Journal of Microbiology and Biotechnology, 2010, 20(11):1571-1576. doi: 10.4014/jmb.1006.06032

    [25]

    Xu J, Du Y L, Jiang Z W, She A M. Effects of calcium source on biochemical properties of microbial CaCO3 precipitation[J]. Frontiers in microbiology, 2015, 6:1366.

    [26]

    Achal V, Pan X. Influence of calcium sources on microbially induced calcium carbonate precipitation by Bacillus sp. CR2[J]. Applied biochemistry and biotechnology, 2014, 173(1):307-317. doi: 10.1007/s12010-014-0842-1

    [27]

    Amiri A, Bundur Z B. Use of corn-steep liquor as an alternative carbon source for biomineralization in cement-based materials and its impact on performance[J]. Construction and Building Materials, 2018, 165:655-662. doi: 10.1016/j.conbuildmat.2018.01.070

    [28]

    Omoregie A I, Khoshdelnezamiha G, Senian N, N Senian, LeongOng D E,Nissom P M. Experimental optimisation of various cultural conditions on urease activity for isolated Sporosarcina pasteurii strains and evaluation of their biocement potentials[J]. Ecological Engineering, 2017, 109:65-75. doi: 10.1016/j.ecoleng.2017.09.012

    [29]

    赵晓婉, 冯清鹏, 李杰, 彭劼. 不同温度下微生物诱导碳酸钙生成量的研究[J]. 工业建筑, 2019:11.

    Zhao Xiaowan, Feng Qingpeng, Li Jie, Peng Jie. Microbial-induced calcium carbonate production at different temperatures[J]. Industrial Architecture, 2019:11.

    [30]

    孙潇昊, 缪林昌, 吴林玉, 王呈呈,陈润发. 低温条件微生物 MICP 沉淀产率试验研究[J]. 岩土工程学报, 2019, 41(6):1133-1138.

    SUN Xiaohao, MIAO Linchang, WU Linyu, WANG Chengcheng, CHEN Runfa. Experimental Study on Microbial MICP Precipitation Yield at Low Temperature[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(6):1133-1138.

    [31]

    Gowthaman S, Iki T, Nakashima K, Koji E, Satoru K. Feasibility study for slope soil stabilization by microbial induced carbonate precipitation (MICP) using indigenous bacteria isolated from cold subarctic region[J]. SN applied sciences, 2019, 1(11):1-16.

    [32]

    Kim G, Kim J, Youn H. Effect of temperature, pH, and reaction duration on microbially induced calcite precipitation[J]. Applied Sciences, 2018, 8(8):1277. doi: 10.3390/app8081277

    [33]

    Tang C S, Yin L, Jiang N, et al. Factors affecting the performance of microbial-induced carbonate precipitation (MICP) treated soil: a review[J]. Environmental Earth Sciences, 2020, 79(5):1-23.

    [34]

    Yin Tingting,Lin Hai,Dong Yingbo,Li Bing,He Yinhai,Liu Chenjing,Chen Xi. A novel constructed carbonate-mineralized functional bacterial consortium for high-efficiency cadmium biomineralization[J]. Journal of Hazardous Materials, 2021, 401:123269. doi: 10.1016/j.jhazmat.2020.123269

    [35]

    Natsumi Kamiya,Hiroyuki Kagi,Fumiaki Tsunomori,Hiroshi Tsuno,Kenji Notsu. Effect of trace lanthanum ion on dissolution and crystal growth of calcium carbonate[J]. Journal of crystal growth, 2004, 267(3-4):635-645. doi: 10.1016/j.jcrysgro.2004.04.006

    [36]

    Olderoy MO,Xie M L,Strand B L,Flaten E M,Sikorski P, Andreassen J P. Growth and nucleation of calcium carbonate vaterite crystals in presence of alginate[J]. Crystal Growth & Design, 2009, 9(12):5176-5183.

    [37]

    Astilleros J M, Fernández-Díaz L, Putnis A. The role of magnesium in the growth of calcite: An AFM study[J]. Chemical Geology, 2010, 271(1-2):52-58. doi: 10.1016/j.chemgeo.2009.12.011

    [38]

    Al Imran M, Shinmura M, Nakashima K, et al. Effects of various factors on carbonate particle growth using ureolytic bacteria[J]. Materials Transactions, 2018, 59(9):1520-1527. doi: 10.2320/matertrans.M-M2018830

    [39]

    Mitchell A C, Ferris F G. The coprecipitation of Sr into calcite precipitates induced by bacterial ureolysis in artificial groundwater: temperature and kinetic dependence[J]. Geochimica et Cosmochimica Acta, 2005, 69(17):4199-4210. doi: 10.1016/j.gca.2005.03.014

    [40]

    Bachmeier K L, Williams A E, Warmington J R, et al. Urease activity in microbiologically-induced calcite precipitation[J]. Journal of biotechnology, 2002, 93(2):171-181. doi: 10.1016/S0168-1656(01)00393-5

    [41]

    陈敏洁, 李亚飞, 李博文, 姜晓茹,郑春丽. 微生物诱导碳酸钙沉淀对土壤中 Pb 污染稳定化的效果研究[J]. NONFERROUS METALS ENGINEERING, 2020(12):128-134.

    CHEN Minjie, LI Yafei, LI Bowen, JIANG Xiaoru, ZHENG Chunli. The effect of microbe-induced calcium carbonate precipitation on stabilization of Pb pollution in soil[J]. NONFERROUS METALS ENGINEERING, 2020(12):128-134.

    [42]

    李勇, 高旭波, 张鑫, 罗文婷,胡钦红. 运城盆地高砷区地下水-沉积物中砷的地球化学特征研究[J]. 安全与环境工程, 2017, 24(5):68-74.

    LI Yong, GAO Xubo, ZHANG Xin, LUO Wenting, HU Qinhong. Geochemical characteristics of arsenic in groundwater-sediment in high-arsenic area of Yuncheng Basin[J]. Safety and Environmental Engineering, 2017, 24(5):68-74.

    [43]

    王茂林, 吴世军, 杨永强, 陈繁荣. 微生物诱导碳酸盐沉淀及其在固定重金属领域的应用进展[J]. 环境科学研究, 2018, 31(2):206-214.

    WANG Maolin, WU Shijun, YANG Yongqiang, CHEN Fenghong. Microbial-induced carbonate precipitation and its application in the field of heavy metal fixation[J]. Environmental Science Research, 2018, 31(2):206-214.

    [44]

    Zhao X, Wang M, Wang H, et al. Study on the remediation of Cd pollution by the biomineralization of urease-producing bacteria[J]. International Journal of Environmental Research and Public Health, 2019, 16(2):268. doi: 10.3390/ijerph16020268

    [45]

    Jalilvand Nasrin,Akhgar Abdolreza,Alikhani Hossein Ali,Rahmani Hadi, AsadiRejali Farhad. Removal of heavy metals zinc, lead, and cadmium by biomineralization of urease-producing bacteria isolated from Iranian mine calcareous soils[J]. Journal of Soil Science and Plant Nutrition, 2020, 20(1):206-219. doi: 10.1007/s42729-019-00121-z

    [46]

    Zhao Yue, Yao Jun, Yuan Zhimin, Wang Tianqi, Zhang Yiyue, Wang Fei. Bioremediation of Cd by strain GZ-22 isolated from mine soil based on biosorption and microbially induced carbonate precipitation[J]. Environmental Science and Pollution Research, 2017, 24(1):372-380. doi: 10.1007/s11356-016-7810-y

    [47]

    Zhu Xuejiao,Li Weila,Zhan Lu,Huang Minsheng,Zhang Qiuzhuo,Achal Varenyam. The large-scale process of microbial carbonate precipitation for nickel remediation from an industrial soil[J]. Environmental Pollution, 2016, 219:149-155. doi: 10.1016/j.envpol.2016.10.047

    [48]

    Li M, Cheng X, Guo H. Heavy metal removal by biomineralization of urease producing bacteria isolated from soil[J]. International Biodeterioration & Biodegradation, 2013, 76:81-85.

    [49]

    Muthusamy Govarthanan,Kui-Jae Lee,Min Cho,Jae Su Kim,Seralathan Kamala-Kannan,Byung-Taek Oh. Significance of autochthonous Bacillus sp. KK1 on biomineralization of lead in mine tailings[J]. Chemosphere, 2013, 90(8):2267-2272. doi: 10.1016/j.chemosphere.2012.10.038

    [50]

    Kang C H, Oh S J, Shin Y J, Han S H, Nam I H, So J S . Bioremediation of lead by ureolytic bacteria isolated from soil at abandoned metal mines in South Korea[J]. Ecological Engineering, 2015, 74:402-407. doi: 10.1016/j.ecoleng.2014.10.009

    [51]

    Chen Z, Pan X, Chen H, et al. Biomineralization of Pb (II) into Pb-hydroxyapatite induced by Bacillus cereus 12-2 isolated from Lead–Zinc mine tailings[J]. Journal of hazardous materials, 2016, 301:531-537. doi: 10.1016/j.jhazmat.2015.09.023

    [52]

    Qian Xinyi,Fang Chaolin,Huang Minsheng,Achal Varenyam. Characterization of fungal-mediated carbonate precipitation in the biomineralization of chromate and lead from an aqueous solution and soil[J]. Journal of Cleaner Production, 2017, 164:198-208. doi: 10.1016/j.jclepro.2017.06.195

    [53]

    Dhami N K, Quirin M E C, Mukherjee A. Carbonate biomineralization and heavy metal remediation by calcifying fungi isolated from karstic caves[J]. Ecological Engineering, 2017, 103:106-117. doi: 10.1016/j.ecoleng.2017.03.007

    [54]

    Achal V, Pan X, Zhang D. Remediation of copper-contaminated soil by Kocuria flava CR1, based on microbially induced calcite precipitation[J]. Ecological Engineering, 2011, 37(10):1601-1605. doi: 10.1016/j.ecoleng.2011.06.008

    [55]

    Duarte-Nass C, Rebolledo K, Valenzuela T, et al. Application of microbe-induced carbonate precipitation for copper removal from copper-enriched waters: Challenges to future industrial application[J]. Journal of Environmental Management, 2020, 256:109938. doi: 10.1016/j.jenvman.2019.109938

    [56]

    赵兴青, 成艳, 孙秀云, 王莲莲. 碳酸盐矿化菌固结重金属离子Cu2+的研究[J]. 常州大学学报:自然科学版, 2018, 30(1):15-21.

    ZHAO Xingqing, CHENG Yan, SUN Xiuyun, WANG Lianlian. Study on the Consolidation of Heavy Metal Ion Cu2+ by Carbonate Mineralizing Bacteria[J]. Journal of Changzhou University:Natural Science Edition, 2018, 30(1):15-21.

    [57]

    Tripti K, Shardendu. pH modulates arsenic toxicity in Bacillus licheniformis DAS-2[J]. Ecotoxicology and Environmental Safety, 2016, 130:240-247. doi: 10.1016/j.ecoenv.2016.04.029

    [58]

    Achal V, Pan X, Fu Q, Zhang D. Biomineralization based remediation of As (III) contaminated soil by Sporosarcina ginsengisoli[J]. Journal of hazardous materials, 2012, 201:178-184.

    [59]

    Catelani T, Perito B, Bellucci F,Lee S, Fenter P, Newville M, Rimondi V,Pratesi G, Costagliola P. Arsenic uptake in bacterial calcite[J]. Geochimica et Cosmochimica Acta, 2017, 222:642-654.

    [60]

    Kumari D, Mengmeng,Xiangliang,XY Qian. Effect of bacterial treatment on Cr (VI) remediation from soil and subsequent plantation of Pisum sativum[J]. Ecological engineering, 2014, 73:404-408. doi: 10.1016/j.ecoleng.2014.09.093

    [61]

    He J, Chen X, Zhang Q,Achal Varenyam. More effective immobilization of divalent lead than hexavalent chromium through carbonate mineralization by Staphylococcus epidermidis HJ2[J]. International Biodeterioration & Biodegradation, 2019, 140:67-71.

    [62]

    Yamamura S, Ike M, Fujita M. Dissimilatory arsenate reduction by a facultative anaerobe, Bacillus sp. strain SF-1.[J]. Journal of Bioscience & Bioengineering, 2003, 96(5):454-460.

  • 加载中

(7)

(2)

计量
  • 文章访问数:  5531
  • PDF下载数:  680
  • 施引文献:  0
出版历程
收稿日期:  2022-01-30
刊出日期:  2022-06-25

目录