喀斯特系统生物地球化学循环及对全球变化的响应

刘鑫, 李思亮, 岳甫均, 钟君, 覃蔡清, 丁虎. 喀斯特系统生物地球化学循环及对全球变化的响应[J]. 中国岩溶, 2022, 41(3): 465-476. doi: 10.11932/karst20220313
引用本文: 刘鑫, 李思亮, 岳甫均, 钟君, 覃蔡清, 丁虎. 喀斯特系统生物地球化学循环及对全球变化的响应[J]. 中国岩溶, 2022, 41(3): 465-476. doi: 10.11932/karst20220313
LIU Xin, LI Siliang, YUE Fujun, ZHONG Jun, QIN Caiqing, DING Hu. Biogeochemical cycles of karst systems and their response to global change[J]. Carsologica Sinica, 2022, 41(3): 465-476. doi: 10.11932/karst20220313
Citation: LIU Xin, LI Siliang, YUE Fujun, ZHONG Jun, QIN Caiqing, DING Hu. Biogeochemical cycles of karst systems and their response to global change[J]. Carsologica Sinica, 2022, 41(3): 465-476. doi: 10.11932/karst20220313

喀斯特系统生物地球化学循环及对全球变化的响应

  • 基金项目: 中国科学院战略重点研究项目(XDB40000000);国家自然科学杰出青年基金项目(41925002)
详细信息
    作者简介: 刘 鑫 (1995-),男,博士研究生,主要研究方向为流域生物地球化学循环。E-mail:Liuxin_213@tju.edu.cn
    通讯作者: 李思亮(1978-),男,教授,博士研究生导师,主要从事流域生物地球化学方面研究工作。E-mail:Siliang.li@tju.edu.cn
  • 中图分类号: P642.25

Biogeochemical cycles of karst systems and their response to global change

More Information
  • 生物地球化学循环是地球系统物质循环的核心,是维系地表生态系统稳定和人类社会可持续发展的重要基础。然而,气候变化以及人类的过度干扰可能会显著改变表层地球系统中的生物地球化学循环过程,尤其是脆弱的喀斯特生态系统。特殊的多孔隙关键带结构也加速了喀斯特地区物质循环及其对外界环境变化的响应,影响了不同尺度的物质循环和生物地球化学过程。本研究主要综述了宏观尺度(气候变化)、中尺度(人类活动)和微观尺度(微生物活动)的环境变化对喀斯特地区生物地球化学循环的影响。结果表明多要素变化导致喀斯特地区物质循环受到强烈影响,气候变化、人类活动和微生物活动及其耦合关系对喀斯特地区生物地球化学循环的调控作用具有重要意义。最后,本研究强调了现有研究的局限性并指出未来研究的挑战与方向,即未来应从系统研究(如地球关键带)的视角出发,将多尺度观测-分析与综合模型集成研究并举,从而构建多源多尺度耦合的过程和系统模型,进而为阐明喀斯特系统的演变规律和动力学机制、实现喀斯特地区的生态保护和高质量发展提供理论基础。

  • 加载中
  • 图 1  生物地球化学循环对全球变化响应的概念模型.

    Figure 1. 

    图 2  全球变化对喀斯特地区生物地球化学循环的影响概念图.

    Figure 2. 

    图 3  中国南方喀斯特地区1980~2020年间不同土地利用变化.数据来源于 https://www.resdc.cn.

    Figure 3. 

  • [1]

    Mackenzie Fred T, Ver Leah May, Lerman Abraham. Century-scale nitrogen and phosphorus controls of the carbon cycle[J]. Chemical Geology, 2002, 190(1-4):13-32.

    [2]

    刘丛强. 生物地球化学过程与地表物质循环: 西南喀斯特流域侵蚀与生源要素循环 [M]. 北京: 科学出版社, 2007.

    LIU Congqiang. Biogeochemical processes and surface matter cycles: erosion and biomass cycles in karst basins of southwest China [M]. Beijing: Science Press, 2007.

    [3]

    Lin Henry. Earth's critical zone and hydropedology: concepts, characteristics, and advances[J]. Hydrology and Earth System Sciences, 2010, 6(1):3417-3481.

    [4]

    Daniel Deb, Richter Jr, Megan L Mobley. Monitoring Earth's critical zone[J]. Science, 2009, 326:1067-1068.

    [5]

    刘丛强, 郎赟超, 李思亮, 朴何春, 涂成龙, 刘涛泽, 张伟, 朱书法. 喀斯特生态系统生物地球化学过程与物质循环研究: 重要性、现状与趋势[J]. 地学前缘, 2009, 16(6):1-12. doi: 10.3321/j.issn:1005-2321.2009.06.001

    LIU Congqiang, LANG Yuncao, LI Siliang, PIAO Hechun, TU Chenglong, LIU Taozhe, ZHANG Wei, ZHU Shufa. Researches on biogeochemical processes and nutrient cycling in karstic ecological systems, southwest China: a review[J]. Earth Science Frontiers, 2009, 16(6):1-12. doi: 10.3321/j.issn:1005-2321.2009.06.001

    [6]

    Goldscheider Nico, Chen Zhao, Auler Augusto S, Bakalowicz Michel, Broda Stefan, Drew David, Hartmann Jens, Jiang Guanghui, Moosdorf Nils, Stevanovic Zoran, Veni George. Global distribution of carbonate rocks and karst water resources[J]. Hydrogeology Journal, 2020, 28(5):1661-1677.

    [7]

    袁道先, 蒋勇军, 沈立成, 蒲俊兵, 肖琼. 现代岩溶学 [M]. 北京: 科学出版社, 2016.

    YUAN Daoxian, JIANG Yongjun, SHEN Licheng, PU Junbing, XIAO Qiong. Modern Karstology [M]. Beijing: Science Press, 2016.

    [8]

    Li Si Liang, Liu Cong Qiang, Chen Jin An, Wang Shi Jie. Karst ecosystem and environment: characteristics, evolution processes, and sustainable development[J]. Agriculture, Ecosystems & Environment, 2021, 306:107173.

    [9]

    刘丛强. 生物地球化学过程与地表物质循环: 西南喀斯特土壤-植被系统生源要素循环 [M]. 北京: 科学出版社, 2009.

    LIU Congqiang. Biogeochemical processes and cycling of nutrients in the Earth's surface: Cycling of nutrients in soil-plant systems of karstic environments, southwest China [M]. Beijing: Science Press, 2009.

    [10]

    Maaroufi Nadia I, Long Jonathan Rde. Global change impacts on forest soils: linkage between soil biota and carbon-nitrogen-phosphorus stoichiometry[J]. Frontiers in Forests and Global Change, 2020, 3:16. doi: 10.3389/ffgc.2020.00016

    [11]

    Zeng Cheng, Gremaud Vivian, Zeng Hai Tao, Liu Zai Hua, Goldscheider Nico. Temperature-driven meltwater production and hydrochemical variations at a glaciated alpine karst aquifer: implication for the atmospheric CO2 sink under global warming[J]. Environmental Earth Sciences, 2011, 65(8):2285-2297.

    [12]

    Zhong Jun, Li Si Liang, Ibarra Daniel E, Ding Hu, Liu Cong Qiang. Solute production and transport processes in Chinese monsoonal rivers: implications for global climate change[J]. Global Biogeochemical Cycles, 2020, 34(9):e2020GB006541.

    [13]

    Zeng Si Bo, Liu Zai Hua, Kaufmann Georg. Sensitivity of the global carbonate weathering carbon-sink flux to climate and land-use changes[J]. Nature Communications, 2019, 10(1):5749. doi: 10.1038/s41467-019-13772-4

    [14]

    Zhong Jun, Wallin Marcus B, Wang Wan Fa, Li Si Liang, Guo Lao Dong, Dong Ke Jun, Ellam Rob M, Liu Cong Qiang, Xu Sheng. Synchronous evaporation and aquatic primary production in tropical river networks[J]. Water Research, 2021, 200:117272.

    [15]

    Chen Shuai, Zhong Jun, Li Si Liang, Ran Lishan, Wang Wan Fa, Xu Sen, Yan Ze Long, Xu Sheng. Multiple controls on carbon dynamics in mixed karst and non-karst mountainous rivers, Southwest China, revealed by carbon isotopes (δ13C and Δ14C)[J]. Science of the Total Environment, 2021, 791:148347.

    [16]

    张喜, 朱军, 崔迎春, 霍达, 王莉莉, 吴鹏, 陈骏, 潘德权, 杨春华. 火烧对黔中喀斯特山地马尾松林土壤理化性质的影响[J]. 生态学报, 2011, 31(19):5809-5817.

    ZHANG Xi, ZHU Jun, CUI Yingchun, HUO Da, WANG Lili, WU Peng, CHEN Jun, PAN Dequan, YANG Chunhua. Influence of fire on a Pinus massoniana soil in a karst mountain area at the center of Guizhou Province, China[J]. Acta Ecologica Sinica, 2011, 31(19):5809-5817.

    [17]

    伍方骥, 刘娜, 胡培雷, 王克林, 张伟, 邹冬生. 典型喀斯特洼地植被恢复过程中土壤碳氮储量动态及其对极端内涝灾害的响应[J]. 中国生态农业学报(中英文), 2020, 28(3):429-437.

    WU Fangji, LIU Na, HU Peilei, WANG Kelin, ZHANG Wei, ZOU Dongsheng. Soil carbon and nitrogen dynamics during vegetation restoration and their responses to extreme water-logging disasters in a typical karst depression[J]. Chinese Journal of Eco-Agriculture, 2020, 28(3):429-437.

    [18]

    Fang Chao, Li Feng Min, Pei Jiu Ying, Ren Jiao, Gong Yan Hong, Yuan Zi Qiang, Ke Wen Bin, Zheng Yang, Bai Xiao Ke, Ye Jian Sheng. Impacts of warming and nitrogen addition on soil autotrophic and heterotrophic respiration in a semi-arid environment[J]. Agricultural and Forest Meteorology, 2018, 248:449-457.

    [19]

    唐国勇, 张春华, 刘方炎, 李昆, 马艳. 季节非对称升温对喀斯特土壤CO2释放的影响[J]. 环境科学, 2018, 39(4):1962-1970.

    TANG Guoyong, ZHANG Chunhua, LIU Fangyan, LI Kun, MA Yan. Effects of seasonal asymmetric warming on soil CO2 release in Karst region[J]. Environmental Science, 2018, 39(4):1962-1970.

    [20]

    马志良, 刘美, 赵文强. 增温对高寒灌丛土壤呼吸不同组分的影响机制 [J]. 生态环境学报, 2019, 28(3): 636-642.

    MA Zhiliang, LIU Mei, ZHAO Wenqiang. Influencing mechanisms of warming on the soil respiration components in an alpine scrubland [J]. Ecology and Environmental Sciences, 28(3): 636-642.

    [21]

    李博文, 王奇, 吕汪汪, 周阳, 姜丽丽, 刘培培, 孟凡栋, 张立荣, 张苏人, 阿旺, 李耀明, 斯确多吉, 汪诗平. 增温增水对草地生态系统碳循环关键过程的影响[J]. 生态学报, 2021, 41(4):1668-1679.

    LI Bowen, WANG Qi, LV Wangwang, ZHOU Yang, JIANG Lili, LIU Peipei, MENG Fandong, ZHANG Lirong, ZHANG Suren, A Wang, LI Yaoming, SI Queduoji, WANG Shiping. The effects of warming and added water on key processes of grassland carbon cycle[J]. Acta Ecologica Sinica, 2021, 41(4):1668-1679.

    [22]

    Zhang Fang Yue, Quan Quan, Song Bing, Sun Jian, Chen You Jun, Zhou Qing Ping, Niu Shu Li. Net primary productivity and its partitioning in response to precipitation gradient in an alpine meadow[J]. Scientific Reports, 2017, 7(1):15193.

    [23]

    Xu Zhu Wen, Ren Hai Yan, Li Mai He, Brunner Ivano, Yin Jin Fei, Liu He Yong, Kong De Liang, Lv Xiao Tao, Sun Tao, Cai Jiang Ping, Wang Ru Zhen, Zhang Yong Yong, He Peng, Han Xing Guo, Wan Shi Qiang, Jiang Yong. Experimentally increased water and nitrogen affect root production and vertical allocation of an old-field grassland[J]. Plant and Soil, 2016, 412(1-2):369-380.

    [24]

    刘炜, 焦树林, 李银久, 莫跃爽, 张洁, 邵雨潇, 冯椰林. 贵州省1960-2019年不同地貌类型降水时空特征[J]. 水土保持研究, 2021, 28(5):159-171. doi: 10.13869/j.cnki.rswc.2021.05.019

    LIU Wei, JIAO Shulin, LI Yinjiu, MO Yueshuang, ZHANG Jie, SHAO Yuxiao, FENG Yelin. Spatial and temporal distribution characteristics of precipitation of different geomorphic types in Guizhou province from 1960-2019[J]. Research Soil and Water Conservation, 2021, 28(5):159-171. doi: 10.13869/j.cnki.rswc.2021.05.019

    [25]

    蒿廉伊, 张丽华, 谢忠奎, 赵锐锋, 王军锋, 郭亚飞, 高江平. 降水变化对荒漠草原土壤呼吸的影响[J]. 环境科学, 2021, 42(9):4527-4537. doi: 10.13227/j.hjkx.202012204

    HAO Lianyi, ZHANG Lihua, XIE Zhongkui, ZHAO Ruifeng, WANG Junfeng, GUO Yafei, GAO Jiangping. Influence of precipitation change on soil respiration in desert grassland[J]. Environmental Science, 2021, 42(9):4527-4537. doi: 10.13227/j.hjkx.202012204

    [26]

    吕文强, 王世杰, 刘秀明, 容丽. 喀斯特地区城市绿地土壤呼吸对降水变化的响应研究[J]. 地球与环境, 2011, 39(2):174-180. doi: 10.14050/j.cnki.1672-9250.2011.02.006

    LV Wenqiang, WANG Shijie, LIU Xiuming, RONG Li. Influence of rainfall on soil respiration in karst urban green space[J]. Earth and Environment, 2011, 39(2):174-180. doi: 10.14050/j.cnki.1672-9250.2011.02.006

    [27]

    Yue Fu Jun, Li Si Liang, Waldron Susan, Wang Zhong Jun, Oliver David M, Chen Xi, Liu Cong Qiang. Rainfall and conduit drainage combine to accelerate nitrate loss from a karst agroecosystem: insights from stable isotope tracing and high-frequency nitrate sensing[J]. Water Research, 2020, 186(1):116388. doi: DOI:10.1016/j.watres.2020.116388

    [28]

    Qin Cai Qing, Li Si Liang, Waldron Susan, Yue Fu Jun, Wang Zhong Jun. High-frequency monitoring reveals how hydrochemistry and dissolved carbon respond to rainstorms at a karstic critical zone, Southwestern China[J]. Science of the Total Environment, 2020, 714:136833. doi: https://doi.org/10.1016/j.scitotenv.2020.136833

    [29]

    Li Liang, Cao Jian Hua, Huang Fen, Wang Pei, Liang Yi. Distribution and magnitude of geologic carbon sinks: a water balance study of the Chaotian River basin, Guilin, China[J]. Environmental Earth Sciences, 2015, 74(2):913-920.

    [30]

    Zhong Jun, Li Si Liang, Liu Jing, Ding Hu, Sun Xiao Le, Xu Sheng, Wang Tie Jun, Ellam Rob M, Liu Cong Qiang. Climate variability controls on CO2 consumption fluxes and carbon dynamics for monsoonal rivers: evidence from Xijiang River, Southwest China[J]. Journal of Geophysical Research:Biogeosciences, 2018, 123(8):2553-2567.

    [31]

    Crutzen Paul J. Geology of mankind[J]. Nature, 2002, 415(6867):23.

    [32]

    Li Si Liang, Xu Sen, Wang Tie Jun, Yue Fu Jun, Liu Cong Qiang. Effects of agricultural activities coupled with karst structures on riverine biogeochemical cycles and environmental quality in the karst region[J]. Agriculture Ecosystems & Environment, 2020, 303:107120. doi: 10.1016/j.agee.2020.107120

    [33]

    Zeng Cheng, Li Yan Bing, Bai Xiao Yong, Luo Guang Jie. Evaluation of karst soil erosion and nutrient loss based on RUSLE model in Guizhou province[J]. Earth and Environmental Science, 2017, 108:032014.

    [34]

    Zhu Xiao Cong, Ma Ming Guo, Tateno Ryunosuke, He Xin Hua, Shi Wei Yu. Effects of vegetation restoration on soil carbon dynamics in Karst and non-karst regions in Southwest China: a synthesis of multi-source data [J]. Plant and Soil, 2021.

    [35]

    Liu Xin, Zhang Wei, Wu Min, Ye Ying Ying, Wang Ke Lin, Li De Jun. Changes in soil nitrogen stocks following vegetation restoration in a typical karst catchment[J]. Land Degradation & Development, 2019, 30(1):60-72.

    [36]

    Liu Man, Han Gui Lin, Zhang Qian, Song Zhao Liang. Variations and Indications of δ13CSOC and δ15NSON in Soil Profiles in Karst Critical Zone Observatory (CZO), Southwest China[J]. Sustainability, 2019, 11(7):2144.

    [37]

    Knops Johannes M, Tilman David. Dynamics of soil nitrogen and carbon accumulation for 61 years after agricultural abandonment[J]. Ecology, 2000, 81(1):88-98.

    [38]

    Marty Charles, Houle Daniel, Gagnon Christian, Courchesne Francois. The relationships of soil total nitrogen concentrations, pools and C: N ratios with climate, vegetation types and nitrate deposition in temperate and boreal forests of eastern Canada[J]. Catena, 2017, 152:163-172.

    [39]

    Jiang Yong Jun, Yuan Dao Xian, Zhang Cheng, Kuang Ming Sheng, Wang Jian Li, Xie Shi You, Li Lin Li, Zhang Gui, He Rao Sheng. Impact of land-use change on soil properties in a typical karst agricultural region of Southwest China: a case study of Xiaojiang watershed, Yunnan[J]. Environmental Geology, 2006, 50(6):911-918.

    [40]

    王敏. 快速城市化进程对环境多介质有机碳的分布特征影响研究: 以南昌市为例 [D]. 南昌: 江西师范大学, 2017.

    WANG Min. The effects of rapid urbanization on the distribution patterns of organic carbon in multimedia: a case study of Nanchang [D]. Nanchang: Jiangxi Normal University, 2017.

    [41]

    Zhu Yong Guan, Reid Brian J, Meharg Andrew A, Banwart Steve A, Fu Bo Jie. Optimizing peri-urban ecosystems (PURE) to re-couple urban-rural symbiosis[J]. Science of the Total Environment, 2017, 586:1085-1090.

    [42]

    邱莎, 曹飞飞, 唐明方, 邓红兵. 能源对北京市城市碳循环的影响[J]. 生态学报, 2019, 39(18):6816-6825.

    QIU Sha, CAO Feifei, TANG Mingfang, DENG Hongbing. Impact of energy on the urban carbon cycle of Beijing[J]. Acta Ecologica Sinica, 2019, 39(18):6816-6825.

    [43]

    赵荣钦, 黄贤金, 彭补拙. 南京城市系统碳循环与碳平衡分析[J]. 地理学报, 2019, 39(18):6816-6825.

    ZHAO Rongqin, HUANG Xianjin, PENG Buzhuo. Research on carbon cycle and carbon balance of Nanjing urban system[J]. Acta Geographica Sinica, 2019, 39(18):6816-6825.

    [44]

    熊雅萍. 长沙市碳循环评估与低碳土地利用研究 [D]. 长沙: 湖南师范大学, 2015.

    XIONG Yaping. Evaluation of carbon cycle of Changsha urban system and decarbonization of land use [D]. Changsha: Hunan Normal University, 2015.

    [45]

    彭弋倪. 人类活动对流域风化碳汇过程的影响: 大河流域与城市表面小流域的范例研究 [D]. 南京: 南京大学, 2018.

    PENG Yini. Impacts of human activities on weathering and carbon sequestration in river basins: a case study of large river basins and urban karst watersheds [D]. Nanjing: Nanjing university, 2018.

    [46]

    Sun Yan Li, Ma Jian Hua, Li Can. Content and densities of soil organic carbon in urban soil in different function districts of Kaifeng[J]. Journal of Geographical Sciences, 2010, 20(1):148-156.

    [47]

    Raciti Steve M, Hutyra Lucy R, Finzi Adrien C. Depleted soil carbon and nitrogen pools beneath impervious surfaces[J]. Environmental Pollution, 2012, 164:248-251.

    [48]

    Akbarzadeh Zahra, Maavara Taylor, Slowinski Stephanie, Cappellen Philippe Van. Effects of damming on river nitrogen fluxes: a global analysis[J]. Global Biogeochemical Cycles, 2019, 33(11):1339-1357.

    [49]

    Maavara Taylor, Parsons Christopher T, Ridenour Christine, Stojanovic Severin, Dürr Hans H, Powley Helen R, Cappellen Philippe Van. Global phosphorus retention by river damming[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(51):15603-15608.

    [50]

    Eiriksdottir Eydis Salome, Oelkers Eric H, Hardardottir Jorunn, Gislason Sigurdur Reynir. The impact of damming on riverine fluxes to the ocean: A case study from Eastern Iceland[J]. Water Research, 2017, 113:124-138.

    [51]

    Wang Hao, Ran Xiang Bin, Bouwman Alexander F, Wang Jun Jie, Xu Bo Chao, Song Zhao Liang, Sun Shao Bo, Yao Qing Zhen, Yu Zhi Gang. Damming alters the particulate organic carbon sources, burial, export and estuarine biogeochemistry of rivers[J]. Journal of Hydrology, 2022, 607:127525.

    [52]

    Wang Wan Fa, Li Si Liang, Zhong Jun, Li Cai, Yi Yuan Bi, Chen Sai Nan, Ren Yi Meng. Understanding transport and transformation of dissolved inorganic carbon (DIC) in the reservoir system using δ13CDIC and water chemistry[J]. Journal of Hydrology, 2019, 574:193-201.

    [53]

    Wang Fu Shun, Liu Cong Qiang, Wang Bao Li, Yu Yuan Xiu, Liu Xiao Long. Influence of a reservoir chain on the transport of riverine inorganic carbon in the karst area[J]. Environmental Earth Sciences, 2014, 72(5):1465-1477.

    [54]

    Gao Yang, Wang Bao Li, Liu Xiao Long, Wang Yu Chun, Zhang Jing, Jiang Yan Xing, Wang Fu Shun. Impacts of river impoundment on the riverine water chemistry composition and their response to chemical weathering rate[J]. Frontiers of Earth Science, 2013, 7(3):351-360.

    [55]

    Peng Xi, Liu Cong Qiang, Wang Bao Li, Zhao Yan Chuang. The impact of damming on geochemical behavior of dissolved inorganic carbon in a karst river[J]. Chinese Science Bulletin, 2014, 59(19):2348-2355.

    [56]

    Broadbent Arthur, Snell Helen, Michas Antonios, Pritchard William J, Newbold Lindsay, Cordero Irene, Goodall Tim, Schallhart Nikolaus, Kaufmann Ruediger, Griffiths Robert I, Schloter Michael, Bahn Michael, Bardgett Richard D. Climate change alters temporal dynamics of alpine soil microbial functioning and biogeochemical cycling via earlier snowmelt[J]. The ISME Journal, 2021, 15(8):2264-2275. doi: 10.1038/s41396-021-00922-0

    [57]

    Crowther Thomas W, Hoogen Johan Van, Wan Joe, Mayes Melanie, Keiser Ashley D, Mo Li Dong, Averill Colin, Maynard Daniel S. The global soil community and its influence on biogeochemistry[J]. Science, 2019, 365(6455):eaav0550. doi: 10.1126/science.aav0550

    [58]

    Coban Oksana, Deyn Gerlinde B, Ploeg Martine Van. Soil microbiota as game-changers in restoration of degraded lands[J]. Science, 2022, 375(6584):eabe0725. doi: 10.1126/sciencs.abe0725

    [59]

    陈香碧, 何寻阳, 胡亚军, 苏以荣. 喀斯特典型生态系统土壤有机碳积累特征与稳定机制[J]. 农业现代化研究, 2018, 39(6):907-915. doi: 10.13872/j.1000-0275.2018.0078

    CHEN Xiangbi, HE Xunyang, HU Yajun, SU Yirong. Characteristics and mechanisms of soil organic carbon accumulation and stability in typical karst ecosystems[J]. Research on Agricultural Modernization, 2018, 39(6):907-915. doi: 10.13872/j.1000-0275.2018.0078

    [60]

    张双双, 靳振江, 贾远航, 李强. 岩溶区与非岩溶区3种土地利用方式下土壤细菌群落结构比较[J]. 中国岩溶, 2019, 38(2):164-172.

    ZHANG Shuangshuang, JIN Zhenjiang, JIA Yuanhang, LI Qiang. Comparison of soil bacterial community structures from three soil land-use between karst and non-karst areas under three kinds of land use[J]. Carsologica Sinica, 2019, 38(2):164-172.

    [61]

    Qiu Li Ping, Zhang Qian, Zhu Han Song, Reich Peter B, Banerjee Samiran, Heijden Marcel G, Sadowsky Michael J, Ishii Satoshi, Jia Xiao Xu, Shao Ming An, Liu Bao Yuan, Jiao Huan, Li Hai Qiang, Wei Xiao Rong. Erosion reduces soil microbial diversity, network complexity and multifunctionality[J]. The ISME Journal, 2021, 15(8):2474-2489.

    [62]

    Cheng Cai, Li Yu Jie, Long Ming Zhong, Gao Min, Zhang Yuan Dong, Lin Jia Yu, Li Xiao Na. Moss biocrusts buffer the negative effects of karst rocky desertification on soil properties and soil microbial richness [J]. Plant and Soil, 2020. https://doi.org/10.1007/s11104-11020-04602-11104.

    [63]

    Guo Xue, Feng Jia Jie, Shi Zhou, Zhou Xi Shu, Yuan Meng Ting, Tao Xuan Yu, Hale Lauren, Yuan Tong, Wang Jianjun, Qin Yu Jia, Zhou Ai Fen, Fu Ying, Wu Li You, He Zhi Li, Nostrand Joy D, Ning Da Liang, Liu Xue Duan, Luo Yi Qi, Tiedje James M, Yang Yun Feng, Zhou Ji Zhong. Climate warming leads to divergent succession of grassland microbial communities[J]. Nature Climate Change, 2018, 8(9):813-818.

    [64]

    Feng You Zhi, Zhang Jian Wei, Berdugo Miguel, Guirado Emilio, Guerra Carlos A, Egidi Eleonora, Wang Jun Tao, Singh Brajesh K, Delgado-Baquerizo Manuel. Temperature thresholds drive the global distribution of soil fungal decomposers[J]. Global Change Biology, 2022, 28(8):2779-2789.

    [65]

    Stone Bram W, Li Jun Hui, Koch Benjamin J, Blazewicz Steven J, Dijkstra Paul, Hayer Michaela, Hofmockel Kirsten S, Liu Xiao Jun, Mau Rebecca L, Morrissey Ember M, Pett-Ridge Jennifer, Schwartz Egbert, Hungate Bruce A. Nutrients cause consolidation of soil carbon flux to small proportion of bacterial community[J]. Nature Communications, 2021, 12(1):3381. doi: 10.1038/s41467-021-23676-x

    [66]

    Zeng Jun, Liu Xue Jun, Song Ling, Lin Xiang Gui, Zhang Hua Yong, Shen Qi Rong, Chu Hai Yan. Nitrogen fertilization directly affects soil bacterial diversity and indirectly affects bacterial community composition[J]. Soil Biology & Biochemistry, 2016, 92:41-49.

    [67]

    Xu Sen, Li Si Liang, Su Jing, Yue Fu Jun. Oxidation of pyrite and reducing nitrogen fertilizer enhanced the carbon cycle by driving terrestrial chemical weathering[J]. Science of the Total Environment, 2021, 768:144343. doi: 10.1016/j.scitotenv.2020.144343

  • 加载中

(3)

计量
  • 文章访问数:  1049
  • PDF下载数:  26
  • 施引文献:  0
出版历程
收稿日期:  2022-03-30
刊出日期:  2022-06-25

目录