Effects of rock tablet lithology difference on estimation of rock dissolution rate and carbon flux
-
摘要:
研究岩性差异对溶蚀速率的影响有助于提高溶蚀试片法估算岩溶碳汇强度的精确度。本文以贵州省普定县为研究区,将埋放地的主要基岩类型(石灰岩与白云岩)制成标准尺寸的试片,并将其埋设于不同土地利用类型和土壤深度下,经过4个水文年的监测后将估算的结果与前人在同一区域使用标准溶蚀试片的研究结果进行对比分析,结果表明:(1)在相同气候和土壤环境条件下,岩性对溶蚀试片的溶蚀速率有显著影响,且溶蚀速率与岩石中CaO含量呈正相关关系,与MgO含量呈负相关关系;(2)石灰岩与白云岩试片溶蚀速率的差异程度受土地利用及埋放深度的调控,整体上石灰岩溶蚀速率比白云岩溶蚀速率大14%;(3)不同岩性试片估算的岩溶碳汇强度相差较大,标准溶蚀试片估算的结果比埋放地基岩试片估算的结果高。故使用溶蚀试片法估算区域岩溶碳通量时应考虑埋放地基岩的岩性,或者对基于标准溶蚀试片的估算结果进行校正,才能准确反映区域尺度真实的岩溶碳通量大小。
Abstract:Under the control of subtropical humid monsoon climate, karstification is very strong in the karst area of southern China. At the same time, a lot of researches indicate that the carbon sink formed by karstification in southern China may be an important part of the global missing carbon sink. At present, there are many research methods to estimate the intensity of karst carbon sink. The carbonate rock tablet test is one of the main traditional research methods to estimate the karst carbon flux. The main principle of this method is based on the chemical reaction of water-CO2-carbonate rock. The specific operation is to bury the carbonate rock test piece with the same size under the soil, then take them out and weigh them after a certain time, use the dissolution amount of rock tablets to calculate the dissolution rate and karst carbon flux in study area. Finally, the regional karst carbon sink can be estimated according to"point by area". In the study of estimating karst carbon sink in China, previous scientists used pure limestone from Rongxian formation of Devonian System in Guilin. However, the geological background of different regions is quite different, and the composition and structure of bedrock are different, so that the estimation results of standard carbonate rock tablets (pure limestone) may be also different from the actual dissolution amount of local bedrock tablets, resulting in great uncertainty in the estimation of karst carbon sink in the region. Based on this, in this study, we chose Puding county, Guizhou Province as the study area. The main bedrock types (limestone and dolomite) of this place are made into standard size rock tablets, and buried them in the typical land use types (secondary forest, shrub, grassland, dry land and paddy field) in the study area. After monitoring for four hydrological years, the dissolution rate and karst carbon flux were calculated, then compared them with the previous research results using the standard carbonate rock tablet (pure limestone) in the same study area, and the following results are obtained; (1) Under the same climatic conditions and soil environmental conditions, lithology has a significant impact on the dissolution rate of carbonate rock tablets, and the dissolution rate has a positive correlation with CaO content in the rock tablets and a negative correlation with MgO content in the rock tablets; (2) The difference of dissolution rate between limestone and dolomite is controlled by land use types and soil depths. Without considering the influence of environmental factors, on the whole, the dissolution rate of limestone is 14% higher than that of dolomite; (3) The karst carbon sink intensity estimated by different lithology carbonate rock tablets varies greatly. The estimated result of standard limestone tablets is higher than that of local tablets in this study. Therefore, when using the carbonate rock tablet method to estimate the regional karst carbon flux, we should consider the lithology of the bedrock where the rock tablet is buried, or correct the estimation results based on the standard carbonate rock tablet, so as to accurately obtain the real karst carbon flux on the regional scale.
-
Key words:
- dolomite /
- limestone /
- carbonate rock tablet test /
- dissolution rate /
- karst carbon flux
-
图 1 研究区及试片埋放位置图[27]
Figure 1.
表 1 不同土地利用类型埋放点概况
Table 1. Overview of buried sites of different land use types
地点 土地利用类型 土壤剖面基本情况 位置及其他 天龙山 次生林 A层为25 cm黑色石灰土,碎石比30%,B层为黄土未见底 半山腰处 灌丛 碎石比4%,草根发达, A层为18 cm黑色石灰土,B层为黄色土壤,不见底 山脚处,土壤疏松度低 水田 A层38 cm黑色石灰土,B层为黄色土,未见底 洼地,南部为峰丛,水稻交替种植,夏季长时间处于淹水状态 旱地 A层为40 cm为黑色石灰土,B层为黄色土未见底 洼地,四周为峰丛,种植玉米及蔬菜,人为干扰较多 讲义村 次生林 A层35 cm,为黑色石灰土,根系发达,B层未见底 山腰处,植被丰富,枯枝落叶多 灌丛 碎石比20%; A层21 cm,黑色石灰土,B层黄色土壤,未见底 山脚处,土壤疏松度低 草地 碎石比50%,A层20~30 cm黑色石灰土,根系发达,B层厚度10~15 cm,以下为基岩 山坡草地上,土壤疏松度低 旱地 A层5~20 cm,为黑色石灰土;B层为黄色土壤,未见底 山下洼地处,种植玉米及蔬菜,人为干扰较多 水田 A层43 cm,为黑色石灰土,以下为黄色土壤 山下洼地处,油菜地、水稻交替种植,夏季长时间处于淹水状态 表 2 不同土地利用下不同深度的试片日均溶蚀速率
Table 2. Daily average dissolution rate of rock tablets at different soil depths under different land uses
地点 试片岩性 埋放深度/cm 次生林 灌丛 草地 旱地 水田 天龙山 石灰岩日均溶蚀速率
mg·m−2·d−1地下5 119.94 138.69 − 106.84 186.99 地下20 18.91 − − 171.64 159.80 地下50 8.73 − − 131.32 69.75 平均值 49.19 − − 136.60 138.85 白云岩日均溶蚀速率
mg·m−2·d−1地下5 55.09 101.91 − 79.12 144.75 地下20 17.05 56.46 − 143.21 125.42 地下50 3.95 42.12 − 110.05 37.92 平均值 25.36 66.83 − 110.79 102.70 讲义村 石灰岩日均溶蚀速率
mg·m−2·d−1地下5 35.25 28.44 69.28 63.08 110.13 地下20 35.93 21.79 46.11 114.19 121.32 地下50 44.04 20.31 30.63 85.90 136.47 平均值 38.41 23.51 48.68 87.72 122.64 白云岩日均溶蚀速率
mg·m−2·d−1地下5 15.80 12.65 37.09 43.54 78.91 地下20 14.63 11.37 18.42 67.71 87.43 地下50 19.65 6.95 7.83 56.15 110.54 平均值 16.69 10.33 21.11 55.80 92.29 注:溶蚀速率为4年内试片日均溶蚀速率的平均值;−为试片缺失。 表 3 不同岩石试片主要化学成分
Table 3. Main chemical components of different rock tablets
岩性 组分/% SiO2 CaO MgO K2O Na2O CO2 石灰岩 6.56 47.10 2.26 0.457 0.034 41.58 白云岩 1.26 30.14 21.40 <0.01 0.023 46.41 标准溶蚀试片[31] − 55.61 0.16 − − - 表 4 不同土地利用类型地下平均岩溶碳汇强度
Table 4. Average karst carbon sink intensity under different land use types
地点 项目 次生林 灌丛 草地 旱地 水田 天龙山 试片溶蚀速率/mg·m−2·d−1 49.19 − − 136.60 138.85 岩溶碳汇强度/tCO2·km−2·a−1 7.47 − − 20.73 21.07 讲义村 试片溶蚀速率/mg·m−2·d−1 16.69 10.33 21.11 55.80 92.29 岩溶碳汇强度/tCO2·km−2·a−1 2.84 1.75 3.40 9.48 15.68 表 5 地下50 cm处不同岩性试片估算的岩溶碳汇强度
Table 5. Karst carbon sink intensity at 50 cm underground estimated by different lithology rock tablets
岩性 不同土地利用类型岩溶碳汇强度/ tCO2·km−2·a−1 次生林 灌丛 旱地 水田 石灰岩 1.33 − 19.93 10.59 白云岩 0.68 7.15 18.69 6.44 标准溶蚀试片 − 2.60 22.49 13.02 -
[1] Fortunat Joos, Renato Spahni. Rates of change in natural and anthropogenic radiative forcing over the past 20000 years[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(5):1425-1430.
[2] Pierre Friedlingstein, Michael O'Sullivan, Matthew W. Jones, Robbie M. Andrew, Judith Hauck, Are Olsen, et al. Global Carbon Budget 2020[J]. Earth System Science Data, 2020, 12(4):3269-3340.
[3] PIAO Shilong, HE Yue, WANG Xuhui, CHEN Fahu. Estimation of China's terrestrial ecosystem carbon sink: Methods, progress and prospects[J]. Science China Earth Sciences, 2022, 65(4):641-651.
[4] 王世杰, 刘再华, 倪健, 闫俊华, 刘秀明. 中国南方喀斯特地区碳循环研究进展[J]. 地球与环境, 2017, 45(01): 2-9.
WANG Shijie, LIU Zaihua, NI Jian, YAN Junhua, LIU Xiuming. A review of research progress and future prospective of carbon cycle in karst area of south China. Erath and environment. 2017, 45(1): 2-9.
[5] LIU Zaihua, Wolfgang DREYBRODT, WANG Haijing. A new direction in effective accounting for the atmospheric CO2 budget: Considering the combined action of carbonate dissolution, the global water cycle and photosynthetic uptake of DIC by aquatic organisms[J]. Earth Science Reviews, 2010, 99(3-4):162-172.
[6] ZHOU Guoqing, HUANG Jingjin, TAO Xiaodong, LUO Qingli, ZHANG Rongting, LIU Zaihua. Overview of 30 years of research on solubility trapping in Chinese karst[J]. Earth-Science Reviews, 2015, 146:183-194.
[7] YUAN Daoxian. The carbon cycle in karst[J]. Zeitschrift fuer Geomorphologie, 1997, 108:91-102.
[8] LIU Zaihua, ZHAO Jinbo. Contribution of carbonate rock weathering to the atmospheric CO2 sink[J]. Environmental Geology, 2000, 39(9):1053-1058.
[9] LIU Zaihua, Wolfgang Dreybrodt. Significance of the carbon sink produced by H2O-carbonate-CO2-aquatic phototroph interaction on land[J]. Science Bulletin, 2015, 60(2):182-191.
[10] LIU Zaihua, G. L. Macpherson, Chris Groves, Jonathan B. Martin, YUAN Daoxian, ZENG Sibo. Large and active CO2 uptake by coupled carbonate weathering[J]. Earth-Science Reviews, 2018, 182:42-49.
[11] 袁道先. 碳循环与全球岩溶[J]. 第四纪研究, 1993, 13(1):1-6. doi: 10.3321/j.issn:1001-7410.1993.01.001
YUAN Daoxian. Carbon cyclce and global karst[J]. Quaternary Sciences, 1993, 13(1):1-6. doi: 10.3321/j.issn:1001-7410.1993.01.001
[12] CAO Jianhua, YUAN Daoxian, Chris GROVES, HUANG Fen, YANG Hui, LU Qian. Carbon Fluxes and Sinks: the Consumption of Atmospheric and Soil CO2 by Carbonate Rock Dissolution[J]. Acta Geologica Sinica, 2012, 86(4):963-972.
[13] 袁道先, 蔡桂鸿. 岩溶环境学[M]. 重庆: 重庆出版社, 1988: 62-64.
YUAN Daoxian, CAI Guihong. The science of karst environment[M]. Chongqing: Chongqing Publication House, 1988: 62-64.
[14] Kristina Krklec, David Domínguez-Villar, Dražen Perica. Use of rock tablet method to measure rock weathering and landscape denudation[J]. Earth-Science Reviews, 2021, 212(4):103449.
[15] ZHANG Cheng, PEI Jianguo, XIE Yunqiu, CAO Jianghua, WANG Lanling. Impact of land use covers upon karst processes in a typical Fengcong depression system of Nongla, Guangxi, China[J]. Environmental Geology, 2008, 55(8):1621-1626.
[16] 谢芳, 傅瓦利, 王晓阳, 蒲 鹏, 张蕾, 谭波, 彭景涛, 甄晓君. 重庆中梁山碳酸盐岩溶蚀速率对季节的响应研究[J]. 中国岩溶, 2010, 29(4):410-413. doi: 10.3969/j.issn.1001-4810.2010.04.010
XIE Fang, FU Wali, WANG Xiaoyang, PU Peng, ZHANG Lei, TAN Bo, PENG Jingtao, ZHEN Xiaojun. Study on response of carbonate rock dissolution rate to the season in Zhongliang Mountain, Chongqing[J]. Carsologica Sinica, 2010, 29(4):410-413. doi: 10.3969/j.issn.1001-4810.2010.04.010
[17] 刘文, 张强, 贾亚男. 夏季不同土地利用方式下的溶蚀作用研究: 以重庆青木关岩溶槽谷区为例[J]. 中国岩溶, 2012, 31(1):1-6. doi: 10.3969/j.issn.1001-4810.2012.01.001
LIU Wen, ZHANG Qiang, JIA Yanan. Karstification under different lan-use patterns in sumer: A case study in the Qingmuguan karst valley, Chongqing[J]. Carsologica Sinica, 2012, 31(1):1-6. doi: 10.3969/j.issn.1001-4810.2012.01.001
[18] 蓝家程, 傅瓦利, 彭景涛, 周小萍, 肖时珍, 袁波. 不同土地利用方式土下岩溶溶蚀速率及影响因素[J]. 生态学报, 2013, 33(10):3205-3212.
LAN Jiacheng, FU Wali, PENG Jingtao, ZHOU Xiaoping, XIAO Shizhen, YUAN Bo. Dissolution rate under soil in karst areas and the influencing factors of different land use patterns[J]. Acta Ecologica Sinica, 2013, 33(10):3205-3212.
[19] SHAO Mingyu, ZHANG Liankai, LIU Pengyu, CAO Jianhua, QIN Xiaoqun, HUANG Qibo, LUO Mingming, ZHANG Chunlai. Influential factors and spatial suitability of the method of limestone tablets in karst carbon cycle study in China[J]. Carbonates and Evaporites, 2020, 35(3):85.
[20] 徐胜友, 蒋忠诚. 我国岩溶作用与大气温室气体CO2源汇关系的初步估算[J]. 科学通报, 1997, 42(9):953-956. doi: 10.3321/j.issn:0023-074X.1997.09.019
XU Shengyou, JIANG Zhongcheng. Preliminary estimation of the relationship between karstification and the source sink of atmospheric greenhouse gas CO2 in China[J]. Chinese Science Bulletin, 1997, 42(9):953-956. doi: 10.3321/j.issn:0023-074X.1997.09.019
[21] 罗健, 蒋勇军, 胡毅军, 李林立, 刘文. 亚高山表层岩溶泉域土壤溶蚀速率季节变化及碳汇量估算: 以重庆金佛山水房泉流域为例[J]. 中国岩溶, 2011, 30(4):443-448. doi: 10.3969/j.issn.1001-4810.2011.04.015
LUO Jian, JIANG Yongjun, HU Yijun, LI Linli, LIU Wen. Seasonal changes of soil dissolution rate and estimations on carbon sequestration in the subalpine epikarst spring zone: A case study in the Shuifang Spring in Jinfoshan, Chongqing[J]. Carsologica Sinica, 2011, 30(4):443-448. doi: 10.3969/j.issn.1001-4810.2011.04.015
[22] 曾成, 赵敏, 杨睿, 刘再华. 岩溶作用碳汇强度计算的溶蚀试片法和水化学径流法比较: 以陈旗岩溶泉域为例[J]. 水文地质工程地质, 2014, 41(1):106-111.
ZENG Cheng, ZHAO Min, YANG Rui, LIU Zaihua. Comparison of karst processes-related carbon sink intensity calculated by carbonate rock tablet test and solute load method: A case study in the Chenqi karst spring system[J]. Hydrogeology & Engineering Geology, 2014, 41(1):106-111.
[23] 闫伟, 曾成, 肖时珍, 蓝家程, 何江湖, 何春, 代林玉, 狄永宁. 湿润亚热带典型白云岩流域不同土地利用下的试片溶蚀速率及岩溶碳汇[J]. 地球与环境, 2021, 49(5): 529-538.
YAN Wei, ZENG Cheng, XIAO Shizhen, LAN Jiacheng, HE Jianghu, HE Chun, DAI Linyu, DI Yongning. Dissolution rate and karst carbon sink of different land use in typical dolomite watershed with humid subtropical weather[J]. Earth and Environment, 2021, 49(5): 529-538.
[24] 王文娟, 蓝芙宁, 蒋忠诚, 覃小群, 劳文科. 湖南大龙洞流域不同岩性不同土地利用类型条件下碳酸盐岩试片的溶蚀速率[J]. 中国岩溶, 2013, 32(1):29-33. doi: 10.3969/j.issn.1001-4810.2013.01.005
WANG Wenjuan, LAN Funing, JIANG Zhongcheng, QIN Xiaoqun, LAO Wenke. Corrosion rate of carbonate tablet under diverse land use and lithology in the Dalongdong basin, Hunan[J]. Carsologica Sinica, 2013, 32(1):29-33. doi: 10.3969/j.issn.1001-4810.2013.01.005
[25] 黄奇波, 覃小群, 刘朋雨, 蓝芙宁, 张连凯. 不同岩性试片溶蚀速率差异及意义[J]. 地球与环境, 2015, 43(4):379-385. doi: 10.14050/j.cnki.1672-9250.2015.04.001
HUANG Qibo, QIN Xiaoqun, LIU Pengyu, LAN Funing, ZHANG Liankai. Dissolution on rate and it’s significance of different lithological tablets[J]. Earth and Environment, 2015, 43(4):379-385. doi: 10.14050/j.cnki.1672-9250.2015.04.001
[26] 杨成华, 陈景艳, 丁访军. 普定县天龙山喀斯特森林群落植物多样性对比研究[J]. 贵州林业科技, 2012, 40(2):1-7.
YANG Chenghua, CHEN Jinyan, DING Fangjun. Study on the plant diversity of karst forest community in Tianlong mountain of Puding County[J]. Guizhou Forestry Science and Technology, 2012, 40(2):1-7.
[27] 俞锦标, 潘瑞鸿. 贵州省普定县碳酸盐岩沉积相带成岩作用与岩溶发育的研究[J]. 南京大学学报(自然科学版), 1982(3):787-798,823.
YU Jinbiao, PAN Ruihong. Sedimentary facies zones, diagenesis and karst development of carbonate rocks in Pudding, west Guizhou[J]. Journal of Nanjing University(Natural Science), 1982(3):787-798,823.
[28] 胡刚, 张忠华, 程安云, 刘立斌, 吴洋洋, 倪健. 黔中天龙山喀斯特次生林林分空间结构的量化与分析[J]. 地球与环境, 2017, 45(1):25-31. doi: 10.14050/j.cnki.1672-9250.2017.01.004
HU Gang, ZHANG Zhonghua, CHENG Anyun, LIU Libin, WU Yangyang, NI Jian. Characterizing and analyzing stand spatial structure of a northern subtropical karst secondary forest in Tianlong mountain of central Guizhou Province, China[J]. Earth and Environment, 2017, 45(1):25-31. doi: 10.14050/j.cnki.1672-9250.2017.01.004
[29] 习新强, 赵玉杰, 刘玉国, 王欣, 高贤明. 黔中喀斯特山区植物功能性状的变异与关联[J]. 植物生态学报, 2011, 35(10):1000-1008.
XI Xinqiang, ZHAO Yujie, LIU Yuguo, WANG Xin, GAO Xianming. Variation and correlation of plant functional traits in karst area of central Guizhou Province, China[J]. Chinese Journal of Plant Ecology, 2011, 35(10):1000-1008.
[30] Luo Mingming, ZHOU Hong, Liang Yongping, Chen Zhihua, Chen Rubing, Li Xinlong, Hamza Jakada, et al. Horizontal and vertical zoning of carbonate dissolution in China[J]. Geomorphology, 2018, 322:66-75.
[31] 龚自珍, 黄庆达. 碳酸盐岩岩块野外溶蚀速度试验[J]. 中国岩溶, 1984(2):17-26.
GONG Zizhen, HUANG Qingda. Field corrosion rate tests on carbonate rocks[J]. Carsologica Sinica, 1984(2):17-26.
[32] 李永双, 范周周, 国辉, 周金星, 彭霞薇. 菌剂添加对不同树种根际土壤微生物及碳酸钙溶蚀的影响[J]. 中国岩溶, 2020, 39(6):854-862.
LI Yongshuang, FAN Zhouzhou, GUO Hui, ZHOU Jinxing, PENG Xiawei. Effects of microorganisms agent addition on soil microbes in different rhizosphere soils and calcium carbonate dissolution[J]. Carsologica Sinica, 2020, 39(6):854-862.
[33] 李强, 何媛媛, 曹建华, 梁建宏, 朱敏洁. 植物碳酸酐酶对岩溶作用的影响及其生态效应[J]. 生态环境学报, 2011, 20(12):1867-1871. doi: 10.3969/j.issn.1674-5906.2011.12.015
LI Qiang, HE Yuanyuan, CAO Jianhua, LIANG Jianhong, ZHU Minjie. The plant carbonic anhydrase at karst area and its ecological effects[J]. Ecology and Environmental Sciences, 2011, 20(12):1867-1871. doi: 10.3969/j.issn.1674-5906.2011.12.015
[34] SHE Min, Shou Jianfeng, SHEN Anjiang, PAN Liyin, HU Anping, HU Yuanyuan. Experimental simulation of dissolution law and porosity evolution of carbonate rock[J]. Petroleum Exploration and Development, 2016, 43(4):616-625.
[35] 何宇彬, 金玉璋, 李康. 碳酸盐岩溶蚀机理研究[J]. 中国岩溶, 1984, 3(2):12-16.
HE Yubin, JIN Yuzhang, LIKang. An experimental study of carbonate rock corrosion mechanism[J]. Carsologica Sinica, 1984, 3(2):12-16.
[36] 黄奇波, 覃小群, 刘朋雨, 康志强, 唐萍萍. 半干旱区岩溶碳汇原位监测方法适宜性研究[J]. 吉林大学学报(地球科学版), 2015, 45(1):240-246. doi: 10.13278/j.cnki.jjuese.201501206
HUANG Qibo, QIN Xiaoqun, LIU Pengyu, KANG Zhiqiang TANG Pingping. Applicability of karst carbon sinks calculation methods in semi-arid climate environment[J]. Joural of Jilin University(Earth Science Edition), 2015, 45(1):240-246. doi: 10.13278/j.cnki.jjuese.201501206