文石石笋发生矿物重结晶的影响因素及其古气候意义

李嘉燕, 田怡苹, 光凯悦, 朱珊莹, 李云霞, 高永利, 饶志国. 文石石笋发生矿物重结晶的影响因素及其古气候意义[J]. 中国岩溶, 2022, 41(4): 648-659. doi: 10.11932/karst20220412
引用本文: 李嘉燕, 田怡苹, 光凯悦, 朱珊莹, 李云霞, 高永利, 饶志国. 文石石笋发生矿物重结晶的影响因素及其古气候意义[J]. 中国岩溶, 2022, 41(4): 648-659. doi: 10.11932/karst20220412
LI Jiayan, TIAN Yiping, GUANG Kaiyue, ZHU Shanying, LI Yunxia, GAO Yongli, RAO Zhiguo. Factors influencing the recrystallization of aragonite stalagmites and their implications for paleoclimate[J]. Carsologica Sinica, 2022, 41(4): 648-659. doi: 10.11932/karst20220412
Citation: LI Jiayan, TIAN Yiping, GUANG Kaiyue, ZHU Shanying, LI Yunxia, GAO Yongli, RAO Zhiguo. Factors influencing the recrystallization of aragonite stalagmites and their implications for paleoclimate[J]. Carsologica Sinica, 2022, 41(4): 648-659. doi: 10.11932/karst20220412

文石石笋发生矿物重结晶的影响因素及其古气候意义

  • 基金项目: 国家自然科学基金(4200180);湖南省自然科学基金(2021JJ40349);湖南省教育厅项目(20B351)
详细信息
    作者简介: 李嘉燕(1998-), 女, 硕士研究生, 主修专业为洞穴沉积与环境变化。E-mail: lijy@hunnu.edu.cn
    通讯作者: 李云霞 (1991-), 女, 讲师, 主要从事地球化学与气候变化研究。E-mail: liyx@hunnu.edu.cn
  • 中图分类号: P532

Factors influencing the recrystallization of aragonite stalagmites and their implications for paleoclimate

More Information
  • 洞穴沉积物—石笋已成为研究岩溶区环境气候变化历史的重要载体。在我国湘西地区,某些洞穴石笋原始沉积多为不稳定的文石矿物,极易发生重结晶,可能使石笋中相关化学元素含量最终偏离原生矿物的特征,限制了文石石笋某些代用指标在古气候研究中的应用。文章以前人研究成果为基础,总结梳理了文石石笋发生重结晶的影响因素及其对石笋记录古气候的影响:(1)石笋剖面特征、XRD结果、显微镜观察和地球化学元素特征等可作为石笋发生重结晶的判别依据;(2)洞穴滴水和石笋孔隙水饱和度、文石晶体缺陷和晶体之间的方解石胶结物以及岩溶水体中Mg2+浓度等均会影响文石石笋的矿物转变;(3)在文石向方解石转变过程中,石笋铀含量会有一定程度的流失,可导致放射性铀系定年的异常或年代倒序;(4)矿物重结晶可导致δ18O、δ13C及石笋微量元素浓度(或比值)等指标发生改变,其变化特征因洞穴而异,从而影响其作为环境指示器的可靠性;(5)湖南龙山惹迷洞石笋(RM2)发生了不均一的矿物重结晶,自顶部至20.3 cm以放射状为主,20.3 cm至底部主要为糖粒状,并结合年代结果发现文石重结晶对石笋铀系定年产生了影响,而重结晶作用对该石笋其他指标的影响还有待进一步研究。

  • 加载中
  • 图 1  (a) 惹迷洞区位图(红色五角星),浅色阴影部分为喀斯特分布区;(b) 1981-2010年龙山县月均温和月均降水量分布图;(c) 已开发的惹迷洞简易平面图,红色五角星代表RM2石笋采样点位置。

    Figure 1. 

    图 2  RM2石笋抛光剖面与①②部位细节图

    Figure 2. 

    图 3  RM2石笋不同位置矿物的XRD图谱

    Figure 3. 

    图 4  RM2石笋230Th年龄及230Th/238U比值分布图

    Figure 4. 

    表 1  RM2石笋230Th年龄结果

    Table 1.  230Th dating results of RM2 stalagmite

    Sample
    Number
    Depth to
    top /cm
    238U
    /ppb
    232Th
    /ppt
    230Th/232Th
    /atomic x10−6
    δ234U
    (measured)
    230Th/238U
    (activity)
    230Th Age (yr)
    (uncorrected)
    230Th Age (yr)
    (corrected)
    δ234UInitial
    (corrected)
    RM2-1 1 1 316.8±2.2 11 602±233 2 875±58 1 961.5±2.8 1.536 5±0.003 1 72 851±216 72 775±222 2 409±4
    RM2-2 3.2 2 000.2±2.4 494±10 116 979±2 476 1 948.5±2.4 1.752 3±0.002 8 87 566±223 87 563±223 2 495±4
    RM2-3 5.6 941.3±0.9 756±16 45 347±933 1 868.2±2.4 2.210 2±0.002 9 129 742±338 129 736±338 2 694±4
    RM2-4 20.3 2 690.9±3.4 228±6 455 677±11 428 1 883.4±2.7 2.341 2±0.003 9 141 688±480 141 687±480 2 809±6
    RM2-5 59.5 607.3±0.6 288±7 78 874±1 800 1 847.1±2.9 2.270 0±0.003 0 137 472±402 137 468±402 2 723±5
    RM2-6 136.3 1 170.1±1.1 64±4 726 400±41 269 1 826.6±2.5 2.420 8±0.003 3 156 182±475 156 182±475 2 838±5
    RM2-7 143.8 1 534.6±1.5 65±4 908 617±55 837 1 793.7±2.1 2.343 9±0.003 3 150 612±437 150 612±437 2 744±5
    RM2-8 150.2 872.4±1.7 353±8 92 480±2 090 1 787.6±4.3 2.267 4±0.006 1 142 593±780 142 589±780 2 673±9
    RM2-9 155 787.4±5.4 55±3 595 714±37 679 1 744.4±18.5 2.502 9±0.018 8 176 917±370 9 176 916±3 709 2 874±43
    RM2-10 159.3 749.5±1.5 523±11 54 380±1 152 1 786.6±3.7 2.302 0±0.006 5 146 544±823 146 538±823 2 702±8
    RM2-11 165.8 1 070.2±1.8 69±3 587 864±28 877 1 774.7±3.5 2.303 6±0.006 2 147 913±795 147 912±795 2 694±8
    RM2-12 180.8 2 632.1±4.6 57±4 1 789 567±115 522 1 764.9±3.7 2.361 2±0.005 6 155 744±795 155 743±795 2 739±8
    RM2-13 188.3 976.9±3.2 109±4 345 298±11 946 1 767.2±6.4 2.330 5±0.015 4 151 817±1 943 151 816±1 944 2 712±18
    RM2-14 195.6 1 618.7±2.6 555±12 114 618±2 396 1 751.7±3.3 2.382 3±0.005 0 159 848±741 159 845±741 2 750±8
    RM2-15 198.1 2 967.0±9.5 518±11 224 494±4 586 1 773.1±4.1 2.378 2±0.008 5 156 909±113 6 156 907±1 136 2 761±11
    下载: 导出CSV
  • [1]

    程海, 张海伟, 赵景耀, 李瀚瑛, 宁有丰, Kathayat G. 中国石笋古气候研究的回顾与展望[J]. 中国科学: 地球科学, 2019, 49(10): 1565-1589

    CHENG Hai, ZHANG Haiwei, ZHAO Jingyao, LI Hanying, NING Youfeng, Kathayat G . Chinese stalagmite paleoclimate researches: A review and perspective[J]. Science China Earth Sciences, 2019, 62: 1489-1513.

    [2]

    Frisia S, Borsato A, Fairchild I J, McDermott F, Selmo E M. Aragonite-calcite relationships in speleothems (Grotte de Clamouse, France): Environment, fabrics and carbonate geochemistry[J]. Journal of Sedimentary Research, 2002, 72(5):687-699.

    [3]

    Ortega R, Maire R, Devès G, Quinif Y. High-resolution mapping of uranium and other trace elements in recrystallized aragonite–calcite speleothems from caves in the Pyrenees (France): implication for U-series dating[J]. Earth and Planetary Science Letters, 2005, 237(3-4):911-923.

    [4]

    Domínguez-Villar D, Krklec K, Pelicon P, Fairchild I J, Cheng H, Edwards L R. Geochemistry of speleothems affected by aragonite to calcite recrystallization-potential inheritance from the precursor mineral[J]. Geochimica et Cosmochimica Acta, 2017, 200:310-329.

    [5]

    Perrin C, Prestimonaca L, Servelle G, Tilhac R, Maury M, Cabrol P. Aragonite-calcite speleothems: Identifying original and diagnetic features[J]. Journal of Sedimentary Research, 2014, 84(4):245-269.

    [6]

    Railsback L B, Dabous A A, Osmond J K, Fleisher C J. Petrographic and geochemical screening of speleothems for U-series dating: An example from recrystallized speleothems from Wadi Sannur Cavern, Egypt[J]. Journal of Cave and Karst Studies, 2002, 64(2):108-116.

    [7]

    Bruni S F and Wenk H R. Replacement of aragonite by calcite in sediments from the San Cassiano formation (Italy)[J]. Journal of sedimentary petrology, 1985, 55(2):159-170.

    [8]

    Woo K S, Choi D W. Calcitization of aragonite speleothems in limestone caves in Korea: Diagenetic process in a semiclosed system[A]//Perspectives on Karst Geomorphology, Hydrology and Geochemistry[C]. A tribute volume to Derek C. Ford and William B. White, 2006: 297-306.

    [9]

    Wang M, Chen S T, Wang Y J, Zhao K, Wang X F, Liang Y J, Wang Z J, Zhang Z Q, Chen G Z. Stalagmite multi-proxy evidence of wet and dry intervals in the middle Yangtze Valley during the last glacial period[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2022, 586:110764.

    [10]

    尹黎明, 袁志忠, 周耀渝. 湖南省岩溶地区土地石漠化现状及防治对策[J]. 中国水土保持, 2012(5):10-12. doi: 10.3969/j.issn.1000-0941.2012.05.004

    YIN Liming, YUAN Zhizhong, ZHOU Yaoyu. Status quo and countermeasures of rock desertification in karst area of Hunan Province[J]. Soil and Water Conservation in China, 2012(5):10-12. doi: 10.3969/j.issn.1000-0941.2012.05.004

    [11]

    Cosford J, Qing H R, Eglington B, Mattey D, Yuan D X, Zhang M L, Cheng H. East Asian monsoon variability since the Mid-Holocene recorded in a high-resolution, absolute-dated aragonite speleothem from eastern China [J]. Earth and Planetary Science Letters, 2008, 275 (3-4): 296-307.

    [12]

    Cosford J, Qing H R, Yuan D X, Zhang M L, Holmden C, Patterson W, Cheng H. Millennial-scale variability in the Asian monsoon: Evidence from oxygen isotope records from stalagmites in Southeastern China[J]. Palaeogeography Palaeoclimatology Palaeoecology, 2008, 266:3-12. doi: 10.1016/j.palaeo.2008.03.029

    [13]

    Zhang H L, Yu K F, Zhao J X, Feng Y X, Lin Y S, Zhou W, Liu G H. East Asian Summer Monsoon variations in the past 12.5ka: High-resolution δ18O record from a precisely dated aragonite stalagmite in central China[J]. Journal of Asian Earth Sciences, 2013, 73:162-175.

    [14]

    张会领, 余克服, 赵建新, 俸月星, 林玉石, 周玮, 刘国辉. 文石方解石化对文石石笋δ18O记录的影响[J]. 热带地理, 2016, 36(3):457-467.

    ZHANG Huiling, YU Kefu, ZHAO Jianxin, FENG Yuexing, LIN Yushi, ZHOU Wei, LIU Guohui. Process of Calcitization of Aragonite Altering δ18O Records of Aragonite Stalagmites[J]. Tropical Geography, 2016, 36(3):457-467.

    [15]

    张海伟, 蔡演军, 安芷生, 秦世江. 石笋矿物由文石转变为方解石后碳、氧同位素组成的变化[J]. 矿物岩石地球化学通报, 2014, 33(1):31-37. doi: 10.3969/j.issn.1007-2802.2014.01.004

    ZHANG Haiwei, CAI Yanjun, AN Zhisheng, QIN Shijiang. Variation of oxygen and carbon isotope compositions in transformation of speleothem primary aragonite to secondary calcite[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2014, 33(1):31-37. doi: 10.3969/j.issn.1007-2802.2014.01.004

    [16]

    He M, Cai Y J, Zhang H W, Gang X, Cheng X, Lu Y B, Wang G Z, Qiu X L, Ma L, Wei Y Y, Huang S Y, Chang H, Yan H. The impact and implications of aragonite-to-calcite transformation on speleothem trace element composition[J]. Sedimentary Geology, 2021, 425:106010.

    [17]

    林玉石, 张美良, 覃家铭, 姜光辉, 舒丽, 刘玉, 杨琰, 彭稳, 黄新跃, 黄芬. 论洞穴石笋结构构造转变[J]. 西北地质, 2009, 42(3):36-46. doi: 10.3969/j.issn.1009-6248.2009.03.003

    LIN Yushi, ZHANG Meiliang, QIN Jiaming, JIANG Guanghui, SHU Li, LIU Yu, YANG Yan, PENG Wen, HUANG Xinyue, HUANG Fen. On the transformation of stalagmite texture and structure[J]. Northwestern Geology, 2009, 42(3):36-46. doi: 10.3969/j.issn.1009-6248.2009.03.003

    [18]

    林玉石, 黄新耀, 张美良, 覃家铭, 姜光辉, 朱晓燕, 杨琰, 向官生, 黄智勇. 中国南方发现大型文石笋[J]. 地学前缘, 2007, 14(2):236-241. doi: 10.3321/j.issn:1005-2321.2007.02.020

    LIN Yushi, HUANG Xinyao, ZHANG Meiliang, QIN Jiaming, JIANG Guanghui, ZHU Xiaoyan, YANG Yan, XIANG Guansheng, HUANG Zhiyong. Large aragonite stalagmites found in South China[J]. Earth Science Frontiers, 2007, 14(2):236-241. doi: 10.3321/j.issn:1005-2321.2007.02.020

    [19]

    李霞, 滕晓云. X射线衍射原理及在材料分析中的应用[J]. 物理通报, 2008(9):58-59. doi: 10.3969/j.issn.0509-4038.2008.09.023

    LI Xia, TENG Xiaoyun. X-ray diffraction principle and its application in material analysis[J]. Physics Bulletin, 2008(9):58-59. doi: 10.3969/j.issn.0509-4038.2008.09.023

    [20]

    Frisia S, Borsato A, Fairchild I J, McDermott F. Calcite fabrics, growth mechanisms, and environments of formation in speleothems from the Italian Alps and southwestern Ireland[J]. Journal of Sedimentary Research, 2000, 70(5):1183-1196. doi: 10.1306/022900701183

    [21]

    Martín-García R, Alonso-Zarza A M, Frisia S, Rodríguez-Berriguete Á, Drysdale R, Hellstrom J. Effect of aragonite to calcite transformation on the geochemistry and dating accuracy of speleothems. An example from Castañar Cave, Spain[J]. Sedimentary Geology, 2019, 383:41-54.

    [22]

    Riechelmann S, Schröder-Ritzrau A, Wassenburg J A, Schreuer J, Richter D K, Riechelmann D F, Terente M, Constantin S, Mangini A, Immenhauser A. Physicochemical characteristics of drip waters: Influence on mineralogy and crystal morphology of recent cave carbonate precipitates[J]. Geochimica et Cosmochimica Acta, 2014, 145:13-29.

    [23]

    Zhang H W, Cai Y J, Tan L C, Qin S J, An Z S. Stable isotope composition alteration produced by the aragonite-to-calcite transformation in speleothems and implications for paleoclimate reconstructions[J]. Sedimentary Geology, 2014, 309:1-14.

    [24]

    Lachniet M S, Bernal J P, Asmerom Y, Polyak, V. Uranium loss and aragonite-calcite age discordance in a calcitized aragonite stalagmite[J]. Quaternary Geochronology, 2012, 14:26-37.

    [25]

    Berner R A. The role of magnesium in the crystal growth of calcite and aragonite from sea water[J]. Geochimica et Cosmochimica Acta, 1975, 39(4):489-504. doi: 10.1016/0016-7037(75)90102-7

    [26]

    Sandberg P A and Hudson J D. Aragonite relic preservation in Jurassic calcite‐replaced bivalves[J]. Sedimentology, 1983, 30:879-892. doi: 10.1111/j.1365-3091.1983.tb00716.x

    [27]

    Li H C, Lee Z H, Wan N J, Shen C C, Li T Y, Yuan D X, Chen Y H. The δ18O and δ13C records in an aragonite stalagmite from Furong Cave, Chongqing, China: A-2000-year record of monsoonal climate[J]. Journal of Asian Earth Sciences, 2011, 40(6):1121-1130.

    [28]

    Li T Y, Shen C C, Li H C, Li J Y, Chiang H W, Song S R, Yuan D X, Lin C D. -J., Gao P, Zhou L P, Wang J L, Ye M Y, Tang L L, Xie S Y. Oxygen and carbon isotopic systematics of aragonite speleothems and water in Furong Cave, Chongqing, China[J]. Geochimica et Cosmochimica Acta, 2011, 75(15):4140-4156.

    [29]

    Cosford J, Qing H R, Mattey D, Eglington B, Zhang M L. Climatic and local effects on stalagmite δ13C values at Lianhua Cave, China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2009, 280(1-2):235-244. doi: 10.1016/j.palaeo.2009.05.020

    [30]

    殷建军, 林玉石, 唐伟. 洞穴文石石笋古气候环境变化研究进展、存在问题及研究方向[J]. 中国岩溶, 2014, 33(4):387-395. doi: 10.11932/karst20140401

    YIN Jianjun, LIN Yushi, TANG Wei. Aragonite stalagmite use in paleoclimate and environmental change research: Progress, disadvantages and further directions[J]. Carsologica Sinica, 2014, 33(4):387-395. doi: 10.11932/karst20140401

    [31]

    Shen C C, Lin K, Duan W, Jiang X Y, Partin J W, Edwards R L, Cheng H, Tan M. Testing the annual nature of speleothem banding[J]. Scientific reports, 2013, 3(1):1-5.

    [32]

    Richards D A, Dorale J A. U-series chron ology and environmental applications of speleothems [M]// Bourdon B, Henderson G M, Lundstrom C C, Turner S P. Reviews in Mineralogy and Geochemistry(Vol. 52): Uranium-series Geochemistry. Washington D C: Mineralogical Society of America, 2003: 407-460.

    [33]

    杨琰, 袁道先, 程海, 覃嘉铭, 张美良, 林玉石, 朱晓燕. 文石-方解石石笋U/Th体系的封闭性判断及意义[J]. 地球化学, 2008, 37(2):97-106. doi: 10.3321/j.issn:0379-1726.2008.02.001

    YANG Yan, YUAN Daoxian, CHENG Hai, QIN Jiaming, ZHANG Meiliang, LIN Yushi, ZHU Xiaoyan. Discrimination of close U/Th system in aragonite-calcite stalagmites[J]. Geochimica, 2008, 37(2):97-106. doi: 10.3321/j.issn:0379-1726.2008.02.001

    [34]

    Edwards R L, Gallup C D, Cheng H. Uranium-series dating of marine an lacustrine carbonates[M]//Bourdon B, Henderson G M, Lundstrom C C, Turner S P. Reviews in Mineralogy and Geochemistry(Vol. 52): Uranium-Series Geochemistry. Washington D C: Mineralogical Society of America, 2003: 363-405.

    [35]

    郑永飞, 周根陶, 龚冰. 碳酸盐矿物氧同位素分馏的理论研究[J]. 高校地质学报, 1997, 3(3):241-251. doi: 10.16108/j.issn1006-7493.1997.03.001

    ZHENG Yongfei,ZHOU Gentao,GONG Bing. Theoretical study of oxygen isotope fractionation in carbonate minerals[J]. Geological Journal of China Universities, 1997, 3(3):241-251. doi: 10.16108/j.issn1006-7493.1997.03.001

    [36]

    Wang Y J, Cheng H, Edwards R L, An Z S, Wu J Y, Shen C C, Dorale J A. A high-resolution absolute-dated late Pleistocene monsoon record from Hulu Cave, China[J]. Science, 2001, 294(5550):2345-2348.

    [37]

    Tarutani T, Clayton R N , Mayeda T K. The effect of polymorphism and magnesium substitution on oxygen isotope fractionation between calcium carbonate and water[J]. Geochimica et Cosmochimica Acta, 1969, 33(8):987-996.

    [38]

    Rubinson M and Clayton R N. Carbon-13 fractionation between aragonite and calcite[J]. Geochimica et Cosmochimica Acta, 1969, 33(8):997-1002.

    [39]

    Lachniet M S. Are aragonite stalagmites reliable paleoclimate proxies? Tests for oxygen isotope time-series replication and equilibrium[J]. Bulletin, 2015, 127(11-12):1521-1533.

    [40]

    郑立娜, 周厚云, 朱照宇. 洞穴次生碳酸盐沉积的Mg/Ca与Sr/Ca比值研究进展−兼论洞穴次生沉积物Mg/Ca与Sr/Ca的影响机制[J]. 中国岩溶, 2010, 29(2):212-218. doi: 10.3969/j.issn.1001-4810.2010.02.017

    ZHENG Lina, ZHOU Houyun, ZHU Zhaoyu. Progress of study on Mg/Ca and Sr/Ca ratios of speleothem in caves[J]. Carsologica Sinica, 2010, 29(2):212-218. doi: 10.3969/j.issn.1001-4810.2010.02.017

    [41]

    Railsback L B, Brook G A, Chen J, Kalin R, Fleisher C J. Environmental controls on the petrology of a late Holocene speleothem from Botswana with annua layers of aragonite and calcite[J]. Journal of Sedimentary Research, 1994, 64(1a):147-155.

    [42]

    Duan W H, Cai B G, Tan M, Liu H, Zhang Y. The growth mechanism of the aragonitic stalagmite laminae from Yunnan Xianren Cave, SW China revealed by cave monitoring[J]. Boreas, 2011:113-123.

    [43]

    袁珍. 乌龙山国家地质公园岩溶地貌的形成原因研究[J]. 产业创新研究, 2018(10):66-67.

    YUAN Zhen. Study on the formation reason of Karst landform in Wulongshan National Geopark[J]. Industrial Innovation, 2018(10):66-67.

    [44]

    Cheng H, Edwards R L, Hoff J, Gallup C D, Richards D A, Asmerom Y. The half-lives of uranium-234 and thorium-230[J]. Chemical Geology, 2000, 169:17-33.

    [45]

    Cheng H, Edwards R L, Shen C-C,Polyak V J, Asmerom Y, Woodhead J, Hellstrom J,Wang Y J,Kong X G,Spötl C,Wang X F, Alexander Jr E C. Improvements in 230Th dating, 230Th and 234U half-life values, and U–Th isotopic measurements by multi-collector inductively coupled plasma mass spectrometry[J]. Earth & Planetary Science Letters, 2013, 371-372:82-91.

  • 加载中

(4)

(1)

计量
  • 文章访问数:  1564
  • PDF下载数:  47
  • 施引文献:  0
出版历程
收稿日期:  2022-02-18
刊出日期:  2022-08-25

目录