基于频域电磁法反演喀斯特表层土-岩结构研究

程凭, 程勤波, 陈喜, 刘金涛, 张志才, 高满. 基于频域电磁法反演喀斯特表层土-岩结构研究[J]. 中国岩溶, 2022, 41(5): 675-683. doi: 10.11932/karst20220501
引用本文: 程凭, 程勤波, 陈喜, 刘金涛, 张志才, 高满. 基于频域电磁法反演喀斯特表层土-岩结构研究[J]. 中国岩溶, 2022, 41(5): 675-683. doi: 10.11932/karst20220501
CHENG Ping, CHENG Qinbo, CHEN Xi, LIU Jintao, ZHANG Zhicai, GAO Man. Exploration of superficial soil-rock structure for karst area based on frequency domain electromagnetic method[J]. Carsologica Sinica, 2022, 41(5): 675-683. doi: 10.11932/karst20220501
Citation: CHENG Ping, CHENG Qinbo, CHEN Xi, LIU Jintao, ZHANG Zhicai, GAO Man. Exploration of superficial soil-rock structure for karst area based on frequency domain electromagnetic method[J]. Carsologica Sinica, 2022, 41(5): 675-683. doi: 10.11932/karst20220501

基于频域电磁法反演喀斯特表层土-岩结构研究

  • 基金项目: 国家自然科学基金项目(42030506, 42071039)
详细信息
    作者简介: 程凭(1997-),男,理学硕士,主要研究方向为水文地球物理。E-mail:chengping0221@163.com
    通讯作者: 陈喜(1964-),男,教授,主要研究方向为流域水文模拟、地下水数值计算等。E-mail:xi_chen@tju.edu.cn
  • 中图分类号: P631

Exploration of superficial soil-rock structure for karst area based on frequency domain electromagnetic method

More Information
  • 喀斯特地区浅表层土壤分布极不均匀,探测土-岩界面和土壤分布对区域水文以及生态环境研究具有重要意义。文章基于麦克斯韦方程组构建了频域电磁法(FDEM)探测的电导率(EC)一维反演模型,实现了喀斯特浅表剖面EC可视化表述。根据设定的理想地层EC数据以及南方喀斯特峰丛洼地两个剖面和出露的三个实测剖面的FDEM实测视电导率,结合高密度电法、剖面实测土-岩界面,检验了反演模型可靠性。结果表明:FDEM法反演结果能较好的描述理想地层EC变化,以及土壤与灰岩、白云岩界面EC分布,进而可辨识土壤厚度分布,但基于反演的EC值判别尺度较小的溶沟(槽)以及泥岩区土-岩界面误差较大。

  • 加载中
  • 图 1  CMD Explorer频域电磁仪示意图(改自Jadoon et al[12])

    Figure 1. 

    图 2  频域电磁感应仪工作原理图(改自SELEPENG[13]

    Figure 2. 

    图 3  土壤或岩石分层示意图(改自Deidda et al., 2017[19]

    Figure 3. 

    图 4  地层EC反演(虚线)与设定(实线)分布对比图

    Figure 4. 

    图 5  研究断面位置示意图

    Figure 5. 

    图 6  高密度电法(a)与频域电磁法反演结果(b)对比图 (Line 1)

    Figure 6. 

    图 7  高密度电法(a)与频域电磁法反演结果(b)对比图(line 2)

    Figure 7. 

    图 8  FDEM反演的视电导率与观测值相关关系

    Figure 8. 

    图 9  厚层灰岩剖面(a.实景照片,b.反演的EC,c.探测的ECa)

    Figure 9. 

    图 10  黄土-白云岩/泥岩互层剖面(a.实景照片,b.反演的EC,c.探测的ECa

    Figure 10. 

    图 11  黄土-白云岩/泥灰岩剖面(a.实景照片,b.反演的EC,c.探测的ECa

    Figure 11. 

    图 12  各剖面反演与实测ECa对比图

    Figure 12. 

    表 1  正演模型模拟与反演ECa结果对比

    Table 1.  Comparison of the simulated and inverted ECa values

    线圈模式HCPVCP残差
    线圈距离/m1.482.824.491.482.824.49
    a模拟
    ECa/S·m−1
    0.059 20.051 80.043 80.059 30.057 50.053 80.000 2
    反演
    ECa/S·m−1
    0.058 80.051 70.04410.059 50.057 50.053 9
    b模拟
    ECa/S·m−1
    0.064 10.055 90.048 60.071 50.065 90.060 70.000 3
    反演
    ECa/S·m−1
    0.064 10.055 80.048 70.071 50.065 80.060 7
    c模拟
    ECa/S·m−1
    0.064 10.055 90.04860.07150.065 90.060 70.000 2
    反演
    ECa/S·m−1
    0.064 10.055 80.048 70.071 50.065 80.060 7
    d模拟
    ECa/S·m−1
    0.076 90.082 80.077 40.061 20.070 70.074 40.000 0
    反演
    ECa/S·m−1
    0.076 70.083 10.077 20.061 20.070 80.074 5
    下载: 导出CSV
  • [1]

    Ford D, Williams P D. Karst hydrogeology and geomorphology[M]. New York: John Wiley & Sons, 2013.

    [2]

    陈喜. 西南喀斯特地区水循环过程及其水文生态效应[M]. 北京: 科学出版社, 2014.

    CHEN Xi. Water cycle processes and hydro-ecological effects in the southwest karst region[M]. Beijing: Science Press, 2014.

    [3]

    王甲荣, 陈喜, 张志才, 张润润, 朱彪, 龚轶芳, 刘皓, 袁瞬飞. 喀斯特溶槽岩-土界面优势流及其对土壤水分动态的影响[J]. 中国岩溶, 2019, 38(1):109-116.

    WANG Jiarong, CHEN Xi, ZHANG Zhicai, ZHANG Runrun, ZHU Biao, GONG Yifang, LIU Hao, YUAN Shunfei. Preference flow at rock-soil interface and its influence on soil water dynamics in the karst troughs[J]. Carsologica Sinica, 2019, 38(1):109-116.

    [4]

    Archie, G. E. The electrical resistivity log as an aid in determining some reservoir characteristics[J]. Transactions of the Aime, 1942, 146(1):54-62. doi: 10.2118/942054-G

    [5]

    Revil A, Cathles L M, Losh S, Nunn J.A Electrical conductivity in shaly sands with geophysical applications[J]. Journal of Geophysical Research Solid Earth, 1998, 103(B10):23925-23936. doi: 10.1029/98JB02125

    [6]

    Corwin D L , Lesch S M , Shouse P J , Soppe R, Ayars J E. Identifing soil properties that influence cotton yield using soil sampling directed by apparent bulk soil electrical conductivity[J]. Agronomy Journal, 2003, 95(2).

    [7]

    Zhang Z, Routh P S, Oldenburg D W, Alumbaugh D L, Newman G A. Reconstruction of 1-D conductivity from dual-loop EM data[J]. Geophysics, 2000, 65(2):492-501. doi: 10.1190/1.1444743

    [8]

    Moghadas D, Jadoon K Z, Mccabe M F. Spatiotemporal monitoring of soil moisture from EMI data using DCT-based Bayesian inference and neural network[J]. Journal of Applied Geophysics, 2019, 169:226-238. doi: 10.1016/j.jappgeo.2019.07.004

    [9]

    Akramkhanov A , Brus D J, Walvoort D J J. Geostatistical monitoring of soil salinity in Uzbekistan by repeated \\{EMI\\ surveys[J]. Geoderma, 2014, 213: 600-607.

    [10]

    Cheng Qinbo, Tao Min, Chen Xi, Binley A. Evaluation of electrical resistivity tomography (ERT) for mapping the soil–rock interface in karstic environments[J]. Environmental Earth Sciences, 2019, 78(15):1-14.

    [11]

    Cheng Qinbo, Chen Xi, Tao Min, Binley A. Characterization of karst structures using quasi-3D electrical resistivity tomography[J]. Environmental Earth Sciences, 2019, 78(9):1-12.

    [12]

    Jadoon K Z, Moghadas D, Jadoon A, Missimer T M, Al-Mashharawi S K, McCabe M F. Estimation of soil salinity in a drip irrigation system by using joint inversion of multicoil electromagnetic induction measurements[J]. Water Resources Research, 2015, 51 (5):3490-3504.

    [13]

    Selepeng A T. Three Dimensional Numerical Modeling of Loop-Loop Electromagnetic Data at Low Induction Numbers[J]. 2016.

    [14]

    Santos F. 1-D laterally constrained inversion of EM34 profiling data[J]. Journal of Applied Geophysics, 2004, 56(2):123-134. doi: 10.1016/j.jappgeo.2004.04.005

    [15]

    Dafflon B, Hubbard S S, Ulrich C, Peterson J E. Electrical Conductivity Imaging of Active Layer and Permafrost in an Arctic Ecosystem, through Advanced Inversion of Electromagnetic Induction Data[J]. Vadose Zone Journal, 2013, 12(4):1742-1751.

    [16]

    Moghadas D, Jadoon K Z, Mccabe M F. Spatiotemporal monitoring of soil water content profiles in an irrigated field using probabilistic inversion of time-lapse EMI data[J]. Advances in Water Resources, 2017, 110:238-248.

    [17]

    Mclachlan P, Blanchy G, Binley A. EMagPy: open-source standalone software for processing, forward modeling and inversion of electromagnetic induction data[J]. Computers & Geosciences, 2020:104561.

    [18]

    Wait J. Geo-electromagnetism[M]. Amsterdam: Elsevier, 2012.

    [19]

    Deidda G P, Diaz De Alba P, Rodriguez G. Identifying the magnetic permeability in multi-frequency EM data inversion[J]. 2017.

    [20]

    Chalikakis K, Plagnes V, Guerin R, Valois R, Bosch F. Contribution of geophysical methods to karst-system exploration: an overview[J]. Hydrogeology Journal, 2011, 19(6):1169-1180. doi: 10.1007/s10040-011-0746-x

    [21]

    Loke M H, Chambers J E, Rucker D F, Kuras O, Wilkinson P B. Recent developments in the direct-current geoelectrical imaging method[J]. Journal of Applied Geophysics, 2013, 95(8): 135-156.

  • 加载中

(12)

(1)

计量
  • 文章访问数:  1015
  • PDF下载数:  25
  • 施引文献:  0
出版历程
收稿日期:  2021-12-09
刊出日期:  2022-10-25

目录