喀斯特石漠化治理措施对土壤颗粒有机碳与团聚体有机碳的影响

蓝家程, 王俊贤, 王莎莎, 祁雪, 龙启霞. 喀斯特石漠化治理措施对土壤颗粒有机碳与团聚体有机碳的影响[J]. 中国岩溶, 2022, 41(5): 773-783. doi: 10.11932/karst20220509
引用本文: 蓝家程, 王俊贤, 王莎莎, 祁雪, 龙启霞. 喀斯特石漠化治理措施对土壤颗粒有机碳与团聚体有机碳的影响[J]. 中国岩溶, 2022, 41(5): 773-783. doi: 10.11932/karst20220509
LAN Jiacheng, WANG Junxian, WANG Shasha, QI Xue, LONG Qixia. Impact of controlling karst rocky desertification on soil particulate organic carbon and aggregate-associated organic carbon[J]. Carsologica Sinica, 2022, 41(5): 773-783. doi: 10.11932/karst20220509
Citation: LAN Jiacheng, WANG Junxian, WANG Shasha, QI Xue, LONG Qixia. Impact of controlling karst rocky desertification on soil particulate organic carbon and aggregate-associated organic carbon[J]. Carsologica Sinica, 2022, 41(5): 773-783. doi: 10.11932/karst20220509

喀斯特石漠化治理措施对土壤颗粒有机碳与团聚体有机碳的影响

  • 基金项目: 国家自然科学基金项目(41601584,42177446); 贵州省科技计划项目(黔科合基础[2017]1417);国家重点研发计划课题(2016YFC0502603)
详细信息
    作者简介: 蓝家程 (1986-),男,博士,教授,研究方向:喀斯特生态环境与土壤生态。E-mail:lanjc2016@163.com
  • 中图分类号: S153.6

Impact of controlling karst rocky desertification on soil particulate organic carbon and aggregate-associated organic carbon

  • 文章以耕地为对照,分析不同石漠化治理措施(花椒林和次生林)对土壤0~20 cm土层有机碳(SOC)、颗粒有机碳(POC)、矿物结合有机碳(MOC)和团聚体有机碳的影响,探讨POC、MOC与SOC、团聚体有机碳的关系。结果表明:与耕地相比,花椒林和次生林均不同程度提高SOC、POC、MOC和团聚体有机碳含量。0~10 cm土层次生林SOC含量和各粒径团聚体有机碳含量均显著高于耕地和花椒林,在10~20 cm土层无显著差异;0~20 cm土层花椒林和次生林土壤POC含量显著高于耕地,MOC无显著差异。POC/SOC范围为20.38%~45.27%,花椒林和次生林显著高于耕地。相反,MOC/SOC为耕地显著高于花椒林和次生林 。退耕为花椒林和次生林后,SOC含量的增加主要以POC含量增加为主。次生林和花椒林>2 mm粒径对SOC贡献率显著高于耕地,但0.25~2 mm粒径、0.053~0.25 mm粒径和 < 0.053 mm粒径对SOC贡献率显著低于耕地。其相关分析表明:POC、MOC与SOC、团聚体有机碳的关系均呈正相关,表现为次生林 > 花椒林 > 耕地。退耕恢复为花椒林和次生林后,SOC、POC和MOC增加量与团聚体有机碳增加量显著相关,其以次生林的相关性较强。石漠化治理措施改变SOC物理组分及其组成以及它们之间的关系,从而促进有机碳的积累。

  • 加载中
  • 图 1  团聚体有机碳对土壤有机碳的贡献率

    Figure 1. 

    图 2  土壤颗粒有机碳、矿物结合有机碳变化量与土壤有机碳变化量的关系

    Figure 2. 

    图 3  土壤有机碳、颗粒有机碳、矿物结合有机碳变化量与团聚体有机碳变化量的关系

    Figure 3. 

    表 1  土壤有机碳、颗粒有机碳及矿物结合有机碳变化

    Table 1.  Changes of soil organic carbon, particulate organic carbon and mineral-associated organic carbon

    土层/ cmSOC/g·kg−1POC/g·kg−1MOC/g·kg−1POC/SOC (%)MOC/SOC (%)
    0~10耕地21.50aA6.05aA15.45aA27.92aA72.08aA
    花椒林25.20aA10.57bA14.63aA41.47bA58.53bA
    次生林31.03bA14.20cA16.83aA45.27bA54.73bA
    10~20耕地19.35aA3.94aA15.41aA20.38aA79.62aA
    花椒林22.37aA8.24bA14.14aA36.75bA63.25bA
    次生林22.79aB7.26bB15.53aA31.48bB68.52bB
    注:不同小写字母表示同一土层不同土地利用间显著差异 (P<0.05),不同大写字母表示同一土地利用不同土层间显著差异 (P<0.05)。
    下载: 导出CSV

    表 2  土壤团聚体有机碳含量变化

    Table 2.  Change of soil aggregate-associated organic carbon

    土层有机碳含量/ g·kg−1
    > 2 mm0.25~2 mm0.053~0.25 mm<0.053 mm
    0~10耕地21.80aA20.53aA18.22aA19.79aA
    花椒林24.46aA23.06aA21.77aA24.01aA
    次生林30.45bA28.88bA30.52bA30.63bA
    10~20耕地19.79aA19.27aA18.21aA18.80aA
    花椒林21.72aA21.36aA20.21aA21.64aA
    次生林22.76aB21.89aB21.95aB21.82aB
    注:不同小写字母表示同一土层不同土地利用间显著差异 (P<0.05);不同大写字母表示同一土地利用不同土层间显著差异 (P<0.05)。
    下载: 导出CSV

    表 3  颗粒有机碳、矿物结合有机碳与土壤有机碳、团聚体有机碳的相关关系

    Table 3.  Relationship between particulate organic carbon, mineral associated organic carbon and soil organic carbon, and aggregate-associated organic carbon

    有机碳含量/g·kg−1
    > 2 mm0.25~2 mm0.053~0.25 mm<0.053 mmSOC
    耕地POC0.4210.2900.1790.1110.527
    MOC0.5200.5550.591*0.685*0.495
    SOC0.919**0.824**0.748**0.773**1.000
    花椒林POC0.5580.5340.684*0.591*0.672*
    MOC0.593*0.632*0.3870.4630.536
    SOC0.944**0.954**0.897**0.873**1.000
    次生林POC0.958**0.920**0.854**0.941**0.944**
    MOC0.635*0.682*0.714**0.656*0.691*
    SOC0.991**0.978**0.937**0.985**1.000
    注:*P<0.05 水平显著差异;**P<0.01 水平显著差异。
    下载: 导出CSV
  • [1]

    袁道先. 岩溶石漠化问题的全球视野和我国的治理对策与经验[J]. 草业科学, 2008, 25(9):19-25. doi: 10.3969/j.issn.1001-0629.2008.09.009

    YUAN Daoxian. Global view on karst rock desertification and integrating control measures and experiences of China[J]. Pratacultural Science, 2008, 25(9):19-25. doi: 10.3969/j.issn.1001-0629.2008.09.009

    [2]

    蒋忠诚, 罗为群, 童立强, 程洋,杨奇勇,吴泽燕,梁建宏. 21 世纪西南岩溶石漠化演变特点及影响因素[J]. 中国岩溶, 2016, 35(5):461-468.

    JIANG Zhongcheng, LUO Weiqun, TONG Liqiang, CHENG Yang,YANG Qiyong,WU Zeyan,LIANG Jianhong. Evolution features of rocky desertification and influence factors in karst areas of southwest China in the 21st century[J]. Carsologica Sinica, 2016, 35(5):461-468.

    [3]

    陈洪松, 岳跃民, 王克林. 西南喀斯特地区石漠化综合治理: 成效、问题与对策[J]. 中国岩溶, 2018, 37(1):37-42.

    CHEN Hongsong, YUE Yuemin, WANG Kelin. Comprehensive control on rocky desertification in karst regions of southwestern China: achievements, problems, and countermeasures[J]. Carsologica Sinica, 2018, 37(1):37-42.

    [4]

    Hu P L, Liu S J, Ye Y Y, Zhang W, He X Y, Su Y R, Wang K L. Soil carbon and nitrogen accumulation following agricultural abandonment in a subtropical karst region[J]. Applied Soil Ecology, 2018, 132:169-178. doi: 10.1016/j.apsoil.2018.09.003

    [5]

    Xiao K C, He T G, Chen H, Peng W X, Song T Q, Wang K L, Li D J. Impacts of vegetation restoration strategies on soil organic carbon and nitrogen dynamics in a karst area, southwest China[J]. Ecological Engineering, 2017, 101:247-254. doi: 10.1016/j.ecoleng.2017.01.037

    [6]

    刘淑娟, 张伟, 王克林, 苏以荣. 桂西北典型喀斯特峰丛洼地退耕还林还草的固碳效益评价[J]. 生态学报, 2016, 36(17):5528-5536.

    LIU Shujuan, ZHANG Wei, WANG Kelin, SU Yirong. Evaluation of carbon sequestration after conversion of cropland to forest and grassland projection in karst peakcluster depression area of northwest Guangxi, China[J]. Acta Ecologica Sinica, 2016, 36(17):5528-5536.

    [7]

    廖洪凯, 龙健. 喀斯特山区不同植被类型土壤有机碳的变化[J]. 应用生态学报, 2011, 22(9):2253-2258.

    LIAO Hongkai, LONG Jian. Variation of soil organic carbon under different vegetation types in Karst mountain areas of Guizhou Province, Southwest China[J]. Chinese Journal of Applied Ecology, 2011, 22(9):2253-2258.

    [8]

    Qin Y, Xin Z, Wang D, Xiao Y. Soil organic carbon storage and its influencing factors in the riparian woodlands of a Chinese karst area[J]. Catena, 2017, 153: 21-29.

    [9]

    Zhao Z H, Zhao Z Y, Fu B, Wang J Q, Tang W. Characteristics of soil organic carbon fractions under different land use patterns in a tropical area[J]. Journal of Soils and Sediments, 2021, 21(2):1-9.

    [10]

    Schwendenmann L, Pendall E. Effects of forest conversion into grassland on soil aggregate structure and carbon storage in Panama: evidence from soil carbon fractionation and stable isotopes[J]. Plant and Soil, 2006, 288(1-2):217-232. doi: 10.1007/s11104-006-9109-0

    [11]

    Cambardella C A, Elliott E T. Particulate soil organic-matter changes across a grass land cultivation sequence[J]. Soil Science Society of America Journal, 1992, 56:777-783. doi: 10.2136/sssaj1992.03615995005600030017x

    [12]

    Damien H, Nathalie V, L Frédérique, Gael A, Julien P, Catherine P C, Isabelle B, Pascal C. How does soil particulate organic carbon respond to grazing intensity in permanent grasslands?[J]. Plant and Soil, 2015, 394(1):239-255.

    [13]

    章晓芳, 郑生猛, 夏银行, 胡亚军,苏以荣,陈香碧. 红壤丘陵区土壤有机碳组分对土地利用方式的响应特征[J]. 环境科学, 2020, 41(3):1466-1473.

    ZHANG Xiaofang, ZHENG Shengmeng, XIA Yinhang, HU Yajun,SU Yirong,CHEN Xiangbi. Responses of Soil Organic Carbon Fractions to Land Use Types in Hilly Red Soil Regions, China[J]. Environmental Science, 2020, 41(3):1466-1473.

    [14]

    唐光木, 徐万里, 盛建东,梁智,周勃,朱敏. 新疆绿洲农田不同开垦年限土壤有机碳及不同粒径土壤颗粒有机碳变化[J]. 土壤学报, 2010, 47(2):279-285. doi: 10.11766/trxb2010470211

    TANG Guangmu, XU Wanli, SHENG Jiandong, LIANG Zhi,ZHOU Bo,ZHU Min. The variation of soil organic carbon and soil particle-size in xinjiang oasis farmland of different years[J]. Acta Pedologica Sinica, 2010, 47(2):279-285. doi: 10.11766/trxb2010470211

    [15]

    Six J, Callewaert P, Lenders S. Measuring and understanding carbon storage in afforested soils by physical fractionation[J]. Soil Science Society of America Journal, 2002, 66: 1981-1987.

    [16]

    Turner J, Lambert M. Change in organic carbon in forest plantation soils in eastern Australia[J]. Forest Ecology and Management, 2000, 133(3):231-247. doi: 10.1016/S0378-1127(99)00236-4

    [17]

    姬强, 孙汉印, 王勇, 刘帅,王旭东. 土壤颗粒有机碳和矿质结合有机碳对4种耕作措施的响应[J]. 水土保持学报, 2012, 26(2):132-137.

    JI Qiang, SUN Hanyin, WANG Yong, LIU Shuai,WANG Xudong. Responses of soil particulate organic carbon and mineral-bound organic carbon to four kinds of tillage practices[J]. Journal of Soil and Water Conservation, 2012, 26(2):132-137.

    [18]

    Six J, Elliott E T, Paustian K, Doran J W. Aggregation and soil organic matter accumulation in cultivated and native grassland soils[J]. Soil Science Society of America Journal, 1998, 62:1367-1377. doi: 10.2136/sssaj1998.03615995006200050032x

    [19]

    梁爱珍, 张晓平, 杨学明, 申艳,时秀焕,范如芹,方华军. 黑土颗粒态有机碳与矿物结合态有机碳的变化研究[J]. 土壤学报, 2010, 47(1):153-158. doi: 10.11766/trxb2010470122

    LIANG Aizhen, ZHANG Xiaoping, YANG Xueming, SHEN Yan,SHI Xiuhuan,FAN Ruqin,FANG Huajun. Dynamics of soil particulate organic carbon and mineral-incorporated organic carbon in black soils in northeast China[J]. Acta Pedologica Sinica, 2010, 47(1):153-158. doi: 10.11766/trxb2010470122

    [20]

    周萍. 南方典型稻田土壤有机碳固定机制研究: 基于长期试验及跨地域统计分析[D]. 南京: 南京农业大学, 2009.

    ZHOU Ping. A study on soil carbon sequestration fate in typical paddy soils from south China:Based on long-term agro-ecosystem experiments and cross-site analysis[D]. Nanjing: Nanjing Agricultural University, 2009.

    [21]

    毛艳玲, 杨玉盛, 崔纪超. 土壤团聚体颗粒有机碳对土地利用变化的响应[J]. 水土保持学报, 2011, 25(4):188-196.

    MAO Yanling, YANG Yusheng, CUI Jichao. Response of land use on soil particulate organic carbon in aggregates[J]. Journal of Soil and Water Conservation, 2011, 25(4):188-196.

    [22]

    廖洪凯, 李娟, 龙健, 张文娟,刘灵飞. 土地利用及退耕对喀斯特山区土壤活性有机碳的影响[J]. 环境科学, 2014, 35(1):240-247.

    LIAO Hongkai, LI Juan, LONG Jian, ZHANG Wenjuan, LIU Lingfei. Effects of land use and abandonment on soil labile organic carbon in the karst region of southwest China[J]. Environmental Science, 2014, 35(1):240-247.

    [23]

    唐政, 李继光, 李慧, 张丽敏,李忠芳,娄翼来. 喀斯特土壤微生物和活性有机碳对生态恢复的快速响应[J]. 生态环境学报, 2014, 23(7): 1130-1135.

    TANG Zheng, LI Jiguang, LI Hui,ZHANG Limin,LI Zhongfang,LOU Yilai. Rapid responses of soil microbes and active organic carbon to eco-restoration in karst region[J].Ecology and Environmental Sciences,2014, 23(7): 1130-1135.

    [24]

    李娟, 廖洪凯, 龙健, 陈彩云. 喀斯特山区土地利用对土壤团聚体有机碳和活性有机碳特征的影响[J]. 生态学报, 2013, 33(7):2147-2156. doi: 10.5846/stxb201201050026

    LI Juan, LIAO Hongkai, LONG Jian, CHEN Caiyun. Effect of land use on the characteristics of organic carbon and labile organic carbon in soil aggregates in karst mountain areas[J]. Acta Ecologica Sinica, 2013, 33(7):2147-2156. doi: 10.5846/stxb201201050026

    [25]

    Benbi D K, Brar K, Toor A S, Singh P. Total and labile pools of soil organic carbon in cultivated and undisturbed soils in northern India[J]. Geoderma, 2015, 237-238:149-158. doi: 10.1016/j.geoderma.2014.09.002

    [26]

    黄雪夏, 唐晓红, 魏朝富, 谢德体. 利用方式对紫色水稻土有机碳与颗粒态有机碳的影响[J]. 生态环境, 2007, 16(4):1277-1281.

    HUANG Xuexia, TANG Xiaohong, WEI Chaofu, XIE Deti. Variation of total and particulate organic carbon in topsoil of a purple paddy under different land use practices[J]. Ecology and Environment, 2007, 16(4):1277-1281.

    [27]

    Tang F K, Cui M, Lu Q, Liu Y G, Guo H Y, Zhou J X. Effects of vegetation restoration on the aggregate stability and distribution of aggregate-associated organic carbon in a typical karst gorge region[J]. Solid Earth, 2016, 7(1):141-151. doi: 10.5194/se-7-141-2016

    [28]

    Zhong Z K, Han X H, Xu Y D, Zhang W, Fu S Y, Liu W C, Ren C J, Yang G H, Ren G X. Effects of land use change on organic carbon dynamics associated with soil aggregate fractions on the Loess Plateau, China [J]. Land Degradation & Development, 2019, 30(9):1070-1082.

    [29]

    刘梦云, 常庆瑞, 齐雁冰, 孙宁. 黄土台塬不同土地利用土壤有机碳与颗粒有机碳[J]. 自然资源学报, 2010, 25(2):218-226. doi: 10.11849/zrzyxb.2010.02.006

    LIU Mengyun, CHANG Qingrui, QI Yanbing, SUN Ning. Soil organic carbon and particulate organic carbon under different land use types on the Loess Plateau[J]. Journal of Natural Resources, 2010, 25(2):218-226. doi: 10.11849/zrzyxb.2010.02.006

    [30]

    杨龙. 喀斯特石漠化治理生态修复模式下的碳汇效益监测评价[D]. 贵阳: 贵州师范大学, 2016.

    YANG Long. Evaluations of carbon sink benefit under the ecological restoration model of karst rocky desertification[D]. Guiyang: Guizhou Normal University, 2016.

    [31]

    唐光木, 徐万里, 周勃, 梁智,葛春辉. 耕作年限对棉田土壤颗粒及矿物结合态有机碳的影响[J]. 水土保持学报, 2013, 27(3):237-241.

    TANG Guangmu, XU Wanli, ZHOU Bo, LIANG Zhi,GE Chunhui. Effects of cultivation years on particulate organic carbon and mineral-associated organic carbon in cotton soil[J]. Journal of Soil and Water Conservation, 2013, 27(3):237-241.

    [32]

    武均, 蔡立群, 张仁陟, 齐鹏,张军. 耕作措施对旱作农田土壤颗粒态有机碳的影响[J]. 中国生态农业学报, 2018, 26(5):728-736.

    WU Jun, CAI Liqun, ZHANG Renzhi, QI Peng,ZHANG Jun. Distribution of soil particulate organic carbon fractions as affected by tillage practices in dry farmland of the Loess Plateau of central Gansu Province[J]. Chinese Journal of Eco-Agriculture, 2018, 26(5):728-736.

    [33]

    谭秋锦, 宋同清, 彭晚霞, 曾馥平,杜虎,杨钙仁,范夫静. 峡谷型喀斯特不同生态系统土壤团聚体稳定性及有机碳特征[J]. 应用生态学报, 2014, 25(3):671-678.

    TAN Qiujin, SONG Tongqing, PENG Wanxia, ZENG Fuping,DU Hu,YANG Gairen,FAN Fujing. Stability and organic carbon characteristics of soil aggregates under different ecosystems in karst canyon region[J]. Chinese Journal of Applied Ecology, 2014, 25(3):671-678.

    [34]

    陈海, 朱大运, 陈浒. 石漠化地区土地利用方式对土壤团聚体稳定性及有机碳的影响[J]. 中国岩溶, 2021, 40(2):346-354.

    CHEN Hai, ZHU Dayun, CHEN Hu. Effects of land-use patterns on soil aggregate stability and organic carbon in rocky desertification areas[J]. Carsologica Sinica, 2021, 40(2):346-354.

  • 加载中

(3)

(3)

计量
  • 文章访问数:  1537
  • PDF下载数:  73
  • 施引文献:  0
出版历程
收稿日期:  2022-01-01
刊出日期:  2022-10-25

目录