Carbon and oxygen isotope characteristics and paleoenvironmental significance of deep karst fracture-cave fillings in Huanjiang sag, Guangxi
-
摘要:
深部岩溶是碳酸盐岩地区深部油气资源勘探中不可避免的问题。深部岩溶发育期次的确定是岩溶储层地质的技术难题。广西环江凹陷在页岩气钻井中发现大量深部溶洞且充填物丰富多样,成为深部岩溶发育期次研究的良好素材。文章对HD1-4钻井揭露的深部岩溶缝洞充填物及地表岩溶缝洞充填物进行碳氧同位素分析,揭示出环江地区的4种不同岩溶环境:同生期或准同生期岩溶环境、表生期大气淡水岩溶环境、中浅埋藏岩溶环境、深埋藏或热液岩溶环境,环江地区深部岩溶发育为4期不同岩溶环境叠加的效果,主要受到热液岩溶环境和大气淡水岩溶环境的影响。
Abstract:In recent years, deep karst caves are commonly met in deep resource exploration and engineering construction. However, the deep-buried caves lead to the insufficient research on the genesis and development mechanism of deep karst caves. As good research samples, a large amount of complete drilling cores in deep karst caves are founded in Huanjiang sag in Guangxi. The karst morphology analysis of the drilling core in Well HD1-4 reveals that the deep karst in Huanjiang area is mainly composed of net cracks and holes expanding along cracks and dolomite honeycomb pores, and large karst caves are also developed, with the maximum height of 20 m. The types of fillings in deep karst caves are diverse. Through the observation of the whole well core, it is found that the deep karst cave fillings are of four characteristics. (1) Calcification growth,the mixed growth pattern of chemical and argillaceous substances reflects periodic growth in the cave, which may be associated with surface hydrological systems. (2) Flower-like growth pattern,white calcite with multi-stage growth can be identified in pores, but the growth direction and growth environment of each stage are different, hence forming flower-like growth pattern. (3) Primary chemical fillings of the hole,the hole is filled with calcite or dolomite, and the crystal form of calcite in part of the hole is good. (4) Argillaceous fillings in the cave, argillaceous fillings can be seen at 230 m, 432 m, 880 m and even 1,132 m in Well Huandi 1-4, which are far lower than the local discharge datum or the sea level. These argillaceous fillings may come from the surface mud seepage along the fracture or the mud beneath the ancient exposed surface. In this paper, the carbon and oxygen isotope analyses of deep karst cave fillings and surface karst cave fillings in Well HD1-4 drilling show the wide distribution of carbon and oxygen isotope of deep karst fracture. δ13C values are between −5.2‰ and −2‰ with the average value of −0.33‰. δ18O values are between −16.78‰ and −5.3‰ wtih the average value of −11.45‰. The values show the general negative skewness. The negative skewness of carbon and oxygen isotope of calcite fillings in the pores is the largest, and that of dolomite is the smallest. The carbon and oxygen isotope values of calcareous mudstone are the closest to those of modern atmospheric freshwater.
Based on the analysis of geological conditions, four large-scale paleokarst processes and filling periods are founded in the formation and filling stages of deep karst in the Huanjiang area. (1) In the karst environment in contemporaneous period and penecontemporaneous peiord, the distribution range of δ18O is the same as the background value of the bedrock of carbonate rock, but δ13C changes greatly. The results show that the karst environment is similar to the sedimentary environment of carbonate rocks, which reflects the short-term exposure of karst after the deposition of carbonate rocks in the contemporaneous period, and the filling shows the characteristics of early precipitation. Karst space is mainly characterized by dissolution pores, which provides the basis for further karst development. (2) The karst environment of atmospheric fresh water in the hypergene period is affected by atmospheric fresh water δ13C, and the δ18O value shows a significant negative skewness. The fact that δ13C is less than −2.5‰ and δ18O is between −13 and −8.2‰ indicates the karst environment is an open system, and a large number of argillaceous substances infiltrate with surface water and fill karst caves, making a certain impact on the preservation of deep resources. (3) In the shallow-buried karst environment, the δ18O value of the filling is negative, which is more negatively skewed than that of Type I bedrock. The δ13C value is basically consistent with the bedrock value, and there is no obvious negative skewness. The δ13C value is between −2.0‰ and 2.5‰, and the δ18O is between −13.0‰ and −9.0‰. Due to the increase of temperature and pressure in the closed system during the burial peirod, there gradually precipitates and forms dolomite. (4) In the deep-buried or hydrothermal karst environment, the δ18O value of fillings is obviously negative, and high-temperature fluid flows up along the fault to form the karst dissolution space which becomes the reservoir place of various deposits. The hydrothermal karst with high temperature and the atmospheric freshwater karst are the main periods of the formation of deep karst fracture-cavity filling in Huanjiang area. The research results are of great significance for deep karst reservoir prediction and deep resource exploration in the later stage.
-
Key words:
- carbon and oxygen isotopes /
- deep karst /
- ancient environment /
- karst period /
- Huanjiang sag
-
0. 引 言
碳、氧同位素识别古岩溶,是利用在不同地质环境作用下地球物质迁移、转化过程中碳、氧稳定同位素的丰度变化来反映古岩溶作用各阶段的环境特征[1-5]。在不同地质背景条件下,碳、氧同位素有不同的丰度特征,且具有后期蚀变小和良好的区域可对比性,因而成为研究古气候、恢复古环境的良好材料[6-7]。岩溶缝洞充填物中以化学淀积物进行同位素分析为最优,钙泥质充填物效果较差,主要是钙泥岩含大量有机质,埋藏条件下有机质氧化作用会对δ13C值产生较大影响[1]。
碳酸盐岩缝洞中的沉淀白云石是后期岩溶流体对母岩改造后沉淀形成,由于流体性质、温压条件等溶蚀环境不同,从其中沉淀下来的白云石δ18O和δ13C值也不同,可用其指示古岩溶环境[1,7]。碳酸盐的溶解与沉淀平衡,对环境反应敏感,其沉淀可发生于成岩作用的各个阶段,记录各个阶段的古环境信息[4]。
本文选取环江凹陷作为研究区,以区内深部岩溶发育的典型钻井环地1-4井(HD1-4)为研究对象,测试分析深部岩溶缝洞白云石的碳氧同位素,并结合地表岩石及岩溶化学充填物特征,判断环江地区深部岩溶缝洞充填物形成期次,以期揭示其古环境意义。
1. 研究区概况
环江凹陷位于中国南部广西壮族自治区的北西部(图1),是桂中坳陷内北西部的一个由古生界和三叠系充填的残留盆地,形成于湘桂地体与扬子大陆边缘碰撞拼贴造山作用构成的华南微板块之一,主要经历了4个构造发展阶段:(1)海西期被动大陆边缘坳陷发育期,形成了以碳酸盐岩为主的巨厚沉积体,为后续岩溶发育提供物质基础;(2)印支期坳陷收缩期,沉积泥质岩及砂岩,结束了坳陷发展的海相沉积历史;(3)燕山期坳陷全面褶皱期,造就了先进地表的褶皱趋势;(4)喜山期坳陷全面抬升剥蚀期,使得泥盆系及其以上的地层遭受剥蚀,多出露于坳陷东北及东南部[8-11]。
凹陷内出露地层以石炭系为主,二叠系、三叠系仅零星出露,泥盆系主要出露凹陷周边,凹陷边界为北北东和北西向断层,凹陷面积约2 000 km2,受多期构造运动的影响,凹陷内褶皱和断裂发育,并发育较多的高角度断裂带,以正断层居多,仅少数为逆断层。区内可溶碳酸盐岩系为石炭系—二叠系台地相碳酸盐岩,大面积出露,而泥盆系泥灰岩、硅质岩以及三叠系碎屑岩岩溶不发育。主要岩溶层位为下石炭统大塘组,上石炭统大埔组、黄龙组和马平组以及二叠系栖霞组、茅口组、合山组,累计厚度上千米。下石炭统下部岩性中泥质含量增加,至底部逐渐过渡为下石炭统岩关组大套泥页岩,是岩溶作用的底界[12]。
2. 缝洞充填特征及样品采集
HD1-4位于环江凹陷中部向斜内(图1),钻井海拔高程为200 m,钻孔井深为1 971 m。主要钻遇的地层由上而下分别为上石炭系大埔组白云岩、白云质灰岩地层(0~600 m)以及石炭系大塘组灰岩地层(600 m以下)。钻孔在碳酸盐岩地层中遇到多个深部溶洞(图2),),最大高度达20 m。从钻井施工放空情况,放空段达到15处:46.96~49.56 m,49.96~54.16 m,73.26~76.26 m,76.96~78.16 m,417.10~418.90 m,421.75~425.29 m,426.29~429.00 m,429.63~432.10 m,432.70~435.11 m,448.37~451.01 m,451.45~453.05 m,454.70~455.80 m,1 126.90~1 129.30 m,1 158.00~1 160.30 m,1 206.00~1 208.40 m,表明该井发育至少15处溶洞,主要分为40~80 m溶洞段,230~250 m溶蚀孔洞段,420~450 m溶洞段,1 100~1 200 m溶洞段。深部岩溶缝洞充填物类型多样,通过全井岩芯观察,归纳出深部岩溶缝洞充填物具有以下特征:
(1)钙化生长:在环地1-4井432 m溶洞段内,可见化学和泥质混合生长纹,反映溶洞内具有周期性生长,可能该溶洞与地表水文系统有联系(图3 A,图3B)。
图 3. 岩芯中不同类型充填物生长或充填形态注:A、B.溶洞内钙华生长纹,432 m,环地1-4井;C.孔洞内两期生长方解石,一期含紫红色泥,二期具有晶形,环地1-4井,1 723 m;D.花边状生长纹,为两期生长形成花边,第一期纤状,第二期晶粒状,环地1-4井;E.晶形较好的方解石在孔洞内生长,局部染成紫红色,1 090 m,环地1-4井;F.钙化生长,423 m,环地1-4井;G.孔洞内充填渗流泥,232 m,环地1-4井;H.溶洞内充填泥,426 m,环地1-4井;I.大型溶洞底部淤泥,881 m,环地1-2井;J.溶洞内充填方解石及紫红色渗滤泥混合充填,1 132 m,环地1-4井。Figure 3. Growth or filling morphology of different types of fillings in rock cores(2)花边状生长纹:孔洞中可识别多期生长的白色方解石,但每期生长方向、生长环境不同,形成花边状生长纹(图3 C,图3D)。
(3)孔洞一期化学充填:孔洞中由方解石或白云石充填,局部孔洞中方解石晶形较好(图3 E,图3 F)。
(4)溶洞泥质充填:在环地1-4井从230 m、432 m、880 m甚至到1 132 m均可见泥质充填物,远远低于当地排泄基准面或海平面,这些泥质充填物可能为地表泥沿裂缝下渗也有可能为古暴露面带下的泥(图3 G, 图3H, 图3I, 图3J)。
系统采样井内深部岩溶缝洞充填物并送样测试。为便于更准确判断环江井内深部岩溶缝洞充填物对古环境的指示,采样钻井附近地表岩石及岩溶化学充填物,样品共计29件。根据产出将充填物样品分为8类(表1):大浦组、黄龙组基岩,溶蚀孔洞中的白云石,断层或裂缝充填白云石,角砾间白云石胶结物,孔洞边缘花边1期白云石,孔洞边缘花边2期白云石,溶洞充填钙质泥混合物,溶孔充填方解石。
表 1. 岩溶缝洞充填物分类及碳氧同位素测试结果Table 1. Classification of filling materials in karst fracture-cave and test results of carbon and oxygen isotopes分类 序号 样品编号 地层 岩性/产出 采样地点/HD1-4井深/m δ13C(V-PDB)/‰ δ18O(V-PDB)/‰ 大浦组、黄龙组基岩 1 HD015-1 C2d 白云岩 环江猜峒断裂 3.48 −11.51 2 HD015-4 C2h 白云质灰岩 环江猜峒断裂 2.51 −9.13 3 HD016-1 C2h 灰岩 环江猜峒断裂 2.50 −8.72 4 HD1-3B C2d 孔壁白云岩 38 3.24 −8.53 5 HD1-8B C2d 孔壁白云岩 120 3.34 −7.80 6 HD1-14 C2d 洞壁白云岩 419 2.48 −11.35 7 HD1-24A C2d 花边状白云岩 484 3.35 −5.30 8 HD1-45B C2d 灰质白云岩 1 088 3.02 −8.22 9 HD1-47B C2d 灰质白云岩 1 131~1 137 1.72 −6.28 溶蚀孔洞中的白云石 10 HD1-3A C2d 溶孔白云石 38 4.21 −8.90 11 HD1-8A C2d 溶孔充填方解石 120 −0.94 −12.62 12 HD1-13 C2d 花斑状溶孔白云石半充填 415 −4.93 −8.80 13 HD1-25 C2d 白云石半充填溶孔 497 −0.81 −13.50 断层或裂缝充填白云石 14 HD015-2 C2d 白云石脉 环江猜峒断裂 0.56 −16.36 15 HD015-3 C2d 白云石脉 环江猜峒断裂 −1.76 −12.03 16 HD016-2 C2h 裂缝方解石 环江猜峒断裂 −3.11 −10.76 17 HD1-56 C2d 断层砾石及网状缝方解石充填 1 721 −4.10 −13.94 18 HD1-57 C2d 断裂充填方解石 1 762 −1.04 −14.29 19 HD1-58 C2d 方解石 1 840 −2.15 −15.76 角砾间白云石胶结物 20 HD1-20 C2d 角砾白云石胶结 448 −5.04 −8.34 孔洞边缘花边1期白云石 21 HD1-24B C2d 花边1期白云石 484 4.10 −7.53 孔洞边缘花边2期白云石 22 HD1-24C C2d 花边2期白云石 484 2.45 −12.15 溶洞充填钙质泥混合物 23 HD1-46 C2d 溶洞充填钙质泥 1 091~1 094 −5.20 −11.56 溶孔充填方解石 24 HD1-45A C2d 溶孔充填方解石 1 088 −4.55 −12.19 25 HD1-47A C2d 方解石充填 1 131~1 137 −2.93 −16.78 26 HD1-50 C2d 溶孔方解石充填 1 220 −3.65 −15.81 27 HD1-51 C2d 溶孔方解石充填 1 224~1 225 −3.80 −15.87 28 HD1-53 C2d 溶孔方解石 1 258 −1.81 −13.99 29 HD1-54 C2d 溶孔方解石 1 457 −0.81 −13.93 采集的样品经研磨、烘干、酸化等前处理之后,测定其碳氧同位素组成。测试工作由自然资源部岩溶地质资源环境监督检测中心完成,测试仪器为MAT253稳定同位素质谱仪(美国,赛默飞),检测环境为温度24.3 ℃,湿度40.0%,测试精度为0.1‰。测试结果见表1。
3. 碳氧同位素特征
测试分析表明深部岩溶缝洞充填物的碳氧同位素分布范围较广,δ13C值介于−5.2‰~4.2‰、平均值为−0.33‰,δ18O值介于−16.78‰~−5.3‰、平均值为−11.45‰,普遍具有偏负的特征,溶孔充填方解石的碳氧同位素值偏负程度最大,白云岩的碳氧同位素偏负程度最小,钙质泥岩的碳氧同位素值最接近现代大气淡水,溶孔花边1期白云石最接近基岩背景值。
4. 古岩溶作用期次
按充填物类型进行碳氧同位素交会投影(图4)可知,深部岩溶并非一期形成,而是多期岩溶作用相互叠加的结果[7],按照碳氧同位素特征将其分为4类(表2)。
表 2. 环江地区晚石炭基岩及缝洞充填物碳氧同位素指示环境Table 2. Carbon and oxygen isotope indicator environment of late Carboniferous bedrock and fracture-cavity fillings in Huanjiang area发育期次 形成环境 同位素特征 δ13C(PDB)/‰ δ18O(PDB)/‰ Ⅰ 同生期或准同生期岩溶环境 1.8~4.2 −4.0~−9.0 Ⅱ 表生期大气淡水岩溶环境 −2.5~−6.0 −8.2~−13.0 Ⅲ 中浅埋藏岩溶环境 −2.0~2.5 −9.0~−13.0 Ⅳ 深埋藏或热液岩溶环境 −4.0~2.0 <−13.0 第Ⅰ类为同生期或准同生期岩溶环境,其δ18O分布范围与碳酸盐岩基岩背景值区域相同,但δ13C变化较大,这说明该岩溶环境与碳酸盐岩沉积环境类似,反映同生期碳酸盐岩沉积不久后短暂的暴露岩溶,为早期沉淀的缝洞充填特征。δ13C因受大气水—海水混合的影响而分布相对较宽基岩。δ18O为−9‰~−4‰、δ13C为1.8‰~4.2‰。图4中显示10号和21号样落入该区,10号样为溶孔充白云石,21号样为溶孔花边1期白云石,反映这些白云石属于准同生期环境形成,代表在海西期石炭纪准同生期局部高地上存在暴露溶蚀。
第Ⅱ类为大气淡水岩溶环境,受大气淡水影响δ13C、δ18O具有明显负偏,δ13C<−2.5‰,δ18O为−13‰~−8.2‰,在29个样品发现有4~5个样属于该类型,有12、16、20、23、24类型较多,分别是溶孔中白云石、地表裂缝中白云石、角砾间白云石胶结物、溶洞中充填钙质泥,反映HD1-4井内经历强烈的大气淡水溶蚀,多种岩溶岩均有响应。此外,从5个大气淡水样品分布深度来看,最浅为地表,最深可达1 088 m,在450 m溶洞中大气淡水作用强烈,因而大气淡水可影响环江现代深部岩溶至1 088 m。研究区构造地质条件表明喜山期以后石炭系地层被剥蚀到地表,该条断层出露地表,变成开放体系,该条断裂位于向斜核部,断裂进一步破碎发育,地表大气淡水沿断裂向下渗流产生岩溶,大量泥质物质也带入深部,顺断层向南缓慢径流[13-14]。喜山期后,现代的溶洞测年为25万年[15],大气淡水沿早期断裂和溶蚀带进一步叠加溶蚀,形成环地1井中大量的溶蚀现象和溶洞。
第Ⅲ类为中浅埋藏岩溶环境,充填物较负偏的δ18O值,比Ⅰ类基岩负偏,而δ13C值与基岩值基本一致,未有明显负偏,δ13C为−2.0‰~2.5‰,δ18O为−13.0‰~−9.0‰。中浅埋藏环境条件下,化学沉淀物的13C的来源主要是碳酸盐岩围岩,化学沉淀物的δ13C与基岩相当。δ18O值较低的主要原因是氧同位素对温度敏感,当温度上升后16O活跃,易于进入方解石中,使得δ18O值偏负。研究区少量11、13、15、22号样品落入该区,主要有溶孔或裂缝白云石,还有溶孔充花边2期白云石,为中低温埋藏环境充填形成,此外,溶孔两期花边白云石充填反映不同的形成环境,早期为准同生,后期为埋藏环境充填。
第Ⅳ类为中深埋藏或高温热液环境,充填物δ18O值明显偏负(<−13‰),根据前人的研究δ18O<−13.0‰不可能为低温大气淡水中形成[16],而可能反映化学沉淀物的形成与中深埋藏或热液作用具有明显的关系。Dan等[15]研究发现HD1-4钻井中存在大量高温热液包裹体,燕山期断裂形成时或形成后,侵入体侵入带来高温流体,高温热液沿断裂上涌产生岩溶,溶蚀空间形成后,随温度下降,空间内逐渐充填白云石或方解石。研究区钻井中大多数溶孔方解石、白云石以及裂缝中白云石、方解石属于该类,反映高温热液岩溶环境,与断裂活动可能相关[17-18]。
5. 结 论
运用碳氧同位素方法判别环江地区石炭纪碳酸盐岩深部岩溶作用期次,通过采取能代表研究区典型的深部岩溶及地表岩溶缝洞充填方解石和钙泥质样品,测定碳氧同位素,结果显示深部岩溶形成期及充填期主要存在4次较大规模的古岩溶作用及充填期次:
(1)同生期或准同生期岩溶环境,岩溶空间主要表现为溶蚀孔,为岩溶进一步发育提供基础;
(2)表生期大气淡水岩溶环境,表明岩溶环境为开放体系,大量泥质物质随地表水下渗并充填于岩溶缝洞,为深部资源保存产生一定的影响;
(3)中浅埋藏岩溶环境,主要是由于埋藏时期封闭体系内温度和压力增加,白云石逐渐沉淀形成;
(4)深埋藏或热液岩溶环境,高温流体沿断裂上涌产生岩溶形成溶蚀空间,成为各类矿藏的储集场所。高温热液岩溶和大气淡水岩溶是环江地区深部岩溶缝洞充填物形成的主要时期。
-
表 1 岩溶缝洞充填物分类及碳氧同位素测试结果
Table 1. Classification of filling materials in karst fracture-cave and test results of carbon and oxygen isotopes
分类 序号 样品编号 地层 岩性/产出 采样地点/HD1-4井深/m δ13C(V-PDB)/‰ δ18O(V-PDB)/‰ 大浦组、黄龙组基岩 1 HD015-1 C2d 白云岩 环江猜峒断裂 3.48 −11.51 2 HD015-4 C2h 白云质灰岩 环江猜峒断裂 2.51 −9.13 3 HD016-1 C2h 灰岩 环江猜峒断裂 2.50 −8.72 4 HD1-3B C2d 孔壁白云岩 38 3.24 −8.53 5 HD1-8B C2d 孔壁白云岩 120 3.34 −7.80 6 HD1-14 C2d 洞壁白云岩 419 2.48 −11.35 7 HD1-24A C2d 花边状白云岩 484 3.35 −5.30 8 HD1-45B C2d 灰质白云岩 1 088 3.02 −8.22 9 HD1-47B C2d 灰质白云岩 1 131~1 137 1.72 −6.28 溶蚀孔洞中的白云石 10 HD1-3A C2d 溶孔白云石 38 4.21 −8.90 11 HD1-8A C2d 溶孔充填方解石 120 −0.94 −12.62 12 HD1-13 C2d 花斑状溶孔白云石半充填 415 −4.93 −8.80 13 HD1-25 C2d 白云石半充填溶孔 497 −0.81 −13.50 断层或裂缝充填白云石 14 HD015-2 C2d 白云石脉 环江猜峒断裂 0.56 −16.36 15 HD015-3 C2d 白云石脉 环江猜峒断裂 −1.76 −12.03 16 HD016-2 C2h 裂缝方解石 环江猜峒断裂 −3.11 −10.76 17 HD1-56 C2d 断层砾石及网状缝方解石充填 1 721 −4.10 −13.94 18 HD1-57 C2d 断裂充填方解石 1 762 −1.04 −14.29 19 HD1-58 C2d 方解石 1 840 −2.15 −15.76 角砾间白云石胶结物 20 HD1-20 C2d 角砾白云石胶结 448 −5.04 −8.34 孔洞边缘花边1期白云石 21 HD1-24B C2d 花边1期白云石 484 4.10 −7.53 孔洞边缘花边2期白云石 22 HD1-24C C2d 花边2期白云石 484 2.45 −12.15 溶洞充填钙质泥混合物 23 HD1-46 C2d 溶洞充填钙质泥 1 091~1 094 −5.20 −11.56 溶孔充填方解石 24 HD1-45A C2d 溶孔充填方解石 1 088 −4.55 −12.19 25 HD1-47A C2d 方解石充填 1 131~1 137 −2.93 −16.78 26 HD1-50 C2d 溶孔方解石充填 1 220 −3.65 −15.81 27 HD1-51 C2d 溶孔方解石充填 1 224~1 225 −3.80 −15.87 28 HD1-53 C2d 溶孔方解石 1 258 −1.81 −13.99 29 HD1-54 C2d 溶孔方解石 1 457 −0.81 −13.93 表 2 环江地区晚石炭基岩及缝洞充填物碳氧同位素指示环境
Table 2. Carbon and oxygen isotope indicator environment of late Carboniferous bedrock and fracture-cavity fillings in Huanjiang area
发育期次 形成环境 同位素特征 δ13C(PDB)/‰ δ18O(PDB)/‰ Ⅰ 同生期或准同生期岩溶环境 1.8~4.2 −4.0~−9.0 Ⅱ 表生期大气淡水岩溶环境 −2.5~−6.0 −8.2~−13.0 Ⅲ 中浅埋藏岩溶环境 −2.0~2.5 −9.0~−13.0 Ⅳ 深埋藏或热液岩溶环境 −4.0~2.0 <−13.0 -
[1] 张正红, 淡永, 梁彬, 张庆玉, 李景瑞, 郝彦珍. 塔中Ⅱ区鹰山组岩溶缝洞充填物碳氧同位素特征及环境意义[J]. 中国岩溶, 2015, 34(2):159-164. doi: 10.11932/karst20150209
ZHANG Zhenghong, DAN Yong, LIANG Bin, ZHANG Qingyu, LI Jingrui, HAO Yanzhen. Characteristics of oxygen and carbon isotopes of karst fissure-cave fillings in the Yingshan formation, TazhongⅡarea, Tarim basin and their implications for environment[J]. Carsologica Sinica, 2015, 34(2):159-164. doi: 10.11932/karst20150209
[2] 钱一雄, 陈强路, 陈跃, 罗月明. 碳酸盐岩中缝洞方解石成岩环境的矿物地球化学判识: 以塔河油田的沙79井和沙85井为例[J]. 沉积学报, 2009, 27(6): 1027-1032.
QIAN Yixiong, CHEN Qianglu, CHEN Yue, LUO Yueming. Mineralogical and Geochemical Identification for Diagenetic Settings of Paleo-caves and Fractures-Filling & Vugs Calcites in Carbonate: Taking Wells S79 and S85 for example [J]. Acta Sedimentologica Sinica, 2009, 27 (6): 1027-1032.
[3] 淡永, 梁彬, 曹建文, 张庆玉. 塔里木盆地轮南地区奥陶系岩溶缝洞充填物地球化学特征及环境意义[J]. 石油实验地质, 2012, 34(6):623-628. doi: 10.11781/sysydz201206624
DAN Yong, LIANG Bin, CAO Jianwen, ZHANG Qingyu. Geochemical features and environmental significances of deposits in Ordovician karstic fractures and caves, Lunnan area, Tarim Basin[J]. Petroleum Geology & Experiment, 2012, 34(6):623-628. doi: 10.11781/sysydz201206624
[4] 张庆玉. 塔里木盆地哈拉哈塘地区奥陶系碳酸盐岩古岩溶发育机理[D]. 武汉: 中国地质大学(武汉), 2018.
ZHANG Qingyu. Development mechanism of Ordovician carbonate palecokarst in the Halahatang area of the Tarim Basin[D]. Wuhan: China University of Geosciences (Wuhan), 2018.
[5] 彭苏萍, 何宏, 邵龙义, 时宗波, 高云峰. 塔里木盆地-C-O碳酸盐岩碳同位素组成特征[J]. 中国矿业大学学报, 2002, 31(4):353-357. doi: 10.3321/j.issn:1000-1964.2002.04.006
PENG Shuping, HE Hong, SHAO Longyi, SHI Zongbo, GAO Yunfeng. Carbon isotope compositions of the Cambrian-Ordovician carbonates in Tarim Basin[J]. Journal of China University of Mining & Technology, 2002, 31(4):353-357. doi: 10.3321/j.issn:1000-1964.2002.04.006
[6] 孔兴功. 石笋碳氧同位素古气候代用指标研究进展[J]. 高校地质学报, 2009, 15(2):165-170. doi: 10.3969/j.issn.1006-7493.2009.02.004
KONG Xinggong. Advance in study of oxygen and carbon isotope variations in cave stalagmites as palaeo-climate proxies[J]. Geological Journal of China Universities, 2009, 15(2):165-170. doi: 10.3969/j.issn.1006-7493.2009.02.004
[7] 陈荣坤. 稳定碳氧同位素在碳酸盐岩成岩环境研究中的应用[J].沉积学报, 1994, 12(4): 11-21.
CHEN Rongkun. Application of stable oxygen and carbon isotope in the research of carbonate diagenetic environment[J]. Acta Sedimentologica Sinica, 1994, 12(4): 11-21.
[8] 张庆玉, 李景瑞, 梁彬, 淡永, 曹建文. 塔里木盆地塔中地区奥陶系古岩溶包裹体特征及古环境意义[J]. 中国岩溶, 2020, 39(6):894-899.
ZHANG Qingyu, LI Jingrui, LIANG Bin, DAN Yong, CAO Jianwen. Characteristics and paleoenvironmental significance of Ordovician karst inclusions in the Tazhong area, Tarim basin[J]. Carsologica Sinica, 2020, 39(6):894-899.
[9] 罗城幅区域地质测量报告(比例尺1∶200000)[R]. 广西壮族自治区地质局, 1968.
Regional Geological Survey Report of Luocheng Sheet(scale, 1∶200,000)[R]. Guangxi Geological Bureau, 1968.
[10] 东兰幅区域地质测量报告(比例尺1∶200000)[R]. 广西壮族自治区地质局,1971.
Regional Geological Survey Report of Donglan Sheet(scale, 1: 200,000)[R]. Guangxi Geological Bureau, 1971.
[11] 吴国干, 姚根顺, 徐政语, 郭庆新, 陈子炓. 桂中坳陷改造期构造样式及其成因[J]. 海相油气地质, 2009, 14(1):37-44. doi: 10.3969/j.issn.1672-9854.2009.01.005
WU Guogan, YAO Genshun, XU Zhengyu, GUO Qingxin, CHEN Ziliao. Structural patterns and origin of tectonic reformation in Guizhong depression[J]. Marine Origin Petroleum Geology, 2009, 14(1):37-44. doi: 10.3969/j.issn.1672-9854.2009.01.005
[12] Hongqi Dong,Yong Dan,Jiapeng Liang,Bin Liang,Guoquan Nie,Shaocong Ji. A Hypogene Karst Development Pattern Controlled by the Deep-Cycle of Groundwater in the Syncline in Huanjiang, Guangxi, China[J]. Water, 2021, 13(2):199. doi: 10.3390/w13020199
[13] 刘博, 李三忠, 周永刚, 金宠, 戴黎明, 刘丽萍, 王涛, 王建, 郝义, 刘恩山. 桂北河池—宜州断裂带构造特征及其演化: 柳城段浅部到深部结构的启示[J]. 大地构造与成矿学, 2009, 33(4):488-496. doi: 10.3969/j.issn.1001-1552.2009.04.002
LIU Bo, LI Sanzhong, ZHOU Yonggang, JIN Chong, DAI Liming, LIU Liping, WANG Tao, WANG Jian, HAO Yi, LIU Enshan. Structural features and evolution of the Hechi-Yizhou fault zone, northern Guangxi: Insights from shallow to deep structures of its Liucheng segment[J]. Geotectonica et Metallogenia, 2009, 33(4):488-496. doi: 10.3969/j.issn.1001-1552.2009.04.002
[14] 毛佩筱, 金爱民, 楼章华, 朱蓉, 朱振宏. 桂中坳陷环江凹陷上古生界海相页岩储层孔隙结构和分形特征研究[J]. 地质科学, 2019, 54(1):130-144. doi: 10.12017/dzkx.2019.008
MAO Peixiao, JIN Aimin, LOU Zhanghua, ZHU Rong, ZHU Zhenhong. Investigation of pore structure and fractal characteristics of marine shale reservoirs of the upper Paleozoic in Huanjiang sag, Guizhong depression[J]. Chinese Journal of Geology, 2019, 54(1):130-144. doi: 10.12017/dzkx.2019.008
[15] Yong Dan, Hongqi Dong, Bin Liang, Guoquan Nie, Xiuquan Hu, Shaocong Ji, Kai Han. Identification and Evolution of Different Genetic Types of Deep Karst Caves Controlled by Faults: A Case Study in Huanjiang Sag, Guangxi Province, South China[J]. Minerals, 2022, 12:405.
[16] Veizer J, Demovic R. Strontium as a tool in facies analysis[J]. Journal of Sedimentary Research, 1974, 44:93-115.
[17] 邵龙义. 碳酸盐岩氧、碳同位素与古温度等的关系[J]. 中国矿业大学学报, 1994, 23(1):39-45.
SHAO Longyi. The Relation of the oxygen and carbon isotope in the carbonate rocks to the paleotemperature etc[J]. Journal of China University of Mining & Technology, 1994, 23(1):39-45.
[18] 邵龙义, Jones T P. 桂中晚二叠世碳酸盐岩碳同位素的地层学意义[J]. 沉积学报, 1999, 17(1):84-88,120. doi: 10.3969/j.issn.1000-0550.1999.01.013
SHAO Longyi, Jones T P. Carbon isotopes and the stratigraphical implication of the late Permian carbonates in central Guangxi[J]. Acta Sedimentologica Sinica, 1999, 17(1):84-88,120. doi: 10.3969/j.issn.1000-0550.1999.01.013
期刊类型引用(2)
1. 高兆龙,淡永,张玺华,曹华,邓敏,陈聪,胡罗嘉. 四川盆地不同地区二叠系茅口组缝洞粗晶方解石碳氧同位素差异及其古岩溶环境意义. 中国岩溶. 2024(03): 684-693 . 本站查看
2. 淡永,邓敏,张庆玉,闫剑飞,聂国权,董红琪,季少聪,熊国庆,卢炳雄,马小林. 桂中坳陷下石炭统鹿寨组页岩段碳酸盐矿物发育特征及成因机制. 中国岩溶. 2024(05): 1210-1222 . 本站查看
其他类型引用(0)
-