洞穴溶解有机质组分和循环过程的季节变化特征

刘渝港, 贺秋芳, 沈立成, 范佳鑫. 洞穴溶解有机质组分和循环过程的季节变化特征[J]. 中国岩溶, 2023, 42(3): 456-471. doi: 10.11932/karst2023y23
引用本文: 刘渝港, 贺秋芳, 沈立成, 范佳鑫. 洞穴溶解有机质组分和循环过程的季节变化特征[J]. 中国岩溶, 2023, 42(3): 456-471. doi: 10.11932/karst2023y23
LIU Yugang, HE Qiufang, SHEN Licheng, FAN Jiaxin. Seasonal variation characteristics of dissolved organic matter composition and cycle process in caves[J]. Carsologica Sinica, 2023, 42(3): 456-471. doi: 10.11932/karst2023y23
Citation: LIU Yugang, HE Qiufang, SHEN Licheng, FAN Jiaxin. Seasonal variation characteristics of dissolved organic matter composition and cycle process in caves[J]. Carsologica Sinica, 2023, 42(3): 456-471. doi: 10.11932/karst2023y23

洞穴溶解有机质组分和循环过程的季节变化特征

  • 基金项目: 国家重点研发计划项目(2016YFC0502306);国家自然科学基金项目(41472321)
详细信息
    作者简介: 刘渝港(1997-),男,硕士研究生,主要研究方向为岩溶作用与碳循环。E-mail:1308782888@qq.com
    通讯作者: 贺秋芳(1983-),女,高级实验师。E-mail:hqfeddy@swu.edu.cn
  • 中图分类号: X143;Q938.8

Seasonal variation characteristics of dissolved organic matter composition and cycle process in caves

More Information
  • 溶解有机质(DOM)是岩溶碳汇的关键部分和重要的碳源,但是对于DOM在岩溶含水层中的性质和代谢过程的研究仍然有限。本研究以重庆雪玉洞地下河为例,对洞穴有机碳的来源、组成以及微生物作用对季节补给源变化的响应进行探讨,为进一步了解微生物介导的有机碳转化过程提供研究基础。运用三维荧光EEM研究水体有色溶解有机质(CDOM)的性质和组分并反演地下河水中有机质的来源和组成,结合地下河水水化学特征和16S rDNA细菌群落及功能多样性的季节变化特征,以了解季节性补给源的变化对洞穴地下水DOM输入和性质的影响。结果发现,雪玉洞地下河水以微生物内源有机质为主(61%~77%),降雨是引起岩溶给地下河水中CDOM光谱特征变化的最重要因素,雨季外源有机质输入增加,地下河水中外源有机碳组分含量和芳香性、腐殖酸类物质增加,细菌群落多样性和代谢功能基因随之变化,洞穴中向外输出的外源有机碳增加;旱季地下河水滞留时间和蒸发作用增强,因而微生物对有机质的代谢降解过程更加充分,向洞外输出的有机碳以内源为主。本研究有助于增加对岩溶洞穴地下水系统中微生物对有机碳转化过程的理解。

  • 加载中
  • 图 1  雪玉洞剖面和区位图及采样点分布图

    Figure 1. 

    图 2  丰都县当地大气降水线(LMWL)与雪玉洞干湿季地下河水δ18O/δD的相关性[37-38]

    Figure 2. 

    图 3  雪玉洞岩溶水水化学指标的变化

    Figure 3. 

    图 4  DOC与a(355)相关性分析

    Figure 4. 

    图 5  雪玉洞吸光参数与荧光参数的旱雨季变化特征

    Figure 5. 

    图 6  雪玉洞地下河水CDOM荧光组分三维荧光图及折半检验

    Figure 6. 

    图 7  雪玉洞地下河水CDOM荧光组分的荧光强度的季节变化

    Figure 7. 

    图 8  雪玉洞地下河水中属水平的细菌群落的heatmap图

    Figure 8. 

    图 9  雪玉洞地下河水中旱雨季差异显著的KEGG代谢途径丰度对比和增量(P<0.05)

    Figure 9. 

    图 10  雪玉洞地下河水中地球化学指标与光谱参数的PCA分析

    Figure 10. 

    图 11  雪玉洞地下河水主要细菌属丰度与有机和无机碳及组分含量斯皮尔曼相关性heatmap分析

    Figure 11. 

    表 1  紫外-可见光吸收谱和三维荧光光谱参数的指示含义

    Table 1.  Indicators calculated from ultraviolet-visible absorption spectrum and 3D fluorescence EEMs of DOM

    指标描述意义
    a355355 nm处的吸光值CDOM的浓度[29]
    S250~290250 nm和290 nm之间的吸光度斜率表征CDOM的分子量和光化学反应能力[30]
    E253/E203253 nm和203 nm处吸光值的比值表征DOM苯环结构上官能团的构成特征[31]
    M250 nm和265 nm处吸光值的比值[32]DOM的分子量[33]
    FI激发波长为370 nm时,发射波长为470 nm和
    520 nm荧光强度的比值
    表征类腐殖酸物质和微生物对DOM的降解程度[34]
    HIX激发波长为254 nm时,发射波长为534~480 nm 和
    300~346 nm荧光强度的比值
    表征腐殖化程度[35]
    BIX激发波长为310 nm时,发射波长为380 nm和
    430 nm荧光强度的比值
    表征内源DOM的贡献[36]
    下载: 导出CSV

    表 2  PARAFAC归纳的三个荧光组分特征a

    Table 2.  Characteristics of three fluorescent components summarized by PARAFAC

    组分Exmax/Emmax b峰值备注
    C1≤250,300/360Peak T: 275/340[82]
    C1:240(300)/338[83]
    C4: ≤230 (280)/340[84]
    类蛋白类色氨酸组分,内源[45]
    C2280/446Peak M: 290~310/370~420[82]
    peak 3: 310-330/420-455[85]
    C1:≤230(305)/ 400[86]
    C1: <250 (310)/ 422[87]
    微生物源或海洋中的腐殖酸类组分[46]
    C3≤250/450Peak A: 230~260/380~460 [82]
    C1: 250/452[88]
    C1: <250/448[81]
    C1:<250(345)/460[89]
    普遍存在的腐殖酸/富里酸类组分[47-48]
    注:a 括号里为第二峰值的最大强度位置;b Exmax/Emmax表示最大发射波长 (nm)/最大激发波长 (nm)。
    Note: (a) numeric value in brackets indicates the maximum intensity position of the second peak; (b) Exmax/Emmax indicates maximum emission wavelength (nm)/maximum excitation wavelength (nm).
    下载: 导出CSV
  • [1]

    曹建华, 蒋忠诚, 袁道先, 夏日元, 章程. 岩溶动力系统与全球变化研究进展[J]. 中国地质, 2017, 44(5):874-900. doi: 10.12029/gc20170504

    CAO Jianhua, JIANG Zhongcheng, YUAN Daoxian, XIA Riyuan, ZHANG Cheng. The progress in the study of the karst dynamic system and global changes in the past 30 years[J]. Geology in China, 2017, 44(5):874-900. doi: 10.12029/gc20170504

    [2]

    Hansell D A, Carlson C A. Deep-ocean gradients in the concentration of dissolved organic carbon[J]. Nature, 1998, 395(6699):263-266.

    [3]

    Stedmon C A, Markager S. Resolving the variability in dissolved organic matter fluorescence in a temperate estuary and its catchment using PARAFAC analysis[J]. Limnology and Oceanography, 2005, 50(2):686-697. doi: 10.4319/lo.2005.50.2.0686

    [4]

    康卫华, 程从雨, 李为, 余龙江. 微型生物在岩溶碳循环中的作用研究回顾与展望[J]. 中国岩溶, 2022, 41(3):453-464.

    KANG Weihua, CHENG Congyu, LI Wei, YU Longjiang. Review and prospect of research on the role of micro-organisms in karst carbon cycle[J]. Carsologica Sinica, 2022, 41(3):453-464.

    [5]

    Birdwell J E, Engel A S. Characterization of dissolved organic matter in cave and spring waters using UV–Vis absorbance and fluorescence spectroscopy[J]. Organic Geochemistry, 2009, 41(3):270-280.

    [6]

    Williams C J, Yamashita Y, Wilson H F, Rudolf J, Xenopoulos M A . Unraveling the role of land use and microbial activity in shaping dissolved organic matter characteristics in stream ecosystems[J]. Limnology and Oceanography, 2010, 55(3):1159-1171. doi: 10.4319/lo.2010.55.3.1159

    [7]

    方开凯, 黄廷林, 张春华, 周石磊, 曾明正, 刘飞, 夏超. 淮河流域周村水库夏季CDOM吸收光谱特征、空间分布及其来源分析[J]. 湖泊科学, 2017, 29(1):151-159. doi: 10.18307/2017.0117

    FANG Kaikai, HUANG Tinglin, ZHANG Chunhua, ZHOU Shilei, ZENG Mingzheng, LIU Fei, XIA Chao. Summer absorption characteristics, spatial distribution and source analysis of CDOM in Zhoucun reservoir in Huaihe catchment[J]. Journal of Lake Sciences, 2017, 29(1):151-159. doi: 10.18307/2017.0117

    [8]

    章程. 岩溶动力学理论与现代岩溶学发展[J]. 中国岩溶, 2022, 41(3):378-383.

    ZHANG Cheng. Theory of karst dynamics and development of modern karst science[J]. Carsologica Sinica, 2022, 41(3):378-383.

    [9]

    焦友军, 黄奇波, 于青春. 初始裂隙对岩溶水紊流形成的影响[J]. 中国岩溶, 2022, 41(4):501-510.

    JIAO Youjun, HUANG Qibo, YU Qingchun. Influence of initial fractures on the occurrence of karst turbulent flow[J]. Carsologica Sinica, 2022, 41(4):501-510.

    [10]

    杨睿, 韩志杰, 韩志伟, 吴起鑫, 吴攀, 何守阳. 旅游活动输入岩溶地下河系统的水化学指纹记录[J]. 中国岩溶, 2023, 42(2): 193-206.

    YANG Rui, HAN Zhijie, HAN Zhiwei, WU Qixin, WU Pan, HE Shouyang. Effects of tourism activities on hydrochemical fingerprints in the karst underground river system[J]. Carsologica Sinica, 2023, 42(2): 193-206.

    [11]

    李军, 杨国丽, 朱秀群, 徐利, 朱丹尼, 赵一, 李衍青, 蓝芙宁. 南洞地下河流域水质分析及灌溉适用性评价[J]. 中国岩溶, 2023, 42(2): 207-219.

    LI Jun, YANG Guoli, ZHU Xiuqun, XU Li, ZHU Danni, ZHAO Yi, LI Yanqing, LAN Funing. Water quality analysis and evaluation of irrigation applicability in Nandong underground river basin, Southwest China[J]. Carsologica Sinica, 2023, 42(2): 207-219.

    [12]

    蒋忠诚, 章程, 罗为群, 肖琼, 吴泽燕. 我国岩溶地区碳汇研究进展与展望[J]. 中国岩溶, 2022, 41(3):345-355.

    JIANG Zhongcheng, ZHANG Cheng, LUO Weiqun, XIAO Qiong, WU Zeyan. Research progress and prospect of carbon sink in karst region of China[J]. Carsologica Sinica, 2022, 41(3):345-355.

    [13]

    张连凯, 刘朋雨, 覃小群, 单晓静, 刘文, 赵振华, 姚昕, 邵明玉. 溶解性有机质在岩溶水系统中的迁移转化及影响因素分析[J]. 环境科学, 2018, 39(5):2104-2116. doi: 10.13227/j.hjkx.201709255

    ZHANG Liankai, LIU Pengyu, QIN Xiaoqun, SHAN Xiaojing, LIU Wen, ZHAO Zhenhua, YAO Xin, SHAO Mingyu. Migration and transformation of dissolved organic matter in karst water systems and an analysis of their influencing factors[J]. Environmental Science, 2018, 39(5):2104-2116. doi: 10.13227/j.hjkx.201709255

    [14]

    Mudarra M, Andreo B, Baker A. Characterisation of dissolved organic matter in karst spring waters using intrinsic fluorescence: Relationship with infiltration processes[J]. Science of the Total Environment, 2011, 409(18):3448-3462. doi: 10.1016/j.scitotenv.2011.05.026

    [15]

    傅平青, 刘丛强, 吴丰昌. 溶解有机质的三维荧光光谱特征研究[J]. 光谱学与光谱分析, 2005(12):2024-2028. doi: 10.3321/j.issn:1000-0593.2005.12.031

    FU Pingqing, LIU Congqiang, WU Fengchang. Three-dimensional excitation emission matrix fluorescence spectroscopic characterization of dissolved organic matter[J]. Spectroscopy and Spectral Analysis, 2005(12):2024-2028. doi: 10.3321/j.issn:1000-0593.2005.12.031

    [16]

    范佳鑫, 蒋勇军, 贺秋芳, 王家楠, 何瑞亮, 张彩云, 马丽娜, 汪啟容. 水生生物光合作用对雪玉洞岩溶水体中CDOM的影响[J]. 环境科学, 2019, 40(6):2657-2666. doi: 10.13227/j.hjkx.201812053

    FAN Jiaxin, JIANG Yongjun, HE Qiufang, WANG Jianan, HE Ruiliang, ZHANG Caiyun, MA Lina, WANG Qirong. Effects of photosynthesis of submerged aquatic plants on CDOM in a karst water system: A case study from Xueyu Cave, Chongqing, China[J]. Environmental Science, 2019, 40(6):2657-2666. doi: 10.13227/j.hjkx.201812053

    [17]

    Rontani J F, Volkman J K. Lipid characterization of coastal hypersaline cyanobacterial mats from the Camargue (France)[J]. Organic Geochemistry, 2004, 36(2):251-272.

    [18]

    姚昕, 邹胜章, 夏日元, 许丹丹, 姚敏. 典型岩溶水系统中溶解性有机质的运移特征[J]. 环境科学, 2014, 35(5):1766-1772. doi: 10.13227/j.hjkx.2014.05.018

    YAO Xin, ZOU Shengzhang, XIA Riyuan, XU Dandan, YAO Min. Dissolved Organic Matter (DOM) dynamics in karst aquifer systems[J]. Environmental Science, 2014, 35(5):1766-1772. doi: 10.13227/j.hjkx.2014.05.018

    [19]

    Thompson B, Richardson D, Vangundy R D, Cahoon A B. Metabarcoding comparison of prokaryotic microbiomes from Appalachian karst caves to surface soils in southwest Virginia, USA[J]. Journal of Cave and Karst Studies, 2019, 81(4):244-253.

    [20]

    Zhu H Z, Zhang Z F, Zhou N, Jiang C Y, Wang B J, Cai L, Liu S J. Diversity, distribution and co-occurrence patterns of bacterial communities in a karst cave system[J]. Frontiers in Microbiology, 2019, 10(5):1726.

    [21]

    Dong Yiyi, Gao Jie, Wu Qingshan, Ai Yilang, Huang Yu, Wei Wenzhang, Sun Shiyu, Weng Qingbei. Co-occurrence pattern and function prediction of bacterial community in karst cave[J]. BMC Microbiology, 2020, 20(1):1-13. doi: 10.1186/s12866-020-01806-7

    [22]

    Addesso Rosangela, Gonzalez-Pimentel Jose L, D'AngeliIlenia M, De Waele Jo, Saiz-Jimenez Cesareo, JuradoValme, MillerAna Z, Cubero Beatriz, Vigliotta Giovanni, Baldantoni Daniela. Microbial community characterizing vermiculations from karst caves and its role in their formation[J]. Microbial Ecology, 2021, 81(5):884-896.

    [23]

    吕现福, 孙玉川, 贺秋芳, 梁作兵, 赵瑞一, 张媚, 谢正兰. 重庆雪玉洞地下河溶解态脂肪酸来源解析及变化特征[J]. 环境科学学报, 2017, 37(3):918-924. doi: 10.13671/j.hjkxxb.2016.0371

    LYU Xianfu, SUN Yuchuan, HE Qiufang, LIANG Zuobing, ZHAO Ruiyi, ZHANG Mei, XIE Zhenglan. Source and variation characteristics of dissolved fatty acids in Xueyu Cave underground river, Chongqing, China[J]. Acta Scientiae Circumstantiae, 2017, 37(3):918-924. doi: 10.13671/j.hjkxxb.2016.0371

    [24]

    West A G, Goldsmith G R, Brooks P D, Dawson T E. Discrepancies between isotope ratio infrared spectroscopy and isotope ratio mass spectrometry for the stable isotope analysis of plant and soil waters[J]. Rapid Communications in Mass Spectrometry, 2010, 24(14):1948-1954. doi: 10.1002/rcm.4597

    [25]

    Schultz N M, Griffis T J, Lee X, Baker J M. Identification and correction of spectral contamination in 2H/1H and 18O/16O measured in leaf, stem, and soil water[J]. Rapid Communications in Mass Spectrometry, 2011, 25(21):3360-3368. doi: 10.1002/rcm.5236

    [26]

    Millar Cody, Pratt Dyan, Schneider David J, McDonnell Jeffrey J. A comparison of extraction systems for plant water stable isotope analysis[J]. Rapid Communications in Mass Spectrometry, 2018, 32(13):1031-1044. doi: 10.1002/rcm.8136

    [27]

    Bricaud, Annick, Andre M, Louis P. Absorption by dissolved organic matter of the sea (yellow substance) in the UV and visible domains[J]. Limnology and Oceanography, 1981, 26(1):43-53. doi: 10.4319/lo.1981.26.1.0043

    [28]

    Stedmon C A, Bro R. Characterizing dissolved organic matter fluorescence with parallel factor analysis: A tutorial[J]. Limnology and Oceanography: Methods, 2008, 6(11):572-579. doi: 10.4319/lom.2008.6.572

    [29]

    Zhang YL, Yin Y, Feng LQ, Zhu GW, Shi ZQ, Liu XH, Zhang YZ. Characterizing chromophoric dissolved organic matter in Lake Tianmuhu and its catchment basin using excitation-emission matrix fluorescence and parallel factor analysis[J]. Water Research, 2011, 45(16):5110-5122. doi: 10.1016/j.watres.2011.07.014

    [30]

    Helms J R, Stubbins A, Ritchie J D, Minor EC, Kieber DJ, Mopper K. Absorption spectral slopes and slope ratios as indicators of molecular weight, source, and photobleaching of chromophoric dissolved organic matter[J]. Limnology and Oceanography, 2008, 53(3):955-969. doi: 10.4319/lo.2008.53.3.0955

    [31]

    何小松, 张慧, 黄彩红, 李敏, 高如泰, 李丹, 席北斗. 地下水中溶解性有机物的垂直分布特征及成因[J]. 环境科学, 2016, 37(10):3813-3820. doi: 10.13227/j.hjkx.2016.10.019

    HE Xiaosong, ZHANG Hui, HUANG Caihong, LI Min, GAO Rutai, LI Dan, XI Beidou. Vertical distribution characteristics of dissolved organic matter in groundwater and its cause[J]. Environmental Science, 2016, 37(10):3813-3820. doi: 10.13227/j.hjkx.2016.10.019

    [32]

    Fellman J B, Hood E, Spencer R G M. Fluorescence spectroscopy opens new windows into dissolved organic matter dynamics in freshwater ecosystems: A review[J]. Limnology and Oceanography, 2010, 55(6):2452-2462. doi: 10.4319/lo.2010.55.6.2452

    [33]

    Peuravuori J, Pihlaja K. Molecular size distribution and spectroscopic properties of aquatic humic substances[J]. Analytica Chimica Acta, 1997, 337(2):133-149. doi: 10.1016/S0003-2670(96)00412-6

    [34]

    程远月, 王帅龙, 胡水波, 周沉冤, 施震, 李芊, 黄小平. 海草生态系中 DOM 的三维荧光光谱特征[J]. 光谱学与光谱分析, 2015, 35(1):141-145. doi: 10.3964/j.issn.1000-0593(2015)01-0141-05

    CHENG Yuanyue, WANG Shuailong, HU Shuibo, ZHOU Chenyuan, SHI Zhen, LI Qian, HUANG Xiaoping. The fluorescence characteristics of dissolved organic matter (DOM) in the seagrass ecosystem from Hainan by fluorescence excitation-emission matrix spectroscopy[J]. Spectroscopy and Spectral Analysis, 2015, 35(1):141-145. doi: 10.3964/j.issn.1000-0593(2015)01-0141-05

    [35]

    Huguet A, Vacher L, Relexans S, Saubusse S, Froidefond J M, Parlanti E. Properties of fluorescent dissolved organic matter in the Gironde Estuary[J]. Organic Geochemistry, 2009, 40(6):706-719. doi: 10.1016/j.orggeochem.2009.03.002

    [36]

    Craig H. Isotopic variations in meteoric waters[J]. Science, 1961, 133(3465):1702-1703. doi: 10.1126/science.133.3465.1702

    [37]

    李廷勇, 李红春, 沈川洲, 杨朝秀, 李俊云, 衣成城, 袁道先, 王建力, 谢世友. 2006-2008年重庆大气降水δD和δ18O特征初步分析[J]. 水科学进展, 2010, 21(6):757-764.

    LI Tingyong, LI Hongchun, SHEN Chuanzhou, YANG Chaoxiu, LI Junyun, YI Chengcheng, YUAN Daoxian, WANG Jianli, XIE Shiyou. Study on the δD and δ18O characteristics of meteoric precipitation during 2006-2008 in Chongqing, China[J]. Advances in Water Science, 2010, 21(6):757-764.

    [38]

    Ford D, Williams P. Karst Hydrogeology and Geomorphology [M]. New York: John Wiley, 2007.

    [39]

    Ohno T, Culver D C, Simon K S, Pipan T. Spatial and temporal patterns in abundance and character of dissolved organic matter in two karst aquifers[J]. Fundamental & Applied Limnology, 2010, 177(2):81-92.

    [40]

    Chen Jie, Eugene J LeBoeuf, Dai Sheng, Gu Baohua. Fluorescence spectroscopic studies of natural organic matter fractions[J]. Chemosphere, 2003, 50(5):639-647. doi: 10.1016/S0045-6535(02)00616-1

    [41]

    Murphy K R, Ruiz G M, Dunsmuir W T M, Waite T D. Optimized parameters for fluorescence-based verification of ballast water exchange by ships[J]. Environmental Science & Technology, 2006, 40(7):2357-2362.

    [42]

    Wang Y, Li X, Li BHH, Shen ZYY, Feng CHH, Chen YXX. Characterization, sources, and potential risk assessment of PAHs in surface sediments from nearshore and farther shore zones of the Yangtze estuary, China[J]. Environmental Science and Pollution Research, 2012, 19(9):4148-4158. doi: 10.1007/s11356-012-0952-7

    [43]

    Zhou Y Q, Li Y, Yao X L, Ding W H, Zhang Y L, Podgorski D C, Chen C M, Ding Y. Response of chromophoric dissolved organic matter dynamics to tidal oscillations and anthropogenic disturbances in a large subtropical estuary[J]. Science of the Total Environment, 2019, 662(5):769-778.

    [44]

    Hong Huasheng, Wu Jingyu, Shang Shaoling, Hu Chuanmin. Absorption and fluorescence of chromophoric dissolved organic matter in the Pearl River Estuary, South China[J]. Marine Chemistry, 2005, 97(1):78-89.

    [45]

    Tzortziou M, Neale P J, Osburn C L, Megonigal J P, Maie N, Jaffé R. Tidal marshes as a source of optically and chemically distinctive colored dissolved organic matter in the Chesapeake Bay[J]. Limnology and Oceanography, 2008, 53(1):148-159. doi: 10.4319/lo.2008.53.1.0148

    [46]

    Thomas J D. The role of dissolved organic matter, particularly free amino acids and humic substances, in freshwater ecosystems[J]. Freshwater Biology, 1997, 38(1):1-36. doi: 10.1046/j.1365-2427.1997.00206.x

    [47]

    Coble P G. Marine optical biogeochemistry: The chemistry of ocean color[J]. Chemical Reviews, 2007, 107(2):402-418. doi: 10.1021/cr050350+

    [48]

    卢松, 江韬, 张进忠, 闫金龙, 王定勇, 魏世强, 梁俭, 高洁. 两个水库型湖泊中溶解性有机质三维荧光特征差异[J]. 中国环境科学, 2015, 35(2):516-523.

    LU Song, JIANG Tao, ZHANG Jinzhong, YAN Jinlong, WANG Dingyong, WEI Shiqiang, LIANG Jian, GAO Jie. Three-dimensional fluorescence characteristic differences of dissolved organic matter (DOM) from two typical reservoirs[J]. China Environmental Science, 2015, 35(2):516-523.

    [49]

    Dotsika E, Lykoudis S, Poutoukis D. Spatial distribution of the isotopic composition of precipitation and spring water in Greece[J]. Global and Planetary Change, 2009, 71(3):141-149.

    [50]

    杨平恒, 袁道先, 叶许春, 谢世友, 陈雪彬, 刘子琦. 降雨期间岩溶地下水化学组分的来源及运移路径[J]. 科学通报, 2013, 58(18):1755-1763. doi: 10.1360/csb2013-58-18-1755

    YANG Pingheng, YUAN Daoxian, YE Xuchun, XIE Shiyou, CHEN Xuebin, LIU Ziqi. Sources and migration path of chemical compositions in a karst groundwater system during rainfall events[J]. Chinese Science Bulletin, 2013, 58(18):1755-1763. doi: 10.1360/csb2013-58-18-1755

    [51]

    王巧莲, 蒋勇军, 陈宇. 岩溶流域地下水TOC输出及影响因素分析:以重庆丰都雪玉洞地下河流域为例[J]. 环境科学, 2016, 37(5):1788-1797.

    WANG Qiaolian, JIANG Yongjun, CHEN Yu. Export of total organic carbon (TOC) from karst watershed and its influencing factors: An example from Xueyudong underground river system, Chongqing[J]. Environmental Science, 2016, 37(5):1788-1797.

    [52]

    Cooper Katherine, Whitaker Fiona, Anesio Alexandre, Naish Miranda, Reynolds Darren, Evans Emma. Dissolved organic carbon transformations and microbial community response to variations in recharge waters in a shallow carbonate aquifer[J]. Biogeochemistry, 2016, 129(1-2):215-234. doi: 10.1007/s10533-016-0226-4

    [53]

    Diane M McKnight, Elizabeth W Boyer, Paul K Westerhoff, Peter T Doran, Thomas Kulbe, Dale T Andersen. Spectrofluorometric characterization of dissolved organic matter for indication of precursor organic material and aromaticity[J]. Limnology and Oceanography, 2001, 46(1):38-48. doi: 10.4319/lo.2001.46.1.0038

    [54]

    Leenheer J A, Croué J P. Characterizing aquatic dissolved organic matter[J]. Environmental Science & Technology, 2003, 37(1):18-26.

    [55]

    Marfia A M, Krishnamurthy R V, Atekwana E A, Panton W F. Isotopic and geochemical evolution of ground and surface waters in a karst dominated geological setting: A case study from Belize, Central America[J]. Applied Geochemistry, 2004, 19(6):937-946.

    [56]

    Azzaz H, Cherchali M, Meddi M, Houha B, Puig J M, Achachi A. The use of environmental isotopic and hydrochemical tracers to characterize the functioning of karst systems in the Tlemcen Mountains, northwest Algeria[J]. Hydrogeology Journal, 2008, 16(3): 531-546

    [57]

    Cory R M, Mcknight D M. Fluorescence spectroscopy reveals ubiquitous presence of oxidized and reduced quinones in dissolved organic matter[J]. Environmental Science & Technology, 2005, 39(21):8142-8149.

    [58]

    Mendez-Millan M, Dignac M F, Rumpel C, Rasse D P, Derenne S. Molecular dynamics of shoot vs. root biomarkers in an agricultural soil estimated by natural abundance 13 C labelling[J]. Soil Biology and Biochemistry, 2009, 42(2):168-177.

    [59]

    He XS, Xi BD, Wei ZM, Guo XJ, Li MX, An D, Liu XL. Spectroscopic characterization of water extractable organic matter during composting of municipal solid waste[J]. Chemosphere, 2011, 82(4):541-548. doi: 10.1016/j.chemosphere.2010.10.057

    [60]

    Xiao Y H, Sara-Aho T, Hartikainen H, Vähätalo A V. Contribution of ferric iron to light absorption by chromophoric dissolved organic matter[J]. Limnology and Oceanography, 2013, 58(2):653-662. doi: 10.4319/lo.2013.58.2.0653

    [61]

    Weishaar J L, Aiken G R, Bergamaschi B A, Fram M S, Roger Fujii, Mopper K. Evaluation of specific ultraviolet absorbance as an indicator of the chemical composition and reactivity of dissolved organic carbon[J]. Environmental Science & Technology, 2003, 37(20):4702-4708.

    [62]

    Panagiotopoulos C, Repeta D J, Mathieu L, Rontani J F, Sempéré R. Molecular level characterization of methyl sugars in marine high molecular weight dissolved organic matter[J]. Marine Chemistry, 2013, 154(5):34-45.

    [63]

    He Ding, Mead Ralph N, Belicka Laura, Pisani Oliva, Jaffé Rudolf. Assessing source contributions to particulate organic matter in a subtropical estuary: A biomarker approach[J]. Organic Geochemistry, 2014, 75(5):129-139.

    [64]

    Kothawala D N, Stedmon C A, Müller R A, Weyhenmeyer G A, Köhler S J, Tranvik L J. Controls of dissolved organic matter quality: Evidence from a large-scale boreal lake survey[J]. Global Change Biology, 2014, 20(4):1101-1114. doi: 10.1111/gcb.12488

  • 加载中

(11)

(2)

计量
  • 文章访问数:  1242
  • PDF下载数:  12
  • 施引文献:  0
出版历程
收稿日期:  2021-12-11
刊出日期:  2023-06-25

目录