XU Yibin, YANG Xunlin, YUAN Daoxian, HU Mingguang, GE Xiaoyan, GONG Meng. 410 ka weak monsoon event recorded by stalagmites in Jinfo Cave of Chongqing[J]. Carsologica Sinica, 2024, 43(2): 228-238. doi: 10.11932/karst20240201
Citation: XU Yibin, YANG Xunlin, YUAN Daoxian, HU Mingguang, GE Xiaoyan, GONG Meng. 410 ka weak monsoon event recorded by stalagmites in Jinfo Cave of Chongqing[J]. Carsologica Sinica, 2024, 43(2): 228-238. doi: 10.11932/karst20240201

410 ka weak monsoon event recorded by stalagmites in Jinfo Cave of Chongqing

  • 加载中
  • Figure 1. 

    Figure 2. 

    Figure 3. 

    Figure 4. 

    Figure 5. 

    Figure 6. 

    Table 1.  230Th date results for stalagmite J33 (‘*’ indicates the new measured data.)

    Sample
    Number
    Depth
    (mm)
    238U
    (ppb)
    232Th
    (ppt)
    230Th / 232Th
    (atomic×10−6)
    δ234U
    (measured)
    230Th / 238U
    (activity)
    Age (ka BP)
    (uncorrected)
    Age (ka BP)
    (corrected)
    δ234UInitial
    (corrected)
    J33-1 144.9 2516.4±0.1 884.9±10.2 72003.1±832.5 424.5±0.3 1.536±0.001 393.5±2.0 393.5±2.0 1288.5±7.5
    J33-2 185.7 2875.4±0.1 429.4±10.7 167329.4±4184.0 406.4±0.3 1.516±0.001 400.6±1.5 400.6±1.5 1258.9±5.3
    J33-3 196.9 2158.7±0.1 2182.9±11.0 24635.3±127.0 402.8±0.3 1.511±0.002 400.9±3.2 400.9±3.2 1248.6±11.2
    J33-4 230.9 3113.8±0.2 1397.6±9.8 55814.2±391.3 406.0±0.3 1.519±0.001 409.4±1.6 409.4±1.6 1288.8±5.9
    J33-5 268.7 2791.5±0.2 738.7±28.7 95730.9±3715.6 416.4±0.3 1.536±0.001 415.6±1.6 415.6±1.6 1345.7±6.1
    J33-6 301.2 2906.0±0.1 479.0±8.4 154689.1±2718.8 422.2±0.3 1.546±0.001 420.5±1.8 420.5±1.8 1383.2±7.1
    J33-7* 306.0 3621.9±8.7 672.0±1.6 137821.0±39.0 425.2±0.3 1.551±0.000 421.1±1.3 421.1±1.3 1395.4±5.3
    J33-8* 333.0 3173.3±7.7 607.6±1.5 134437.0±38.0 431.6±0.4 1.561±0.000 425.2±1.5 425.2±1.5 1432.7±6.2
    U decay constants: λ238 = 1.55125×10−10[13] and λ234 = 2.82206×10−6[9]. Th decay constant: λ230 = 9.1705×10−6[11]. δ234U = ([234U/238U] activity − 1) ×1000. δ234Uinitial was calculated based on 230Th age (T), i.e., δ234Uinitial = δ234Umeasured×eλ234×T. Corrected 230Th ages assume the initial 230Th/232Th atomic ratio of 4.4±2.2×10−6. Those are the values for a material at secular equilibrium, with the bulk earth 232Th/238U value of 3.8. The errors are arbitrarily assumed to be 50%. "BP" stands for "Before Present" where the "Present" is defined as the year 1950 CE.
    下载: 导出CSV
  • [1]

    Schulz M, Paul A, Timmermann A. Relaxation oscillators in concert: A framework for climate change at millennial timescales during the late Pleistocene[J]. Geophysical Research Letters, 2002, 29(24): 2193-2197.

    [2]

    Sima A, Paul A, Schulz M. The Younger Dryas-an intrinsic feature of late pleistocene climate change at millennial timescales[J]. Earth and Planetary Science Letters, 2004, 222(3-4): 741-750. doi: 10.1016/j.jpgl.2004.03.026

    [3]

    [4]

    Cheng H, Edwards R L, Broecker W S, Denton G H, Kong X G, Wang Y J, Zhang R, Wang X F. Ice age terminations[J]. Science, 2009, 326(5950): 248-252. doi: 10.1126/science.1177840

    [5]

    Duan W H, Cheng H, Tan M, Ma Z B, Chen S T, Wang L S, Wang X F, Cui L L. Structural similarity between Termination III and I[J]. Quaternary Science Reviews, 2022(296): 0277-3791.

    [6]

    赵彬. MIS11阶段亚洲夏季风演化的高分辨率落水洞记录[D]. 南京:南京师范大学, 2019.

    [7]

    Berger A L, Loutre M F. Climate 400,000 years ago, a key to the future?[A]//Droxler A W, Poore R Z, Burckle L H. Earth's Climate and Orbital Eccentricity: The Marine Isotope Stage 11 Question. Washington, D C: American Geophysical Union,, 2003, 137: 17-26. doi: 10.1016/S0921-8181(02)00186-8

    [8]

    LIU Dianbing. Recent progress on studies of the spatial structure and dynamics for the Younger Dryas Event[J]. Geological Review, 2012, 58(2): 341-349.

    [9]

    WANG Jianli, HE Xiao, WANG Xinya, ZHANG Meiliang, LIN Yushi. Isotopic ages and paleoclimatic information from stalagmites of Chongqing Jinfushan[J]. Carsologica Sinica, 2005, 24(4): 265-269.

    [10]

    ZHANG Ren, ZHU Xuewen, HAN Daoshan, ZHANG Yuanhai, FANG Fengbao. Preliminary study on karst caves of Mt. Jinfo, Nanchuan, Chongqing[J]. Carsologica Sinica, 1998, 17(3): 196-211.

    [11]

    Cheng H, Edwards R L, Shen C C, Polyak V J, Asmerom Y, Woodhead J, Hellstrom J, Wang Y J, Kong X G, Spötl C, Wang X F, Alexander Jr E C. Improvements in 230Th dating, 230Th and 234U half-life values, and U-Th isotopic measurements by multi-collector inductively coupled plasma mass spectrometry[J]. Earth and Planetary Science Letters, 2013, 371-372(1): 82-91.

    [12]

    LI Chensi. Study on climate change of stalagmite records in Chongqing area during MIS 11[D]. Chongqing: Southwest University, 2015

    [13]

    Jaffey A H, Flynn K F, Glendenin L E, Bentley W C, Essling A M. Precision measurement of half-lives and specific activities of 235U and 238U[J]. Physical Review C, 1971, 4(5): 1889-1906. doi: 10.1103/PhysRevC.4.1889

    [14]

    Cheng H, Edwards R L, Sinha A, Spötl C, Yi L, Chen S T, Kelly M, kathayat G, Wang X F, Li X L, Kong X G, Wang Y J, Ning Y F, Zhang H W. The Asian monsoon over the past 640, 000 years and ice age terminations[J]. Nature, 2016, 534(7609): 640-646. doi: 10.1038/nature18591

    [15]

    Dorale J A, Liu Z H. Limitations of hendy test criteria in judging the paleoclimatic suitability of speleothems and the need for replication[J]. Journal of Cave and Karst Studies, 2009, 71(1): 73-80.

    [16]

    Cheng H, Sinha A, Wang X F, Cruz F W, Edwards R L. The global paleomonsoon as seen through speleothem records from Asia and the Americas[J]. Climate Dynamics, 2012, 39(5): 1045-1062. doi: 10.1007/s00382-012-1363-7

    [17]

    QIN Jiaming, LIN Yushi, ZHANG Meiliang, WANG Hua, FENG Yumei, TU Linling. Change of the east-Asian monsoon climate during the last Glaciation : δ18O records of stalagmites in Qixing cave, Duyun City, Guizhou Province[J]. Carsologica Sinica, 2003, 22(3): 167-173.

    [18]

    Liu Z Y, Wen X Y, Brady E C. Chinese cave records and the East Asia summer monsoon[J]. Quaternary Science Reviews, 2014, 83(1): 115-128.

    [19]

    Zhang W H, Wu J Y, Wang Y, Wang Y J, Cheng H, Kong X G, Duan F C. A detailed East Asian monsoon history surrounding the 'Mystery Interval' derived from three Chinese speleothem records[J]. Quaternary Research, 2014, 82(1): 154-163. doi: 10.1016/j.yqres.2014.01.010

    [20]

    Porter S, Zhisheng A. Correlation between climate events in the North Atlantic and China during the last glaciation[J]. Nature, 1995, 375: 305-308. doi: 10.1038/375305a0

    [21]

    Rohling E J, Braun K, Grant K, Kucera M, Roberts A P, Siddall M, Trommer G. Comparison between Holocene and Marine Isotope Stage-11 sea-level histories[J]. Earth and Planetary Science Letters, 2010, 291(1-4): 96-105.

    [22]

    Laskar J, Robutel P, Joutel F, Gastineau M, Correia A C M, Levrard B. A long-term numerical solution for the insolation quantities of the Earth[J]. Astronomy and Astrophysics, 2004, 428(1): 261-285. doi: 10.1051/0004-6361:20041335

    [23]

    Kandiano E S, Meer M, Schouten S, Fahl Kirsten, Sinninghe Damsté J S, Bauch H A. Response of the North Atlantic surface and intermediate ocean structure to climate warming of MIS 11[J]. Scientific Reports, 2017, 7(1): 46192. doi: 10.1038/srep46192

    [24]

    Barker S, Chen J, Gong X, Jonkers L, Knorr G, Thornalley D. Icebergs not the trigger for North Atlantic cold events[J]. Nature Geoscience, 2015, 520: 333-336.

    [25]

    Kandiano E S, Bauch H A, Fahl K, Helmke J P, Röhl U, Pérez Folgado M, Cacho I. The meridional temperature gradient in the eastern North Atlantic during MI S11 and its link to the ocean–atmosphere system[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2012, 333-334: 24-39. doi: 10.1016/j.palaeo.2012.03.005

    [26]

    Stein R, Hefter J, Grützner J, Voelker A, Naafs B D A. Variability of surface water characteristics and Heinrich-like events in the Pleistocene midlatitude North Atlantic Ocean: Biomarker and XRD records from IODP Site U1313 (MIS16–9)[J]. Paleoceanography, 2009, 24(2): 2203.

    [27]

    McManus J F, Oppo D W, Cullen J L, Healey S L. Marine isotope stage 11 (MIS 11): Analog for Holocene and future climate?[A]//Droxler A W, Poore R Z, Burckle L H. Earth's Climate and Orbital Eccentricity: The Marine Isotope Stage 11 Question. Washington D C: American Geophysical Union, 2003: 69-85.

    [28]

    Prokopenko A A, Bezrukova E V, Khursevich G K, Solotchina E P, Kuzmin M I, Tarasov P E. Climate in continental interior Asia during the longest interglacial of the past 500,000 years: The new MIS 11 records for Lake Baikal, SE Siberia[J]. Climate of the Past, 2010, 6(1): 31-48. doi: 10.5194/cp-6-31-2010

    [29]

    Oliveira D, Desprat S, Rodrigues T, Naughton F, Hodell D, Trigo R, Goni M. The complexity of millennial-scale variability in Southwestern Europe during MIS 11[J]. Quaternary Research, 2016, 86(3): 373-387. doi: 10.1016/j.yqres.2016.09.002

    [30]

    Tzedakis P C, Pälike H, Roucoux K H, de Abreu L. Atmospheric methane, Southern European vegetation and low-mid latitude links on orbital and millennial timescales[J]. Earth and Planetary Science Letters, 2009, 277(3-4): 307-317. doi: 10.1016/j.jpgl.2008.10.027

    [31]

    Dickson A J, Beer C, Dempsey C J, Dempsey C, Maslin M A, Bendle J A, McClymont E L, Pancost R D. Oceanic forcing of the Marine Isotope Stage 11 interglacial[J]. Nature Geoscience, 2009, 2(6): 428-433. doi: 10.1038/ngeo527

    [32]

    ZHANG Taotao, LI Tingyong, HAN Liyin, CHENG Hai, LI Junyun, ZHAO Xin, ZHOU Jingli. Variation of the Asian summer monsoon during the MIS 5a/5b period inferred from a new high-resolution stalagmite record[J]. Carsologica Sinica, 2017, 36(2): 162-170.

    [33]

    John M D, Yuet F L, Christelle N, Dirk E, Henning A B, Adina P, Benoit T. Freshening, stratification and deep-water formation in the Nordic Seas during Marine Isotope Stage 11[J]. Quaternary Science Reviews, 2021, 272: 107231. doi: 10.1016/j.quascirev.2021.107231

    [34]

    ZHANG Huandi, HAO Qingzhen. Marine and ice core evidence confirms delayed buildup of Arctic Ice Sheets during the MIS 11–10[J]. Quaternary Sciences, 2019, 39(3): 786-788.

    [35]

    Galaasen E V, Ninnemann U S, Kessler A, Irvali N, Rosenthal Y, Tjiputra J, Bouttes N, Roche D M, Kleiven H F, Hodell D A. Interglacial instability of North Atlantic deep water ventilation[J]. Science, 2020, 367(6485): 1485-1489. doi: 10.1126/science.aay6381

    [36]

    Voelker A H L, Rodrigues T, Billups K, Oppo D, McManus J, Stein R, Hefter J, Grimalt J O. Variations in mid-latitude North Atlantic surface water properties during the mid-Brunhes (MIS 9–14) and their implications for the thermohaline circulation[J]. Climate of the Past, 2010, 6(4): 531-552. doi: 10.5194/cp-6-531-2010

    [37]

    Broccoli A J, Dahl K A, Stouffer R J. Response of the ITCZ to Northern Hemisphere cooling[J]. Geophysical Research Letters, 2006, 33(1): 1-4.

    [38]

    ZHANG Riping. The internal structure of MIS11 recorded by a stalagmite in Jinfo Cave, Chongqing and the comparison of MIS11 with Holocene[D]. Chongqing: Southwest University, 2022.

    [39]

    Wang X F, Auler A S, Edwards R, Cheng H, Ito E, Wang Y J, Kong X G, Solheid M. Millennial-scale precipitation changes in Southern Brazil over the past 90,000 years[J]. Geophysical Research Letters, 2007, 34(23): 135-147.

    [40]

    Wang Y J, Cheng H, Edwards R L, An Z S, Wu J Y, Shen C C, Dorale J A. A high-resolution absolute-dated late Pleistocene Monsoon record from Hulu cave, China[J]. Science, 2001, 294(29): 2345-2348.

    [41]

    Cheng H, Zhang H W, Spötl C, Baker J, Sinha A, Li H Y, Bartolomé M, Moreno A, Kathayat G, Zhao J Y, Dong X Y, Li Y W, Ning Y F, Jia X, Zong B Y, Brahim Y A, Pérez Mejiás C, Cai Y J, Novello V F, Cruz F W, Severinghaus J P, An Z S, Edwards R L. Timing and structure of the Younger Dryas event and its underlying climate dynamics[J]. Proceedings of the National Academy of Sciences, 2020, 117(38): 1-10.

    [42]

    EPICA community members. Eight glacial cycles from an Antarctic ice core[J]. Nature, 2004, 429: 623-628. doi: 10.1038/nature02599

    [43]

    Stuiver M, Grootes P M. GISP2 oxygen isotope ratio[J]. Quaternary Research, 2000, 53(3): 277-284. doi: 10.1006/qres.2000.2127

    [44]

    Haug G H, Hughen K A, Sigman D M, Peterson L C, Rohl U. Southward migration of the intertropical convergence zone through the Holocene[J]. Science, 2001, 293(5533): 1304-1308. doi: 10.1126/science.1059725

    [45]

    Hughen K A, Overpeck J T, Peterson L C, Trumbore S E. Rapid climate changes in the tropical Atlantic region during the last deglaciation[J]. Nature, 1996, 380(7): 51-54.

    [46]

    Hughen K A, Southon J R, Lehman S J, Overpeck J T. Synchronous radiocarbon and climate shifts during the last deglaciation[J]. Science, 2000, 290(5498): 1951-1954. doi: 10.1126/science.290.5498.1951

    [47]

    Cheng H, Li H Y, Sha L J, Sinha A, Shi Z G, Yin Q Z, Lu Z Y, Zhao D B, Cai Y J, Hu Y Y, Hao Q Z, Tian J, Kathayat G, Dong X Y, Zhao J Y, Zhang H W. Milankovitch theory and monsoon[J]. The Innovation, 2022, 3(6): 100338. doi: 10.1016/j.xinn.2022.100338

    [48]

    Böhm E, Lippold J, Gutjahr M, Frank M, Blaser P, Antz B, Fohlmeister J, Frank N, Andersen M B, Deininger M. Strong and deep Atlantic meridional overturning circulation during the last glacial cycle[J]. Nature, 2015, 517(7532): 73-76. doi: 10.1038/nature14059

    [49]

    Jouzel J, Masson Delmotte V, Cattani O, Dreyfus G, Falourd S, Hoffmann G, Minster B, Nouet J, Barnola J M, Chappellaz J, Fischer H, Gallet J C, Johnsen S, Leuenberger M, Loulergue L, Luethi D, Oerter H, Parrenin F, Raisbeck G, Raynaud D, Schilt A, Schwander J, Selmo E, Souchez R, Spahni R, Stauffer B, Steffensen J P, Stenni B, Stocker T F, Tison J L, Werner M, Wolff E W. Orbital and millennial Antarctic climate variability over the past 800, 000 years[J]. Science, 2007, 317(5839): 793-796. doi: 10.1126/science.1141038

    [50]

    Lisiecki L E, Raymo M E. A Pliocene–Pleistocene stack of 57 globally-distributed benthic δ18O records[J]. Paleoceanography, 2005, 20(1): 1003.

    [51]

    Yin Q Z, Berger A. Interglacial analogues of the Holocene and its natural near future[J]. Quaternary Science Reviews, 2015, 120: 28-46. doi: 10.1016/j.quascirev.2015.04.008

    [52]

    Peter H, Carl W. Obliquity pacing of the late Pleistocene glacial terminations[J]. Nature, 2005, 434(7032): 1476-4687.

    [53]

    Masson Delmotte V, Dreyfus G, Braconnot P, Johnsen S, Jouzel J, Kageyama M, Landais A, Loutre M F, Nouet J, Parrenin F, Raynaud D, Stenni B, Tuenter E. Past temperature reconstructions from deep ice cores: Relevance for future climate change[J]. Climate of the Past, 2006, 2(2): 145-165. doi: 10.5194/cp-2-145-2006

    [54]

    Yin Q Z, Wu Z P, Berger A, Goosse H, Hodell D. Insolation triggered abrupt weakening of Atlantic circulation at the end of interglacials[J]. Science, 2021, 373(6558): 1035-1040. doi: 10.1126/science.abg1737

  • 加载中

(6)

(1)

计量
  • 文章访问数:  131
  • PDF下载数:  12
  • 施引文献:  0
出版历程
刊出日期:  2024-04-25

目录