-
摘要:
随着世界上石油和常规天然气资源的消耗和减少,各国的研究人员正在致力于寻找新的替代能源,天然气水合物的发现、勘探、开发和利用为未来能源带来新的希望。由于天然气水合物具有重要的战略意义和巨大的经济价值,世界上许多发达国家和发展中国家都将其列入国家重点研发计划,美国、日本、印度、韩国、德国、挪威以及中国等均相继投入巨资进行海域天然气水合物调查甚至于开采试验。文章介绍了国际上主要国家天然气水合物勘探开发计划的历史和现状,重点阐述了国家层面的天然气水合物勘探开采计划、实施情况、资金投入以及战略研究,同时从整体角度,对天然气水合物现阶段关注的重点问题进行了阐述。按照各个国家的发展趋势和研究目标总结为3种类别:(1)美国,早期在研究机构和ODP航次支持下,积累了大量的地质实物资料,但由于受到页岩气工业革命等商业模式冲击,近期天然气水合物开采领域投资放缓,但仍然关注于理论和技术实践,并保持综合科学研究工作为主,待时机成熟后将再次注入国家预算资金;(2)中国、日本、印度、韩国,由于受到国内能源结构和储备的限制,对天然气水合物勘探开采持有非常积极的态度,国家资金投入丰厚,全部开展了多期次的近海的天然气水合物钻探工作,并且中国和日本近年在海域试开采领域突飞猛进,分别取得了重要性的阶段成果,极可能是未来世界上首批商业性开采的国家;(3)德国、挪威,作为传统的欧洲工业国家,利用雄厚的工业技术基础,在天然气水合物能源开采技术研究以及环境评估等方面另辟蹊径,着重关注于全球环境保护和二氧化碳置换甲烷技术,是天然气水合物研究领域的绿色保护者代表,可为后能源时代提供天然气水合物新的机遇。
Abstract:With the consumption and decreasing of the worldwide resources of petroleum and natural gas, the exports from various countries are working hard to find a new kind of substitute energy. Undoubtedly, a new hope in the future is probably attributed to the resource of gas hydrate following its discovery, exploration, development and utilization. For the significant strategies and economic benefits of gas hydrate, many developed countries and developing countries, such as United States, Japan, India, South Korea, Germany, Norway and China, have arranged it under the key national projects and invested enormous capital on the marine surveys and exploitation tests. In this review, the authors concisely describe the histories and current situations of gas hydrate in the main countries, with the emphasis placed on the national projects with the exploration extents, development situations, national investments and strategic deployments for gas hydrate. The authors also discuss the current progresses with which experts are most concerned. The authors divide those countries into 3 types:(1) United States. It has accumulated huge geological data and material supported by research institutions and ODP explorations in the early stage, but recently it somewhat reduces the investments on surveys and exploitation tests mainly because of the commercial success of shale gas revolution. In spite of such a situation, it still has great interest in theories and techniques of gas hydrate mainly focusing on the comprehensive subjects, and waits the opportunity to venture again once the market opportunity is ready. (2) China, Japan, India, South Korea. Due to the limits of domestic energy structures and preserve capacities, they hold an extremely active position on the development of gas hydrate with huge national investments on marine drilling expeditions. In particular, China and Japan have gained a great momentum in the marine exploitation tests, quite possibly being the first nations with full commercial operations. (3) Germany, Norway. As the traditional European industrial countries, they focus on improving gas hydrate exploitation techniques, for instance, the technology of CO2-CH4 replacement, paying much attention on environmental assessment supported by their solid industrial technical groundwork. They are the representatives of Greenpeace in the subject of gas hydrate and maybe provide a new opportunity in the later energy times for gas hydrate development.
-
Key words:
- gas hydrate /
- substitute energy /
- national projects /
- review on developments
-
-
图 1 全球海域及陆域天然气水合物试开采站位、发现水合物实物样品站位以及间接指示水合物存在站位(修改自Kvenvolden, 1993)
Figure 1.
表 1 全球主要国家水合物探查及试采列表
Table 1. Global national projects for gas hydrate surveys and test exploitations
-
Andreassen K, Berteussen K A, Sognnes H, Henneberg K, Langhammer J, Mienert J. 2003. Multicomponent ocean bottom cable data in gas hydrate investigation offshore of Norway[J]. Journal of Geophysical Research, 108(8):2399-2405. https://www.netl.doe.gov/File%20Library/Research/Oil-Gas/methane%20hydrates/HMNewsSpring05.pdf
Biastoch A, Treude T, Rupke L H. 2011. Rising Arctic Ocean temperatures cause gas hydrate destabilization and ocean acidification[J]. Geophysical Research Letters, 38:25-36. http://www.pet.hw.ac.uk/icgh7/papers/icgh2011Final00753.pdf
Collett T S. 2002. Energy resource potential of natural gas hydrates[J]. AAPG Bulletin, 86(11):1971 -1992. http://www.ruf.rice.edu/~hydrates/TimCollettPresentation.pdf
Davie M K, Zatsepina O Y, Buffett B A. 2004. Methane solubility in marine hydrate environments[J]. Marine Geology, 203:177-184. doi: 10.1016/S0025-3227(03)00331-1
Eckert C, Jack D, Nur A M. 2000. Estimating of gas hydrate and free gas from marine seismic data[J]. Geophysics, 65(2):565-573. doi: 10.1190/1.1444752
Giavarini C, Hester K. 2011. Gas hydrate:Immense Energy Potential and Environmental Challenges[M]. London:Springer Press, 30-56.
He T, Spence G D, Riedel M, Hyndman R D, Chapman N R. 2007.Fluid flow and origin of a carbonate mound offshore Vancouver Island:Seismic and heat flow constraints[J]. Marine Geology, 239:83-98. doi: 10.1016/j.margeo.2007.01.002
Hyndman R D, Spence G D. 1992. A seismic study of methane gas hydrate marine bottom simulating reflectors[J]. Journal Geophysical Research, 97(5):6683-6698.
Kvenvolden K A. 1993. A primer in gas hydrates[C]//Howell D G(ed.).The future of energy gases. Washington:U.S. Geological Survey Professional Paper 1570, 279-292.
Lee M W, Collett T S. 2008. Integrated analysis of well logs and seismic data at the Keathley Canyon, Gulf of Mexico, for estimation of gas hydrate concentrations[J]. Marine and Petroleum Geology, 25:924-931. doi: 10.1016/j.marpetgeo.2007.09.002
MacDonald G T. 1990. The future of methane as an energy resource[J]. Annual Review of Energy, 15:53-83. doi: 10.1146/annurev.eg.15.110190.000413
Matsumoto R, Tomaru H, Lu H. 2004. Detection and evaluation of gas hydrates in the eastern Nankai Trough by geochemical and geophysical methods[J]. Resource Geology, 54(1):53-67. doi: 10.1111/rge.2004.54.issue-1
Milkov A V, Sassen R. 2003. Preliminary assessment of resources and economic potential of individual gas hydrate accumulations in the Gulf of Mexico continental slope[J]. Marine and Petroleum Geology, 20:111-128. doi: 10.1016/S0264-8172(03)00024-2
Novosel I, Spence G D, Hyndman R D. 2005. Reduced magnetization produced by increased methane flux at a gas hydrate vent[J]. Marine Geology, 216:265-274. doi: 10.1016/j.margeo.2005.02.027
Ruppel C, Dickens G R, Castellini D G, Gilhooly W, Lizarralde D. 2005. Heat and salt inhibition of gas hydrate formation in the northern Gulf of Mexico[J]. Geophysical Research Letters, 32:1-4. http://petrowiki.org/Preventing_formation_of_hydrate_plugs
Shankar U, Riedel M. 2011. Gas hydrate saturation in the Krishna-Godavari basin from P-wave velocity and electrical resistivity logs[J]. Marine Petroleum Geology, 28(10):1768-1778. doi: 10.1016/j.marpetgeo.2010.09.008
Sloan E D, Koh C A. 2008. Clathrate Hydrates of Natural Gases(third edition)[M]. New York:CRC Press, Taylor and Francis Group, 15-42.
Talukder A R, Bialas J, Klaeschen D. 2007. High-resolution, deep tow, multichannel seismic and sidescan sonar survey of the submarine mounds and associated BSR off Nicaragua pacific margin[J]. Marine Geology, 241:33-43. doi: 10.1016/j.margeo.2007.03.002
Trehu A M. 2004. Three-dimensional distribution of gas hydrate beneath southern Hydrate Ridge:Constraints from ODP Leg 204[J]. Earth and Planetary Science Letters, 222:845-862. doi: 10.1016/j.epsl.2004.03.035
Tsuji Y, Ishida H, Nakamizu M, Matsumoto R, Shimizu S. 2004.Overview of the METI Nankai Trough wells:A milestone in the evaluation of methane hydrate resources[J]. Resource Geology, 54(1):3-10. doi: 10.1111/rge.2004.54.issue-1
Waseda A. 1998. Organic carbon content, bacterial methanogenesis, and accumulation processes of gas hydrates in marine sediments[J]. Geochemical Journal, 32:143-157. doi: 10.2343/geochemj.32.143
Wilson A, Ruppel C. 2007. Salt tectonics and shallow subsea floor fluid convection:Models of coupled fluid-heat-salt transport[J]. Geofluids, 7(4):377-386. doi: 10.1111/gfl.2009.7.issue-4
Winters W, Walker M, Hunter R. 2011. Physical properties of sediment from the Mount Elbert Gas Hydrate Stratigraphic Test Well, Alaska North Slope[J]. Marine Petroleum Geology, 28(10):361-380. http://www.wenkuxiazai.com/doc/323e7b4d8762caaedc33d487.html
Xu H, Dai J, Snyder F, Dutta N. 2004. Seismic detection and quantification of gas hydrates using rock physics and inversion[C]//C E Taylor and J T Kwan (ed.). Advances in the study of gas hydrates. New York:Kluwer, 117-139.
Yuan J, Edwards R N. 2000. Towed sea floor electromagnetics and assessment of gas hydrate deposits[J]. Geophysical Research Letters, 27:2397-2400. doi: 10.1029/2000GL011585
Yun T S, Lee J S, Bahk J J, Santamarina J C. 2011. Geotechnical characterization of marine sediments in the Ulleung Basin, East Sea[J]. Eng. Geol., 117(2):151-158. https://koreauniv.pure.elsevier.com/en/publications/stress-dependent-and-strength-properties-of-gas-hydrate-bearing-m
Yun T S, Narsilio G A, Santamarina J C. 2006. Physical characterization of core samples recovered from Gulf of Mexico[J]. Marine Petroleum Geology, 23(2):893-900. http://www.wenkuxiazai.com/doc/8825b08f0242a8956bece47a-3.html
Zhang G X, Liang J Q, Lu J A. Geological features, controlling factors and potential prospects of the gas hydrate occurrence in the northeastern part of South China Sea[J]. Marine and Petroleum Geology, 67:356-367.
-