Thermochronology of the monzonitic granite related to the Hutouya Cu-Pb-Zn polymetallic deposit in Qiman Tage, Qinghai Province
-
摘要:
虎头崖铜铅锌多金属矿区是青海祁漫塔格地区较为典型的兼具内接触带矽卡岩亚型和外接触带矽卡岩亚型矿化的矿区,其岩浆侵入活动强烈,不同时代含碳酸盐岩的地层出露多,铁铜锡钼铅锌等金属成矿元素组合复杂,找矿潜力巨大。本次研究依据岩体热年代学理论,即岩体总能量与其规模成正比,规模愈大的岩体其热能量愈高,热效应愈大,冷速率相应愈低。冷速率通过同一岩体不同矿物的封闭温度计算得出。选取虎头崖矿区黑云母和斜长石两种矿物进行Ar-Ar年龄测定,样品HTY002黑云母和斜长石40Ar-39Ar坪年龄分别为(233.6±2.2)Ma和(231.5±1.3)Ma,样品HTY016黑云母和斜长石40Ar-39Ar坪年龄分别为(229.6±2.3)Ma和(219.3±1.8)Ma,样品HTY019黑云母和斜长石40Ar-39Ar坪年龄分别为(224.7±2.6)Ma和(222.2±2.2)Ma,计算得到二长花岗岩冷速率分别为57.14℃/Ma、11.65℃/Ma、48.00℃/Ma。当侵入岩体的成分相近时,其侵位时的单位热能可能差别很小,而岩体的总能量与其规模是成正比的,所以不同规模岩体的总能量是有差别的,规模愈大的岩体其热能量也愈高,与围岩达到平衡所需的时间愈长,热效应愈大,冷速率相应愈低。针对不同样品和不同矿物计算虎头崖矿区二长花岗岩体冷速率比较接近,其冷速率相对较快(介于11~57℃/Ma),可知其热效应较大,具有一定的成矿潜力。
Abstract:The Hutouya mining area in Qiman Tage of Qinghai Province owns the characteristics of inner-and exo-contact belt skarn subtype mineralization. The magmatic intrusive activities are strong in this area. The carbonatite formation of different ages is exposed extensively. The combination of metal metallogenic elements is complex. The potential for the ore prospecting is great. This study is based on the thermochronology theory for rock bodies. The total energy of rock bodies is proportional to its scale. The thermal energy is larger as the scale of rock bodies is larger, the thermal effect is larger as the thermal energy is larger, and the cooling rate is larger as the thermal effect is larger. The cooling rate is calculated via the closure temperature of different minerals. The authors studied Ar-Ar ages of biotite and plagioclase from the Hutouya mining area. The 40Ar-39Ar plateau ages of biotite and plagioclase from the HTY002 monzonitic granite sample related to mineralization are 2(33.6 ±2.2) Ma and (231.5 ±1.3) Ma, respectively. The 40Ar-39Ar plateau ages from the HTY016 sample are (229.6±2.3) Ma and (219.3±1.8) Ma, respectively. The 40Ar-39Ar plateau ages of the HTY019 sample are (224.7±2.6) Ma and (222.2±2.2) Ma, respectively. The calculated cooling rates are 57.14℃/Ma, 11.65℃/Ma, and 48.00℃/Ma. Where the compositions of the intrusive rocks are similar, the differences of the unit thermal energies of their emplacement are very small. Because the total energy of rock bodies is proportional to its scale, the total energies of rock bodies of different scales are different. The thermal energy of large rock bodies is large, the time of balance with the surrounding rock is long, the thermal effect is large, and the cooling rate is low. The cooling rates of different minerals from the Hutouya mining area are similar. The values of the cooling rates are high, varying from 11 to 57℃/Ma, so the thermal effect is large. It is thus concluded that the potential for the ore prospecting is great in the Hutouya mining area.
-
图 1 东昆仑祁漫塔格及邻区构造单元图(据丰成友等,2010)
Figure 1.
图 2 青海祁漫塔格虎头崖铜铅锌多金属矿区地质略图及采样位置(据丰成友等,2011)
Figure 2.
表 1 虎头崖矿区花岗岩类岩石中黑云母和斜长石40Ar-39Ar阶段加热分析数据
Table 1. Results of 40Ar-39Ar incremental heating analytical isotope data of biotite and plagioclase from monzogranites and phlogopite in minerals of the Hutouya mining area
表 2 典型含钾矿物冷速率与封闭温度对应关系
Table 2. The relationship between cooling rate and closure temperature of the typical potassium minerals
表 3 虎头崖矿区Ar-Ar冷速率计算参数
Table 3. The Ar-Ar cooling rate calculating parameter of the Hutouya mining area
表 4 虎头崖矿区主要成矿岩体二长花岗岩的冷速率
Table 4. Condensing rate of monzogranites in the Hutouya mining area
-
Cassata W S, Renne P R. 2013. Systematic variations of argon diffusion in feldspars and implications for thermochronometry[J]. Geochimca et Cosmochimca Acta, 112:251-287. doi: 10.1016/j.gca.2013.02.030 http://cn.bing.com/academic/profile?id=7e4d1a8a2f09bc181ba6a6959343abd2&encoded=0&v=paper_preview&mkt=zh-cn
Cermak V, Rybach L. 1982. Thermal conductivity and specific heat of minerals and rocks[C]//Angenheister G (ed. ). Landolt-Bornstein Numerical Data and Functional Relationships in Science and Technology, New Series, Group V. Springer-Verlag, Berlin, 89-134.
Chen Wen, Zhang Yan, Zhang Yueqiao, Jin Guishan, Wang Qingli. 2006. Late Cenozoic episodic uplifting in southeastern part of the Tibetan plateau-evidence from Ar-Ar thermochronology[J]. Acta Petrologica Sinica, 22(4):867-872 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200604010.htm
Dodson M H. 1973. Closure temperature in cooling geochronological and petrological systems[J]. Contributions to Mineralogy and Petrology, 40:259-274. doi: 10.1007/BF00373790 http://cn.bing.com/academic/profile?id=8face45dd3d24525cd402118e7413bf1&encoded=0&v=paper_preview&mkt=zh-cn
Dowty E. 1980. Crystal-chemical factors affecting the mobility of ions in minerals[J]. America Mineral., 65:174-182. http://cn.bing.com/academic/profile?id=5a69a75695f29577b007fbc5a81f186c&encoded=0&v=paper_preview&mkt=zh-cn
Feng Chengyou, Li Dongsheng, Wu Zhengshou, Li Junhong, Zhang Zhanyu, Zhang Aikui, Shu Xiaofeng, Su Shunsheng. 2010. Major types' time-space distribution and metallogeneses of polymetallic deposits in the Qimantage metallogenic belt' eastern Kunlun area[J]. Northwestern Geology, 43(4):10-17 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=8d6f4893029a0759779fc0b6617d0bfc&encoded=0&v=paper_preview&mkt=zh-cn
Feng Chengyou, Wang Xueping, Shu Xiaofeng, Zhang Aikui, Xiao Ye, Liu Jiannan, Ma Shengchao, Li Guochen, Li Daxin. 2011. Isotopic chronology of Hutouya skarn-type lead-zinc polymetallic ore district in the Qimantage area, Qinghai Province, and its' geological significance[J]. Journal of Jilin University (Earth Science Edition), 41(6):1806-1817 (in Chinese with English abstract).
Ferrow E M. 1987. Mössbauer and X-ray studies on the oxidation of annite and ferriannite[J].Physical Chemistry Mineral., 14:270-275. doi: 10.1007/BF00307993 https://link.springer.com/article/10.1007%2FBF00307993
Foland K A. 1994. Argon diffusion in feldspars[C]//Parsons I(ed. ). Feldspars and Their Reactions. Dordrecht, Kluwer, 415-447.
Furlong K P, Hanson R B, Bowers J B. 1991. Modeling thermal regimes[J]. Review of Mineral, 26:437-506. http://cn.bing.com/academic/profile?id=ab1ca0cb4e22b7f021da06f05583a8b5&encoded=0&v=paper_preview&mkt=zh-cn
Giletti B J. 1974. Diffusion Related to Geochronology[M]. Geochemical Transport and Kinetics, 1-362.
Grove M, Harrison T M. 1996.40Ar* diffusion in Fe-rich biotite[J]. American Mineralogist, 81:940-951. doi: 10.2138/am-1996-7-816 https://www.researchgate.net/publication/242560237_40_Ar_diffusion_in_Fe-rich_biotite
Guo Xianzheng, Jia Qunzi, Li Jinchao, Kong Huilei, Li Yazhi, Xu Rongke, Nanka Ewu. 2016. Geochemical characteristics and geochronology of porphyroid biobite monzogranite from the Reshui Mo polymetallic depoist, East Kunlun Mountains[J]. Geology in China, 43(4):1165-1177 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DIZI201604005.htm
Hames W E, Bowring S A. 1994. An empirical evaluation of the argon diffusiongeometry in muscovite[J]. Earth and Planetary Science Letters, 124:161-167. doi: 10.1016/0012-821X(94)00079-4 http://cn.bing.com/academic/profile?id=0941e49f6b4a2960c85227958a6545aa&encoded=0&v=paper_preview&mkt=zh-cn
Harrison T M. 1981. Diffusion of 40Ar in hornblende[J]. Contributions to Mineralogy and Petrology, 78:324-331. https://link.springer.com/article/10.1007%2FBF00398927
Harrison T M, McDougall I. 1981. Excess 40Ar in metamorphic rocks from Broken Hill, New South Wales:implications for 40Ar/39Ar age spectra and the thermal history of the region[J]. Earth Planet. Sc.Lett., 55(1):123-149. doi: 10.1016/0012-821X(81)90092-3 https://www.researchgate.net/publication/229270077_Excess_40Ar_in_metamorphic_rocks_from_Broken_Hill_New_South_Wales_implications_for_40Ar39Ar_age_spectra_and_the_thermal_history_of_the_region
Hewitt D A, Wones D R.1975. Physical properties of some synthetic Fe-Mg-Al trioctahedral biotites[J]. American Mineralogist, 60:854-862. https://link.springer.com/article/10.1007/BF00372150
Hodges K V, Hames W E, Bowring S A. 1994. 40Ar/39Ar age gradients in micas from a high-temperature-low-pressure metamorphic terrain——Evidence for very slow cooling and implications for the interpretation of age spectra[J]. Geology, 22:55-58. doi: 10.1130/0091-7613(1994)022<0055:AAAGIM>2.3.CO;2 https://www.researchgate.net/publication/237089066_40Ar39Ar_age_gradients_in_micas_from_a_high-temperature-low-pressure_metamorphic_terrain_Evidence_for_very_slow_cooling_and_implications_for_the_interpretation_of_age_spectra
Hu Xinghua, Zhu Guchang, Liu Huan, Li Zhifeng, Zheng Wei, Xu Wenhai. 2011. Characteristics and mineralization of the Hutouya polymetallic deposit in the Qimantage metallogenic belt[J]. Geology and Exploration, 47(2):216-221 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKT201102012.htm
Jäger, Emile, Niggli E, Wenk E. 1967. Rb-Sr Altersbestimmungen an Glimmern der Zentralalpen (Rb-Sr age determinations on micas from the Central Alps):Beitragezur Geologische Karteder Schweiz[J]. NF, 134:1-67.
Lee J K W, Onstott T C, Cashman K V. 1991. Incremental heating of hornblende in vacuo:implications for 40Ar/39Ar geochronology and the interpretation of thermal histories[J]. Geology, 19:872-876. doi: 10.1130/0091-7613(1991)019<0872:IHOHIV>2.3.CO;2 https://www.researchgate.net/publication/239864152_Incremental_heating_of_hornblende_in_vacuo_Implications_for_40Ar39Ar_geochronology_and_the_interpretation_of_thermal_histories
Lee J K W. 1993. The argon release mechanisms of hornblende in vacuo[J]. Chemical Geology, 106:133-170. doi: 10.1016/0009-2541(93)90170-N http://cn.bing.com/academic/profile?id=557372d1d4fe17537ec7c92a49b0878f&encoded=0&v=paper_preview&mkt=zh-cn
Li Kan, Gao Yongbao, Qian Bing, He Shuyue, Liu Yongle, Zhang Zhaowei, Zhang Jiangwei, Wang Yalei. 2015. Geochronology, geochemical characteristics and Hf isotopic compositions of granite in the Hutouya deposit Qimantag, East Kunlun[J]. Geology in China, 42(3):630-645 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DIZI201503017.htm
Li Wenyuan. Metallogenic geologica characteristics and newly discovered orebodies in Northwest China[J]. Geology in Chian, 42(3):365-380 (in Chinese with English abstract). https://link.springer.com/article/10.1007/s11430-010-4054-4
Liu Chengdong, Mo Xuanxue, Lui Zhaohua, Yu Xuehui, Chen Hongwei, Li Shuwei, Zhao Xin. 2004. Crust-manlte magma mixing in East Kunlun:Evidence from zircon SHRIMP chronology[J]. Chinese Science Bulletin, 49(6):596-602 (in Chinese).
Liu Yunhua, Mo Xuanxue, Yu Xuehui, Zhang Xueting, Xu Guobin. 2006. Zircon SHRIMP U-Pb dating of the Jingren granite, Yemaquan region of the East Kunlun and its geological significance[J]. Acta Petrologica Sinica, 49(6):592-602 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=ff419a1cdf034724f0a7686964616840&encoded=0&v=paper_preview&mkt=zh-cn
Lo C H, James K W, Tullis C O. 2000. Argon release mechanisms of biotite in vacuo and the role of short-circuit diffusion and recoil[J]. Chemistry Geology, 165:135-166. doi: 10.1016/S0009-2541(99)00167-9 http://cn.bing.com/academic/profile?id=dc69d7a4a3c4c4344485246980114b9f&encoded=0&v=paper_preview&mkt=zh-cn
Lovera O M, Richter F M, Harrison T M. 1989. The 40Ar/39Ar geothermometry for slowly cooled samples having a distribution of diffusion domain sizes[J]. Journal of Geophysics Research, 94:17917-17935. doi: 10.1029/JB094iB12p17917 https://www.researchgate.net/publication/252502421_The_40Ar39Ar_thermochronometry_for_slowly_cooled_samples_having_a_distribution_of_diffusion_domain_sizes
Lovera O M, Grove M, Harrison T M. 2002. Systematic analysis of Kfeldspar 40Ar/39Ar step heating results Ⅱ:relevance of laboratory argon diffusion properties to nature[J]. Geochimca et Cosmochimca Acta, 66:1237-1255. doi: 10.1016/S0016-7037(01)00846-8 https://www.researchgate.net/publication/222684465_Systema
Ludwig K R. 2001. User's manual for isoplot/ex, v2.49, a geochronologica toolkit for Microsoft Excel[J]. Geochronological Center Special Publication No. la:1-58.
Luo Zhaohua, Ke Shan, Cao Yongqing, Deng Jinfu, Chen Hongwei. 2002. Late Indosinian mantle-derived magmatism in the East Kunlun[J]. Geological Bulletin of China, 21(6):292-297 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=971e3154a846747a6478f1ea1531d615&encoded=0&v=paper_preview&mkt=zh-cn
Ma Fang, Mu Zhiguo. 2002. Ar mechanism of the enhydrite under the condition of the vacuo:New questions of the Ar-Ar thermochronology[J]. Earth Science Frontiers, 9(2):505-510 (in Chinese with English abstract).
McDougall I, Harrison T M. 1999. Geochronology and Thermochronology by the 40Ar/39Ar Method (second edition)[M]. Oxford, Oxford University Press, 269.
Norwood C B.1974. Radiogenic Argon Diffusion in the Biotite Micas MS Thesis[M].RI:Brown University, 58.
Ohta T, Takeda H, Takeuchi Y.1982. Mica polytypism:Similarities in the crystal structures of coexisting 2M and 2M1 oxybiotite[J]. American Mineral., 67:298-310. https://www.researchgate.net/publication/242081869_Mica_polytypism_similarities_in_the_crystal_structures_of_coexisting_7M_and_2M1_oxYbiotite
Peacock S M.1989. Numerical constraints on rates of metamorphism, fluid production, and fluid flux during regional metamorphism[J]. Geological Society of America Bull., 101:476-478. doi: 10.1130/0016-7606(1989)101<0476:NCOROM>2.3.CO;2 http://cn.bing.com/academic/profile?id=98051e03322d1c27ca467058fff2fc61&encoded=0&v=paper_preview&mkt=zh-cn
Philpotts A R. 1990. Principles of Igneous and Metamorphic Petrology[M]. Prentice Hall, Englewood Cliffs.
Robbins G A. 1972. Radiogenic Argon Diffusion in Muscovite under Hydrothermal Conditions[D]. Brown University.
Roy R, Beck A, Touloukian Y. 1981. Thermo-physical properties of rocks[C]//Touloukian Y, Judd W, Roy R (eds. ). Physical Properties of Rocks and Minerals. Mc Graw-Hill, New York, 409-502.
Sletten V M, Onstott T C. 1998. The effect of the instability of muscovite during in vacuo heating on 40Ar/39Ar step-heating spectra[J]. Geochim. Cosmochim. Acta, 62:123-142. doi: 10.1016/S0016-7037(97)00323-2 http://www.sciencedirect.com/science/article/pii/S0016703797003232
Spear F S. 1993. Metamorphic Phase Equilibria and PressureTemperature-Time Paths. Mineralogical Society of America, Washington D.C. http://www.docin.com/p-740093982.html
Steiger R H, Jager E. 1977. Subcommission on geochronology:Converntion on the use of decay constants in geo-and cosmochronology[J]. Earth and Planetary Science Letters, 36:359-362. doi: 10.1016/0012-821X(77)90060-7 http://www.sciencedirect.com/science/article/pii/0012821X77900607
Stuwe K. 2002. Introduction to the Geodynamics of the Lithosphere:Quantative Description of Geological Problems[M]. SpringerVerlag, Berlin.
Taylor S R, McLennan S M. 1985. The Continental Crust:Composition and Evolution[M]. Blackwell Scientific Publication, Oxford, 1-372.
Vedder W, Wilkins R. 1969. Dehydroxylation and rehydroxylation, oxidation and reduction of micas[J]. American Mineralogist, 54:482-509.
Wei Junying and Wang Guanyu. 1988. Isotopic Geochemistry[M]. Beijing:Geological Publishing House, 1-379 (in Chinese).
Xiao Qinghui, Qiu Ruizhao, Deng Jinfu, Li Tingdong, Mo Xuanxue, Hong Dawei, Lu Xinxiang, Wang Tao, Wu Fuyuan, Xie Caifu. 2005. Granitoids and continental crustal growth modes in China[J]. Geology in China, 32(3):343-352 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=934a16e9dddcc83eaed8c8e62182e970&encoded=0&v=paper_preview&mkt=zh-cn
Zhang Bangdong, Ling Hongfei, Wu Juncai. 2013. New thinking, method and calculated examples of high temperature thermochronology of granite plutons[J]. Geological Journal of Chian Universities, 19(3):385-402 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-GXDX201303001.htm
Zheng Zhen, Chen Yanjing, Deng Xiaohua, Yun Suwei, Cheng Hongjin. 2016. Muscovite 40Ar/39Ar dating of the Baiganhu W-Sn orefield, Qimantag, Eadt Kunlun Mountains, and its geological implications[J]. Geology in China, 43(4):1341-1352 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DIZI201604020.htm
陈文, 张彦, 金贵善, 王清利. 2006.青藏高原东南缘晚新生代幕式抬升作用的Ar-Ar热年代学证据[J].岩石学报, 22(4):867-872. http://mall.cnki.net/magazine/Article/YSXB200604010.htm
丰成友, 李东生, 吴正寿, 李军红, 张占玉, 张爱奎, 舒晓峰, 苏顺生. 2010.东昆仑祁漫塔格成矿带矿床类型、时空分布及多金属成矿作用[J].西北地质, 43(4):10-17. http://mall.cnki.net/magazine/Article/XBDI201004004.htm
丰成友, 王雪萍, 舒晓峰, 张爱奎, 肖晔, 刘建楠, 马圣钞, 李国臣, 李大新. 2011.青海祁漫塔格虎头崖铅锌多金属矿区年代学研究及地质意义[J].吉林在学学报:地球科学版, 41(6):1806-1817. http://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201106014.htm
国显正, 贾群子, 李金超, 孔会磊, 栗亚芝, 许荣科, 南卡俄吾. 2016.东昆仑热水钼矿区似斑状黑云母二长花岗岩元素地球化学及年代学研究[J].中国地质, 43(4):1167-1177. http://geochina.cgs.gov.cn/ch/reader/view_abstract.aspx?file_no=20160404&flag=1
胡杏花, 朱谷昌, 刘欢, 李智峰, 郑纬, 徐文海.2011.祁漫塔格矿带虎头崖多金属矿矿床特征和成矿作用分析[J].地质与勘探, 47(2):216-221. https://www.wenkuxiazai.com/doc/797acf9e6f1aff00bed51ea8.html
李侃, 高永宝, 钱兵, 何书跃, 刘永乐, 张照伟, 张江伟, 王亚磊. 2015.东昆仑祁漫塔格虎头崖铅锌多金属矿区花岗岩年代学、地球化学及Hf同位素特征[J].中国地质, 42(3):630-645. http://geochina.cgs.gov.cn/ch/reader/view_abstract.aspx?file_no=20150317&flag=1
李文渊. 2015.中国西北部成矿地质特征及找矿新发现[J].中国地质, 42(3):365-380. http://geochina.cgs.gov.cn/ch/reader/view_abstract.aspx?file_no=20150301&flag=1
刘成东, 莫宣学, 罗照华, 喻学惠, 谌宏伟, 李述为, 赵欣. 2004.东昆仑壳-幔岩浆混合作用:来自锆石SHRIMP年代学的证据[J].科学通报, 49(6):596-602. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200406018.htm
刘云华, 莫宣学, 喻学惠, 张雪亭, 许国斌. 2006.东昆仑野马地区景忍花岗岩锆石SHRIMP U-Pb定年及其地质意义[J].岩石学报, 22(10):2457-2463. http://www.oalib.com/paper/4355897
罗照华, 柯珊, 曹永清, 邓晋福, 谌宏伟. 2002.东昆仑印支晚期幔源岩浆活动[J].地质通报, 21(6):292-297. http://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200206002.htm
马芳, 穆治国. 2002.含水矿物在真空下的释Ar机制:Ar-Ar热年代学面临的新问题[J].地学前缘, 9(2):505-510. http://www.cnki.com.cn/Article/CJFDTotal-YSXB200612021.htm
魏菊英, 王关玉. 1988.同位素地球化学[M].北京:地质出版社, 1-379.
肖庆辉, 邱瑞照, 邓晋福, 李廷栋, 莫宣学, 洪大卫, 卢欣详, 王涛, 吴福元, 谢才富. 2005.中国花岗岩与大陆地壳生长方式初步研究[J].中国地质, 32(3):343-352. http://geochina.cgs.gov.cn/ch/reader/view_abstract.aspx?file_no=20050301&flag=1
章邦桐, 凌洪飞, 吴俊奇. 2013.花岗岩体高温热年代学研究的新思路、方法及计算实例[J].高校地质学报, 19(3):385-402. http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_gxdzxb201303001
郑震, 陈衍景, 邓小华, 岳素伟, 陈红瑾. 2016.东昆仑祁漫塔格地区白干湖钨锡矿田白云母40Ar/39Ar定年及地质意义[J].中国地质, 43(4):1341-1352. http://geochina.cgs.gov.cn/ch/reader/view_abstract.aspx?file_no=20160419&flag=1