Dataset of the 1: 50 000 Hydrogeological Map of the Plain Area of the Baiyangdian Lake Basin, Xiongan New Area
-
摘要:
本数据集依托2016年中国地质调查局"白洋淀流域平原区1:50 000水文地质调查"项目,在充分收集以往地质资料的基础上,开展了隶属雄安新区规划建设核心区域的安新县幅、雄县幅1:50 000水文地质及专项生态环境地质调查工作,编制了标准的1:50 000水文地质图及说明书,依照行业规范将此次调查获取的数据建立了1:50 000水文地质调查成果数据集。本数据集包含8种数据类型,包含895个基础调查数据,22个野外地质综合调查点数据,82个地层岩性界限调查点数据,540个水文地质调查点数据,22个环境地质调查点数据,12个钻孔基本情况数据,71个抽水试验综合成果数据,2 200个野外照片数据,共计3 844个数据。本数据集对认识白洋淀及周边区域水文地质条件,评价地下水资源,以及研究湿地生态功能退化等生态地质环境问题具有一定的参考意义。
-
关键词:
- 雄安新区 /
- 白洋淀流域 /
- 水文地质 /
- 湿地生态 /
- 1:50 000数据集
Abstract:This 1:50 000 hydrogeological survey dataset was created as a result of the CGS (China Geological Survey) project "Hydrogeological Survey (1:50 000) of the Plain Area of the Baiyangdian Lake Basin" in 2016, building on previously collected geological information. It was prepared in accordance with industrial specifications, using data acquired through this survey by conducting a 1:50 000 hydrogeological and specifically eco-environmental geological survey in the Anxin and Xiong Counties, both located within the core planning and building region of Xiongan New Area, and by preparing a standard 1:50 000 hydrogeological map with instructions for its use. This dataset has 8 types of data, including 895 basic survey data, 22 data from combined geological field survey points, 82 data from stratum lithological boundary survey points, 540 data from hydrogeological survey points, 22 data from environmental geological survey points, 12 data on basic information from drilled boreholes, 71 data from comprehensive results of pumping tests and 2 200 data from field pictures, in total 3 844 data. This dataset has implications as a reference work that are critical to understanding hydrogeological conditions in Baiyangdian Lake and its surroundings, evaluating groundwater resources and investigating problems relating to the eco-geological environment, such as degradation of wetland ecological functions.
-
Key words:
- Xiongan New Area /
- Baiyangdian Lake Basin /
- Hydrogeological /
- Wetland ecology /
- 1:50 000 dataset
-
1. 引言
白洋淀是华北平原最大的淡水湖泊和草本沼泽湿地,由太行山前的永定河和滹沱河冲积扇交汇处的扇缘洼地汇水形成,素有“华北之肾”的美誉。2017年4月1日,中共中央、国务院决定以白洋淀为核心设立河北雄安新区,打造优美生态环境,构建蓝绿交织、清新明亮、水城共融的生态城市。
由于特殊的地理位置,白洋淀在涵养水源、缓洪滞沥、调节区域气候、维持物种多样性等方面发挥着重要作用(文丽青,2001)。近年来,在气候和人类活动的影响下,白洋淀流域面临入淀水量减少、地下水超采、地面沉降、淀区水体污染、湿地生态结构失衡等系列生态地质环境问题(李英华,2004;张素珍,2007;尹健梅等,2009)。在京津冀一体化的大趋势下,白洋淀作为京津冀区域乃至华北平原重要的生态环境变化“晴雨表”,其生态环境的变差也反映了区域生态安全和水安全的严峻程度。为缓解生态资源环境约束,推进生态文明建设,推动区域发展总体战略,急需加强白洋淀流域的水-工-环地质调查。从维护区域水安全和生态安全的角度出发,如何对白洋淀进行科学保护和修复,已成为当前亟待解决的关键问题。适时开展该区域的水文地质调查工作,对有效保护地质环境具有十分重要的意义,也为后期白洋淀生态环境科学保护和修复做好基础支撑工作。
本次国际标准图幅1:50 000水文地质调查工作区位于白洋淀区北侧,调查面积约800 km2(图 1)。
本次调查工作的目的是,详细掌握研究区内微地貌特征、地下水系统结构、地下水补-径-排条件、地下水动态变化特征、地下水开发利用现状、地表水与地下水的相互关系等基础信息。
本数据集涵盖地质综合调查数据、地质岩性调查数据、水文地质调查数据、地质环境调查数据、钻孔数据、抽水试验数据和调查照片数据等各类数据(表 1)。本数据集对于科学评价白洋淀流域地下水资源及地下水质量,合理建立湿地生态水文地质监测网等,提供了基础数据支持;同时为区域水资源可持续利用研究和湿地生态修复实践提供了专业技术支撑。
表 1. 数据库(集)元数据简表2. 数据采集和处理方法
本次水文地质调查工作采用资料收集、遥感解译、地球物理勘探、水文地质钻探、抽水试验、野外调查等多种工作手段完成(表 2)。
表 2. 调查数据类型统计表2.1 遥感解译数据集
水文地质遥感解译依据遥感数据信息,通过利用安装在GF-1卫星遥感平台上的各种电子或光学遥感器,在不与地面物体直接接触的情况下,所产生的波谱范围在0.49~0.69 μm,分辨率为2 m的全色波谱图像,根据图像的几何形态、大小、色调、色彩、阴影等影像特征来直接判断地貌类型、地层岩性、地质构造等与水文地质条件密切相关的要素。
遥感解译首先利用已有准确地理坐标和投影信息的原始遥感影像进行几何纠正,再利用DEM高程数据对新获取的遥感影像进行纠正,消除地形起伏带来的影像变形,获取准确的地面坐标和投影信息,再对纠正后的遥感影像的图像色彩进行增强,使得不同的遥感数据具有不同的空间分辨率、波谱分辨率和时相分辨率。根据解译要素对调校后的遥感图像建立解译标志,然后利用目视直接判断法对遥感图像上的各个地质特征进行判断标注;对特征不十分明显的要素通过野外实地调查予以验证。
2.2 地球物理勘探
根据需要解决的水文地质问题,考虑工作区的地球物理特征,本次工作利用激电测深法开展物探测量工作。
物探野外工作测量布设时,水平方向上的电偶极和磁探头相互垂直敷设,方位角偏差不大于1°,水平磁棒距中心点8米以上;磁棒应水平放置,埋入地下50 cm;电极入土20~30 cm,观测视电阻率、相位随频率曲线连续无效频点不大于3个,相关度值大于0.5,有效频点数大于75%。测量检查点数不少于全测区坐标点的3%,检查点与被检查点的全频视电阻率(ρxy)曲线和相位(φxy)曲线形态一致,对应频点的数值接近,且经编辑、插值后检查点与被检查点同一极化的均方相对误差(m)不大于5%(即m≤5%)。测量工作完成后,对测量数据进行检查、剔除、筛选,之后利用采集软件处理筛选过的时序资料。在数据解译时参照地层情况及钻孔资料,使解译成果质量进一步得到保证。
2.3 水文地质钻探
水文地质钻探主要用于直观了解掌握地下含水层特征,通过采集钻孔的岩土样品和水样品,并在钻孔内开展现场试验与测试工作,以获取需要的水文地质参数。
水文地质钻探采用正循环回转取心钻进,粘性土平均采取率均大于70%,单层不少于60%;砂性土、松散砂砾岩、基岩强烈风化带、破碎带平均采取率均大于40%,单层不少于30%。钻孔每钻进50 m测量孔斜及校正孔深一次,使其深度内孔斜小于1.5°,孔深误差不大于2‰,并以校正后的孔深为准。随钻探工作进度及时进行钻孔地质编录;钻孔竣工后,进行物探测井及抽水试验,并编制钻孔地质柱状图(如图 2),测井曲线及抽水试验结果,最后采集地下水样并进行分析化验。
钻探地质编录根据岩心采取顺序由新到老进行分层编录描述,描述岩心的岩性、矿物成分、结构组分、生物化石、沉积构造、产状、孔隙裂缝、各种次生变化等特征。
钻孔测井包括自然伽马测井、自然电位测井和超声波成像测井三种方式。每次测井首先全井段测量井径,了解钻孔的井径变化及套管的完好情况,当井内有套管时,其测量值与已知井径值相差不超过±2 mm。井径曲线变化反映地层岩性硬度的变化;自然电位曲线能显示出渗透层位置;自然伽马曲线能计算地层泥质含量;超声波成像图像可以识别地层裂隙发育情况,确定裂隙倾向等。
2.4 抽水试验
抽水试验是为获取含水层和包气带的水文地质参数,为地下水资源评价提供基础数据。在分析已有水文地质钻孔和机(民)井抽水试验资料的基础上,根据参数空间分布特征,在参数控制不足地段开展抽水试验工作。抽水试验采用单孔稳定流法反向抽水,按三个落程进行,稳定时间分别为24 h、16 h、8 h。当水量很小或水位下降不明显时,可作一次降深,但稳定时间不小于24 h。当抽水孔水位不能稳定时,应进行一次最大降深的非稳定流试验。抽水延续时间视s-lgt曲线确定,一般应不小于24 h。稳定流抽水试验在稳定时间内应达到涌水量和水位稳定,或在一定范围内波动,不得有持续下降或上升的趋势。水位波动范围的误差一般不能超过平均降深值的1%,涌水量波动值不能超过平均流量的3%。
2.5 野外水文地质调查
野外水文地质调查的主要内容是,调查与水资源和地下水相关的人为活动,同时调查污染源,并完成采集水样等系列工作。通过对地质、地貌、地下水点及其他与地下水有关的各种现象的观察、访问和描述进行综合研究,找出它们之间的内在联系,查明地下水埋藏、分布。水文地质工作的主要目的如下:
(1)调查浅层水文地质条件,查清浅层地下水的补-径-排条件,以及浅层地下水动态规律;
(2)调查地下水的现状开采方式、开采量、供水对象;
(3)调查城镇、工矿企业、农田集中区的空间分布;
(4)调查污染源、污染途径、地表水与地下水的污染程度。
在调查过程中,着重调查地层界线、断层线、地貌分界线、自然地质现象发育处、井、泉、钻孔、地表水体和重要水利工程等,并采用数码摄影、摄像、素描图等手段,记录地质地貌、水文地质等现象,并现场测试采集水样的色-味-嗅、温度、pH值、电导率、氧化还原电位、溶解氧等指标。最后将调查数据记录在野外调查记录本和表格上,并将所有数据资料录入调查系统数据库中。
3. 数据样本描述
“雄安新区白洋淀流域平原区1:50 000水文地质数据集”有8种数据类型,包含“雄安新区白洋淀流域平原区1:50 000水文地质数据集基础调查数据属性表”、“雄安新区白洋淀流域平原区1:50 000水文地质数据集野外地质综合调查点数据属性表”、“雄安新区白洋淀流域平原区1:50 000水文地质数据集地层岩性界限调查点数据属性表”、“雄安新区白洋淀流域平原区1:50 000水文地质数据集水文地质调查点数据属性表”、“雄安新区白洋淀流域平原区1:50 000水文地质数据集环境地质调查点数据属性表”、“雄安新区白洋淀流域平原区1:50 000水文地质数据集钻孔基本情况数据属性表”、“雄安新区白洋淀流域平原区1:50 000水文地质数据集抽水试验综合成果数据属性表”、“雄安新区白洋淀流域平原区1:50 000水文地质数据集野外照片数据属性表”,共计3 844个数据属性表。
“雄安新区白洋淀流域平原区1:50 000水文地质数据集基础调查数据属性表”包含如下内容:统一编号、野外编号、经纬度(°)、平面坐标(X、Y)、地面高程、地理位置、图幅编号、调查点类型等,如表 3所示。
表 3. 雄安新区白洋淀流域平原区1:50 000水文地质数据集基础调查数据属性表“雄安新区白洋淀流域平原区1:50 000水文地质数据集野外地质综合调查点属性表”包含如下内容:统一编号、地貌与地质特征、水文地质特征、环境地质特征、访问及沿途特征、测点间关系特征、人工地质剖面示意图(图片)、调查点平面图(图片)、照片编号、调查单位、调查人、调查时间(年月日)、记录人、审核人等,如表 4所示。
表 4. 雄安新区白洋淀流域平原区1:50 000水文地质数据集野外地质综合调查点属性表“雄安新区白洋淀流域平原区1:50 000水文地质数据集地层岩性界限调查点属性表”包含如下内容:统一编号、野外编号、路线野外编号、经度(°)、纬度(°)、X坐标、Y坐标、地面高程、地理位置、图幅编号、地貌类型、照片编号、界线上两地层特征、接触关系、周围环境状况、点间关系、剖面示意图(图片)、平面位置示意图(图片)、备注、项目名称、调查单位、调查日期(年.月.日)、调查人、记录人、审核人等,如表 5所示。
表 5. 雄安新区白洋淀流域平原区1:50 000水文地质数据集地层岩性界限调查点属性表“雄安新区白洋淀流域平原区1:50 000水文地质数据集水文地质调查点属性表”包含如下内容:统一编号、取样情况、地形地貌特征、地下水类型、测点类型、井结构、井深(m)、水位埋深(m)、取水层段、水井用途、地下水特征(水温、色-味-嗅、浊度、矿化度、Eh、EC、DO、pH、TDS)、照片编号、调查单位、调查人、调查时间(年.月.日)、记录人、审核人等,如表 6所示。
表 6. 雄安新区白洋淀流域平原区1:50 000水文地质数据集水文地质调查点属性表“雄安新区白洋淀流域平原区1:50 000水文地质数据集环境地质调查点属性表”包含如下内容:统一编号、野外编号、图幅编号、经度、纬度、地理位置、地面高程、固体废弃物种类、占地类型、堆放体形状、占地修复难度、地层岩性描述、地貌、地形坡度、地表岩性、补给类型、泉水排泄、天气、气温、堆埋方式、堆置状态、防渗措施、与居民点距离、与地表水距离、与旅游胜地重要设施距离、场地稳定性、与城市区距离、平面示意图、剖面示意图、备注、项目名称、调查单位、调查日期、调查人、记录人、审核人,如表 7所示。
表 7. 雄安新区白洋淀流域平原区1:50 000水文地质数据集环境地质调查点属性表“雄安新区白洋淀流域平原区1:50 000水文地质数据集钻孔基本情况属性表”包含如下内容:统一编号、地理位置、图幅编号、孔口高程(m)、地面高程、钻机类型、钻孔类型、开孔日期、终孔日期、井斜(°)、开孔直径(m)、终孔直径(m)、终孔深度(m)、含水层初见水位(m)、静止水位(m)、取样情况、机长、地质编录人、调查时间(年月日)、审核人等,如表 8所示。
表 8. 雄安新区白洋淀流域平原区1:50 000水文地质数据集钻孔基本情况属性表“雄安新区白洋淀流域平原区1:50 000水文地质数据集抽水试验综合成果属性表”包含如下内容:统一编号、抽水试验编号、抽水试验类型、抽水试验设备、开始时间、第1落程延续时间、第1落程稳定时间、第1落程水位降升(m)、第1落程涌水量(m3)、水位恢复时间、抽水前静止水位(m)、抽水后静止水位(m)、试验总延续时间(h)、最大单位涌水量(m3)、调查单位、调查人、调查时间(年月日)、记录人、审核人等,如表 9所示。
表 9. 雄安新区白洋淀流域平原区1:50 000水文地质数据集抽水试验综合成果属性表“雄安新区白洋淀流域平原区1:50 000水文地质数据集野外照片属性表”包含如下内容:统一编号、拍照时间、照片类型、照片等,如表 10所示。
表 10. 雄安新区白洋淀流域平原区1:50 000水文地质数据集野外照片属性表4. 数据质量控制
工作区内开展的所有工作手段均依照国家行业规范《水文地质调查规范(1:50 000)》执行,所产生的数据表均依照规范附表执行,精度满足水文地质调查工作的规范要求。
工作区内的调查数据表 100%开展自检和互检,数据表整理完成后已经完成了15%抽检,抽查结果显示的质量可信度满足水文地质调查工作的规范要求。
5. 结论
白洋淀流域平原区1:50 000水文地质调查项目依照DZ/T0282-2015《水文地质调查规范(1:50 000)》开展安新县幅和雄县幅水文地质调查工作,在调查成果的基础上,进行集成研究,并编录汇集“雄安新区白洋淀流域平原区1:50 000水文地质数据集”,数据集共有8种数据类型,包含895个基础调查数据,22个野外地质综合调查点数据,82个地层岩性界限调查点数据,540个水文地质调查点数据,22个环境地质调查点数据,12个钻孔基本情况数据,71个抽水试验综合成果数据,2 200个野外照片数据,共计3 844个数据(.accdb格式)。
“雄安新区白洋淀流域平原区1:50 000水文地质数据集”的建立,为未来雄安新区规划建设的水文地质条件提供了详实的科学数据支撑,同时也为今后更准确地认识白洋淀流域地下水系统结构、地下水补-径-排条件、地下水动态变化特征等具有积累和重要的参考意义,同时该数据集的建立,也完善了国家基本比例尺水文地质数据库系统,为充分展示我国近年来的水文地质调查水平提供了一套基础性的数据资源,为最大限度的满足其他科研人员对该区域水文地质数据信息的查询需求,为实现信息资源共享创造了条件。为实现基础性、公益性地质调查工作成果的社会共享奠定基础(庞建峰,2017)。
致谢:“雄安新区白洋淀流域平原区1:50 000水文地质调查”项目的实施,得到中国地质调查局水环部郝爱兵主任、吴爱民副主任,以及荷兰联合国教科文组织国际水教育学院周仰效教授的大力支持,在此深表谢意。同时感谢河北省地矿局刘志刚总工、田文法处长等水文地质专家为项目组提供了大量技术指导,感谢协作单位河北水文地质工程勘察院为本项目提供了大量的调查研究资料,感谢项目承担单位中国地质环境监测院给予的一贯支持。
1. Introduction
Baiyangdian Lake is the largest freshwater lake and herbal marsh wetland in the North China Plain, formed by water catchment in the fan-fringe depression at the meeting point of the Yongding River and the Hutuo River in the piedmont of the Taihang Mountains, known as the “Kidney of North China”. On April 1, 2017, the CPC Central Committee and the State Council decided to establish the Hebei Xiongan New Area around Baiyangdian Lake, in order to create a wonderful ecosystem and build fresh and bright ecological cities where blue and green interweaves, and water and urban areas are integrated.
Owing to its special geographical location, Baiyangdian Lake plays an important role in conserving water resources, alleviating floods and delaying leaching, regulating the regional climate and maintaining species diversity (Wen LQ, 2001). In recent years, affected by climate and human activities, the Baiyangdian Lake basin has faced a series of ecological, geological and environmental challenges, such as reduced inflow, excessive extraction of groundwater, ground subsidence, water pollution and an unbalanced ecological structure in its wetland (Li YH, 2004; Yin JM et al., 2009; Zhang SZ, 2007). Under the grand trend of integration of Beijing, Tianjin and Hebei, as a barometer showing changes in the ecological environment of the Beijing-Tianjin-Hebei region and even the North China Plain, Baiyangdian Lake’s eco-environmental deterioration also reflects how fragile ecological security and water security are within the region. To mitigate constraints to the ecosystem, resources and environments, promote the establishment of a stable ecology and carry out the overall development strategy for the region, it is imperative to further investigate water engineering and environmental geology in the Baiyangdian Lake Basin. From the perspective of maintaining regional water and ecological security, finding scientific means to protect and restore Baiyangdian Lake has become a crucial issue that requires urgent solutions. Conducting a hydrogeological survey in the region at the right time is not only very important in order to effectively preserve the geological environment, but also to provide basic support for the scientific protection and restoration of Baiyangdian Lake’s ecological environment in the future.
The survey working area for this international standard 1:50 000 hydrogeological map is about 800 km2, located on the north side of Baiyangdian Lake (see Fig. 1).
The objective of this survey is to understand in detail basic information such as micro-topographical features, groundwater system structure, groundwater recharge, runoff and discharge conditions, groundwater dynamic change features, the current status of groundwater development and exploitation, as well as correlation between surface water and groundwater within the working area.
The dataset covers a variety of data types, including those compiled from geological survey, geological lithological survey, hydrogeological survey, geological environmental survey, drilling, pumping tests and photographs taken during the survey (see Table 1). This dataset not only provides basic data to support the scientific evaluation of groundwater resources and quality within the Baiyangdian Lake Basin, building a reasonable wetland ecological and hydrogeological monitoring network, but also gives specialized technical support to both research concerned with the sustainable exploitation of water resources and practices to restore the wetland ecology in the region.
Table 1. Metadata table of database (dataset)2. Data Acquisition and Processing
Several methods, such as information collection, remote-sensing interpretation, geophysical exploration, hydrogeological drilling, pumping test and field survey, were used in this hydrogeological survey (see Table 2).
Table 2. Table of the category of surveyed data2.1 Dataset from Remote-Sensing Interpretation
Hydrogeological remote-sensing interpretation is based on remote-sensed data and information. Full color spectral images with a resolution of 2 m and in the spectral range of 0.49~0.69 μm were generated by various electronic or optical remote sensors installed on the remote-sensing platform of satellite GF-1, without direct contact with surface objects, and were then used to directly determine elements closely related to hydrogeological conditions, such as topographic type, stratum lithology and geological structure, based on image features such as image geometry, size, hue, color and shadow.
For remote-sensing interpretation, the original remote-sensed images with accurate geographical coordinates and projection information were first used to make geometrical corrections; DEM elevation data were then used to correct newly-acquired remote-sensed images to eliminate image distortion due to landform topographic irregularities, in order to obtain accurate surface coordinates and projection information. Finally, the corrected remote-sensed images were enhanced for their color, so that different remote-sensed data had different spatial resolution, spectral resolution and time-phase resolution. Based on the elements for interpretation, interpretation marks were made on the corrected and adjusted remote-sensed images, then, using visual direction judgment, various geological features in the remote-sensed images were determined and marked. For those elements without marked features, field survey was performed for verification.
2.2 Geophysical Prospecting
Considering the hydrogeological problems to be solved and the geophysical features within the working area, induced polarization sounding was used for measurements required for geophysical prospecting.
When deploying field geophysical prospecting work for measurement, the electric dipole and the magnetic probe in a horizontal direction are laid perpendicular to each other, with the deviation between their orientations no greater than 1°, and with the horizontal magnetic rods at least 8 m from the central points. Magnetic rods were placed horizontally at a depth of 50 m underground, with the electrodes 20~30 cm underground. There was at most 3 continuously failed frequency points when observing the apparent resistivity and the phase versus frequency curve, the correlation value was more than 0.5 and the number of successful frequency points accounted for 75%. The measured survey points constituted at least 3% of the total coordinate points throughout the area, the full frequency apparent resistivity (ρxy) curve and the phase (φxy) curve at the survey point was consistent with those at the surveyed point, the numerical values of the corresponding frequency points were similar and after editing and interpolation, the relative square error (m) between the survey point and the surveyed point, both of which were polarized in the same mode, was no greater than 5% (i.e. m ≤ 5%). After measurement, the measured data were checked and screened, with some data being removed after the screened timing data were processed with the acquisition software. When interpreting data, data on stratum and drilled boreholes were referenced to further ensure the quality of the interpreted results.
2.3 Hydrogeological Drilling
Hydrogeological drilling is mainly used to directly understand features of underground aquifers and aims at acquiring necessary hydrogeological parameters by acquiring rock, soil and water samples during drilling and conducting tests in boreholes.
Normal circulation core drilling is used in hydrogeological drilling; for clayey soil, the mean core recovery is over 70% and at least 60% for a single layer; for sandy soil, loose sand gravel stone, highly weathered zones in bedrocks and fractured zones, the mean core recovery is over 40% and at least 30% for a single layer. The borehole was measured for deviation and corrected for depth for every 50 m drilled, in order to maintain borehole deviation below 1.5° over the depth and with a depth error less than 2‰, subject to the corrected borehole depth. Geological recording for the borehole was performed while the drilling was in progress. After the borehole was completed, geophysical logging and pumping tests were conducted; the borehole geological histogram, logging curve and the results from the pumping test were prepared (see Fig. 2), and finally groundwater samples were taken for analysis.
For geological recording purposes, cores are divided into layers by their acquisition sequence from new to old and then recorded and described, with a description of the core’s lithology, mineral ingredients, structural components, biological fossils, sedimentary structures, occurrence, porosity and fissures, various secondary changes, etc.
Borehole logging includes three methods: natural gamma-ray logging, spontaneous potential logging and ultrasonic imaging logging. For each log, the diameter throughout the borehole must first be measured to understand the borehole diameter changes, and in what condition the casing is; when there is casing inside the borehole, the difference between the measured value of the casing diameter and the known borehole diameter shall be within ± 2 mm. The change in the borehole diameter curve represents the change in lithological hardness in the strata; the spontaneous potential curve can show the position of the permeable formation; the natural gamma-ray curve enables calculation of the content of argillaceous matter in the strata; images from supersonic imaging may also allow identification of how the stratum fissures develop and the determination of dip of the fissures.
2.4 Pumping Test
The pumping test is intended to obtain hydrogeological parameters regarding the aquifer and aeration zone in order to provide basic data for the evaluation of groundwater resources. On the basis of analyzing data from existing hydrogeological boreholes and pumping tests in existing pumping (domestic) wells, subject to the spatial distribution features of parameters, the pumping test was conducted at localities where there were insufficient parameters. For the pumping test, the single well steady flow method was used to pump water in the reverse direction for three drawdowns for which the steady duration was 24 h, 16 h and 8 h. When water flow was very small or the water drop was insignificant, one drawdown could be made, but its steady duration was at least 24 h. When the water level in the pumping borehole could not be stabilized, a non-steady flow test with the largest drawdown was conducted. The pumping duration was dependent on the curve s-lgt, but was generally at least 24 h. During steady duration of the steady-flow pumping test, the water yield was reached and the water level was either steady or fluctuating within a certain range, but not depicting a rising or dropping trend. The error in water level fluctuation typically did not exceed 1% of the mean drawdown, and the fluctuation of the water yield was at least 3% of the mean flow rate.
2.5 Hydrogeological Survey in the Field
The main purpose of the hydrogeological survey in the field is to survey human activities related to water resources, groundwater, pollution and collect water samples. By observing, visiting and describing various phenomena relating to the geology, landform, groundwater points and others associated with groundwater for comprehensive study, it is intended to find their inherent relationships and identify groundwater depth and distribution. The main goals of a hydrogeological survey are:
(1) To investigate subsurface hydrogeological conditions and identify subsurface groundwater recharge, runoff and discharge conditions and its dynamic regularities;
(2) To investigate the current status, means of recovery, recovery volume and water supply objectives of groundwater;
(3) To investigate groundwater spatial distribution at cities and towns, industrial and mining enterprises and agricultural fields in concentrated areas;
(4) To investigate pollution sources, pollution paths, the extent to which surface water and groundwater is polluted.
During investigation, the emphasis is on investigating strata boundaries, fault lines, topographic border lines, places where natural geological phenomena are developed, wells, springs, boreholes, surface water bodies and important hydraulic projects using digital photography, camera recording, sketching, etc. to record phenomena such as geological landforms and hydrogeology and testing samples collected in the field with respect to indexes such as color, odor, scent, temperature, pH value, conductivity, oxidation/reduction potential and dissolved oxygen. Finally, the data are noted in the field investigation logbook and sheets, and then all data are entered into the investigation system database.
3. Description of Data Samples
The “Dataset of the 1:50 000 hydrogeological map of the Plain Area of the Baiyangdian Lake Basin, Xiongan New Area”, has 8 types of data, including “Properties of data from basic survey for the dataset of the 1:50 000 hydrogeological map of the Plain Area of the Baiyangdian Lake Basin, Xiongan New Area”, “Properties of data from combined geological field survey points for the dataset of the 1:50 000 hydrogeological map of the Plain Area of the Baiyangdian Lake Basin, Xiongan New Area”, “Properties of data from stratum lithological boundary survey points for the dataset of the 1:50 000 hydrogeological map of the Plain Area of the Baiyangdian Lake Basin, Xiongan New Area”, “Properties of data from hydrogeological survey points for the dataset of the 1:50 000 hydrogeological map of the Plain Area of the Baiyangdian Lake Basin, Xiongan New Area”, “Properties of data from environmental geological survey points for the dataset of the 1:50 000 hydrogeological map of the Plain Area of the Baiyangdian Lake Basin, Xiongan New Area”, “Properties of data on basic information of drill boreholes for the dataset of the 1:50 000 hydrogeological map of the Plain Area of the Baiyangdian Lake Basin, Xiongan New Area”, “Properties of data from comprehensive results of pumping tests for the dataset of the 1:50 000 hydrogeological map of the Plain Area of the Baiyangdian Lake Basin, Xiongan New Area” and “Properties of data from field pictures for the dataset of the 1:50 000 hydrogeological map of the Plain Area of the Baiyangdian Lake Basin, Xiongan New Area”, adding up to 3, 844 data in total.
“Properties of data from basic survey for the dataset of the 1:50 000 hydrogeological map of the Plain Area of the Baiyangdian Lake Basin, Xiongan New Area” includes: Unified No., Field No., Longitude and latitude (°), Planar coordinates (X, Y), Surface elevation, Geographical location, Map No., Type of survey point, etc. as shown in Table 3.
Table 3. Properties of data from basic survey for the dataset of the 1:50 000 hydrogeological map of the Plain Area of the Baiyangdian Lake Basin, Xiongan New Area“Properties of data from combined geological field survey points for the dataset of the 1:50 000 hydrogeological map of the Plain Area of the Baiyangdian Lake Basin, Xiongan New Area” includes: Unified No., Landform and geological feature, Hydrogeological feature, Environmental geological feature, Visit and en-route feature, Feature of relations between measurement points, Artificial geological profile sketch (image), Survey point plan (image), Picture No., Investigation entity, Investigator, date of investigation (month/day/year), Recorder, Approver, etc. as shown in Table 4.
Table 4. Properties of data from combined geological field survey points for dataset of 1:50 000 hydrogeological map of the Plain Area of the Baiyangdian Lake Basin, Xiongan New Area“Properties of data from stratum lithological boundary survey points for the dataset of the 1:50 000 hydrogeological map of the Plain Area of the Baiyangdian Lake Basin, Xiongan New Area” includes: Unified No., Field No., Route field No., Longitude (°), Latitude (°), Coordinates X and Y, Surface elevation, Geographical location, Map No., Landform type, Picture No., Features of two strata on borderline, Contact relationship, Surrounding environment, Relation between points, Profile sketch (image), Planar location sketch (image), Remark, project name, Investigation entity, Date of investigation (month/day/year), Investigator, Recorder, Approver, etc. as shown in Table 5.
Table 5. Properties of data from stratum lithological boundary survey points for dataset of 1:50 000 hydrogeological map of the Plain Area of the Baiyangdian Lake Basin, Xiongan New Area“Properties of data from hydrogeological survey points for the dataset of the 1:50 000 hydrogeological map of the Plain Area of the Baiyangdian Lake Basin, Xiongan New Area” includes: Unified No., Sampling, Landform and topographical feature, Groundwater type, Measurement point type, Well structure, Well depth (m), Water level depth (m), Water-taking section, Well usage, Groundwater characteristics (temperature, color, odor, scent, turbidity, salinity, Eh, EC, DO, pH, TDS), Picture No., Investigation entity, Investigator, Date of investigation (month/day/year), Recorder, Approver, etc. as shown in Table 6.
Table 6. Properties of data from hydrogeological survey points for the dataset of the 1:50 000 hydrogeological map of the Plain Area of the Baiyangdian Lake Basin, Xiongan New Area“Properties of data from environmental geological survey points for the dataset of the 1:50 000 hydrogeological map of the Plain Area of the Baiyangdian Lake Basin, Xiongan New Area” includes: Unified No., Field No., Map No., Longitude, Latitude, Geographical location, Surface elevation, Type of solid wastes, Land occupation type, Shape of accumulation body, Difficulty in restoration of occupied land, Description of stratum lithology, Landform, Topographical gradient, Surface lithology, Recharge type, Spring water discharge, Weather, Air temperature, Piling and burying methods, Banking-up state, Seepage proofing measures, Distance from residential area, Distance from the surface water, Distance from critical tourism destination facilities, Site stability, Distance from urban area, Plan sketch, Profile sketch, Remark, Project name, Investigation entity, Date of investigation, Investigator, Recorder, Approver, etc. as shown in Table 7.
Table 7. Properties of data from environmental geological survey points for the dataset of the 1:50 000 hydrogeological map of the Plain Area of the Baiyangdian Lake Basin, Xiongan New Area“Properties of data from basic information of drill boreholes for the dataset of the 1:50 000 hydrogeological map of the Plain Area of the Baiyangdian Lake Basin, Xiongan New Area” includes: Unified No., Geographical location, Map No., Borehole head elevation (m), Surface elevation, Drill rig type, Borehole type, Drilling start date, Drilling end date, Borehole deviation (°), Borehole start diameter (m), Borehole end diameter (m), Final borehole depth (m), Initial water level of aquifer (m), Static water level (m), Sampling, Drilling crew head, Geological recorder, date of investigation (month/day/year) and Approver, etc., as shown in Table 8.
Table 8. Properties of data from basic information of drill boreholes for the dataset of the 1:50 000 hydrogeological map of the Plain Area of Baiyangdian Lake Basin, Xiongan New Area“Properties of data from comprehensive results of pumping tests for the dataset of the 1:50 000 hydrogeological map of the Plain Area of Baiyangdian Lake Basin, Xiongan New Area” includes: Unified No., Pumping test No., Pumping test type, Equipment for pumping test, Start date, Duration/Steady duration/Water level rise and drop (m)/Water yield (m3) for drawdown #1, Duration for water level restoration, Static water level (m) before and after pumping, Total duration of the test (h), Max. water yield per unit (m3), Investigation entity, Investigator, Date of investigation (month/day/year), Recorder, Approver, etc. as shown in Table 9.
Table 9. Properties of data from comprehensive results of pumping tests for the dataset of the 1:50 000 hydrogeological map of the Plain Area of Baiyangdian Lake Basin, Xiongan New Area“Properties of data from field pictures for the dataset of the 1:50 000 hydrogeological map of the Plain Area of the Baiyangdian Lake Basin, Xiongan New Area” includes: Unified No., Date of photography, Picture type, Pictures, etc. as shown in Table 10.
Table 10. Properties of data from field pictures for the dataset of the 1:50 000 hydrogeological map of the Plain Area of the Baiyangdian Lake Basin, Xiongan New Area4. Data Quality Control
All work within the study area was done in accordance with the national specification Specification for Hydrogeological Survey (1:50 000), and all datasheets were generated as per its attached Sheet, the degree of achieved precision meeting its requirements.
All survey datasheets for the working area were 100% self-checked and mutually-checked, 15% of all collated datasheets were randomly inspected and the results from such random inspections demonstrated that the quality met the credibility requirement for hydrogeological survey in the specification.
5. Conclusions
In the project of the “Hydrogeological Survey (1:50 000) on the Plain Area of the Baiyangdian Lake Basin, Xiongan New Area”, the hydrogeological survey of Anxin and Xiong Counties was performed in accordance with DZ/T0282-2015 Specification for Hydrogeological Survey (1:50 000) and integrated research was undertaken, building on the survey result, and finally resulting in the creation of the “Dataset of the 1:50 000 hydrogeological map of the Plain Area of the Baiyangdian Lake Basin, Xiongan New Area”. This dataset has 8 types of data, including 895 basic survey data, 22 data from combined geological field survey points, 82 data from stratum lithological boundary survey points, 540 data from hydrogeological survey points, 22 data from environmental geological survey points, 12 data on basic information from drilled boreholes, 71 data from comprehensive results of pumping tests and 2 200 data from field pictures, constituting 3, 844 data in total (format: *.accdb).
Creation of the “Dataset of the 1:50 000 hydrogeological map of the Plain Area of the Baiyangdian Lake Basin, Xiongan New Area” not only provides detailed scientific data to support understanding of the hydrogeological conditions for the purposes of planning and building Xiong’an New Area in the future, but also has cumulative and important implications as a reference work, for more accurately understanding the structure of the groundwater system, groundwater recharge, runoff and discharge conditions and features of groundwater dynamic change in the Baiyangdian Lake Basin in the future. The creation of the dataset complements the national basic scale hydrogeological database system, provides a fundamental data resource to fully demonstrate the recent level of hydrogeological survey in China and generates conditions for satisfying the need for other researchers to query hydrogeological data and information about the region to the maximum extent, sharing information resources. Additionally, it provides a foundation for the social sharing of results from the fundamental and public benefit of geological survey (Pang JF, 2017).
Acknowledgement: We hereby extend our heartful gratitude to Director Hao Aibing and Deputy Director Wu Aimin of CGS’s Department of Hydrology and Environmental Geology and Professor Zhou Yangxiao of UNESCO-IHE Institute For Water Education for their vigorous support of the implementation of the project “Hydrogeological Survey (1:50 000) on the Plain Area of the Baiyangdian Lake Basin, Xiongan New Area”. We also thank different hydrogeological experts, including Chief Engineer Liu Zhigang and Division Director Tian Wenfa of the Hebei Bureau of Geology and Mineral Resource Exploration for their immense technical support, the collaborator Hebei Hydrological Engineering Geological Exploration Institute for providing research information and China Institute for Geo-environmental Monitoring, who undertook the project, for their consistent support.
-
表 1 数据库(集)元数据简表
表 2 调查数据类型统计表
表 3 雄安新区白洋淀流域平原区1:50 000水文地质数据集基础调查数据属性表
表 4 雄安新区白洋淀流域平原区1:50 000水文地质数据集野外地质综合调查点属性表
表 5 雄安新区白洋淀流域平原区1:50 000水文地质数据集地层岩性界限调查点属性表
表 6 雄安新区白洋淀流域平原区1:50 000水文地质数据集水文地质调查点属性表
表 7 雄安新区白洋淀流域平原区1:50 000水文地质数据集环境地质调查点属性表
表 8 雄安新区白洋淀流域平原区1:50 000水文地质数据集钻孔基本情况属性表
表 9 雄安新区白洋淀流域平原区1:50 000水文地质数据集抽水试验综合成果属性表
表 10 雄安新区白洋淀流域平原区1:50 000水文地质数据集野外照片属性表
Table 1. Metadata table of database (dataset)
Table 2. Table of the category of surveyed data
Table 3. Properties of data from basic survey for the dataset of the 1:50 000 hydrogeological map of the Plain Area of the Baiyangdian Lake Basin, Xiongan New Area
Table 4. Properties of data from combined geological field survey points for dataset of 1:50 000 hydrogeological map of the Plain Area of the Baiyangdian Lake Basin, Xiongan New Area
Table 5. Properties of data from stratum lithological boundary survey points for dataset of 1:50 000 hydrogeological map of the Plain Area of the Baiyangdian Lake Basin, Xiongan New Area
Table 6. Properties of data from hydrogeological survey points for the dataset of the 1:50 000 hydrogeological map of the Plain Area of the Baiyangdian Lake Basin, Xiongan New Area
Table 7. Properties of data from environmental geological survey points for the dataset of the 1:50 000 hydrogeological map of the Plain Area of the Baiyangdian Lake Basin, Xiongan New Area
Table 8. Properties of data from basic information of drill boreholes for the dataset of the 1:50 000 hydrogeological map of the Plain Area of Baiyangdian Lake Basin, Xiongan New Area
Table 9. Properties of data from comprehensive results of pumping tests for the dataset of the 1:50 000 hydrogeological map of the Plain Area of Baiyangdian Lake Basin, Xiongan New Area
Table 10. Properties of data from field pictures for the dataset of the 1:50 000 hydrogeological map of the Plain Area of the Baiyangdian Lake Basin, Xiongan New Area
-
李英华, 崔保山, 杨志峰. 2004.白洋淀水文特征变化对湿地生态环境的影响[J].自然资源学报, 19(1):62-68 doi: 10.3321/j.issn:1000-3037.2004.01.008
庞健峰, 丁孝忠, 韩坤英, 曾勇, 陈安蜀, 张艳玲, 张庆合, 姚冬生. 2017.1:100万中华人民共和国地质图空间数据库[J].中国地质, 44(S1):8-18 http://geochina.cgs.gov.cn/geochina/ch/reader/view_abstract.aspx?file_no=2017S102&flag=1
文丽青. 2001.白洋淀水质污染分析及综合治理研究[J].河北环境科学(3):46-48 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK200101710595
尹健梅, 程伍群, 严磊, 陈秀凤. 2009.白洋淀湿地水文水资源变化趋势分析[J].水资源保护, 25(1):52-54 doi: 10.3969/j.issn.1004-6933.2009.01.014
张素珍, 马静, 李贵宝. 2007.白洋淀湿地面临的生态问题及可持续发展对策[J].南水北调与水利科技, 5(4):53-56 doi: 10.3969/j.issn.1672-1683.2007.04.016
Li Yinghua, Cui Baoshan, Yang Zhifeng. 2004. Influence of hydrological characteristic change of Baiyangdian on the ecological environment in wetland[J]. Journal of Natural Resources, 19(1):62-68 (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zrzyxb200401008
Pang Jianfeng, Ding Jianzhong, Han Kunying, Zeng Yong, Chen Anshu, Zhang Yanling, Zhang Qinghe, Yao Dongsheng. 2017. The National 1:1 000 000 Geological Map Spatial Database[J]. Geology in China, 44(S1):10-23 http://d.old.wanfangdata.com.cn/Periodical/OA000006962
Wen Liqing. 2001. Analysis and comprehensive treatment of water pollution in Baiyang Lake[J]. Hebei environmental science, (3):46-48 (in Chinese)
Yin Jianmei, Cheng Wuqun, Yan Lei, et al. 2009. Change of water resources in the Baiyangdian Wetlang[J]. Water resources protection, 25(1):52-54 (in Chinese with English abstract)
Zhang Suzhen, Ma Jing, Li Guibao. 2007. The ecological problems and sustainable development countermeasures of the Bai Yang Dian Wet Land[J]. South-to-North Water Transfers and Water Science & Technology, 5(4):53-56 (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=nsbdyslkj200704016
期刊类型引用(9)
1. 康春景,高轩,邵鹏远. 水资源水文地质图数据采集及地下水资源评价研究——河南省为例. 矿产与地质. 2024(01): 160-167 . 百度学术
2. Bo Han,Zhen Ma,Liang-jun Lin,Hong-wei Liu,Yi-hang Gao,Yu-bo Xia,Hai-tao Li,Xu Guo,Feng Ma,Yu-shan Wang,Ya-long Zhou,Hong-qiang Li. Planning and construction of Xiong'an New Area(city of over 5 million people): Contributions of China's geologists and urban geology. China Geology. 2024(03): 382-408 . 必应学术
3. 马震,黄庆彬,林良俊,张曦,韩博,夏雨波,郭旭. 雄安新区多要素城市地质调查实践与应用. 华北地质. 2022(01): 58-68 . 百度学术
4. 马震,夏雨波,李海涛,韩博,余学中,周亚龙,王雨山,郭旭,李洪强,裴艳东. 雄安新区自然资源与环境-生态地质条件分析. 中国地质. 2021(03): 677-696 . 本站查看
5. 宋博,张发旺,杨会峰,刘春雷,孟瑞芳,南天. 基于生态优先的水资源承载力分源评价及应用——以河北保定平原为例. 中国地质. 2021(04): 1156-1165 . 本站查看
6. 李海涛,凤蔚,王凯霖,赵凯,李刚,张源,李木子,孙璐,陈一超,尤冰. 雄安新区地下水资源概况、特征及可开采潜力. 中国地质. 2021(04): 1112-1126 . 本站查看
7. 赵保强,张兆祎,王克冰,王川,徐永利,耿晓磊. 河北省古冶幅、唐山幅、范各庄煤矿幅1: 50000地质图空间数据库. 中国地质. 2020(S1): 112-142 . 本站查看
8. 马震,夏雨波,王小丹,韩博,高伊航. 雄安新区工程地质勘查数据集成与三维地质结构模型构建. 中国地质. 2019(S2): 123-138 . 本站查看
9. 张永强,谈乐,李小明. 陕西石泉-旬阳金矿带整装勘查区饶峰幅等7个图幅区1∶50000水系沉积物测量原始数据集. 中国地质. 2019(S1): 46-54 . 本站查看
其他类型引用(1)
-