中国地质调查局 中国地质科学院主办
科学出版社出版

雅鲁藏布江蛇绿岩的侵位机制:一个新的分析模型

罗照华. 2019. 雅鲁藏布江蛇绿岩的侵位机制:一个新的分析模型[J]. 中国地质, 46(1): 21-31. doi: 10.12029/gc20190102
引用本文: 罗照华. 2019. 雅鲁藏布江蛇绿岩的侵位机制:一个新的分析模型[J]. 中国地质, 46(1): 21-31. doi: 10.12029/gc20190102
LUO Zhaohua. 2019. The emplacement of the Yarlung Zangbo ophiolites:A new analytical model[J]. Geology in China, 46(1): 21-31. doi: 10.12029/gc20190102
Citation: LUO Zhaohua. 2019. The emplacement of the Yarlung Zangbo ophiolites:A new analytical model[J]. Geology in China, 46(1): 21-31. doi: 10.12029/gc20190102

雅鲁藏布江蛇绿岩的侵位机制:一个新的分析模型

  • 基金项目:
    中国地质调查局地质大调查项目(121201102000150069-01,1212011220921)资助
详细信息
    作者简介: 罗照华, 1956年生, 男, 教授, 博士生导师, 矿物学、岩石学、矿床学专业, 从事火成岩岩石学、区域岩石大地构造研究; E-mail:luozh@cugb.edu.cn
  • 中图分类号: P588.14

The emplacement of the Yarlung Zangbo ophiolites:A new analytical model

More Information
    Author Bio: LUO Zhaohua, male, born in 1956, professor, supervisor of doctor candidates, engages in the study of igneous petrology and regional geotectonics .
  • 蛇绿岩侵位机制是板块构造理论中一直没有得到合理阐释的科学问题,制约了许多次级问题的解决。本文综述了已发表的关键资料和地质观察,提出了一个新的分析模型。蛇绿岩带的长距离延伸表明其形成过程与板块汇聚过程紧密相关;冈底斯岩浆弧的两期弧岩浆活动暗示汇聚板块边缘的构造性质曾经发生过转换;前人报道的玻安岩缺乏充分的地质学、岩石学和矿物学约束;强还原晶体群的普遍性暗示蛇绿岩侵位过程与大规模流体活动有关。据此,本文提出了一个由流体协助的蛇绿岩侵位模型,认为俯冲板块回卷、断离、流体-岩石圈相互作用、大洋岩石圈穹隆等过程是蛇绿岩侵位的基本控制因素。

  • 加载中
  • 图 1  雅鲁藏布江缝合带(YZSZ)蛇绿岩的地质特征

    Figure 1. 

    图 2  利用火成岩全岩化学预测的源区残留橄榄石牌号

    Figure 2. 

    图 3  日喀则"玻安岩"与Izu-bonin-Mariana弧和Tonga弧玻安岩的比较(图例同图 2)

    Figure 3. 

    图 4  罗布莎方辉橄榄岩中的蛇纹石脉照片

    Figure 4. 

    图 5  雅鲁藏布江蛇绿岩侵位模型

    Figure 5. 

  • Acharyya S K. 2007. Collisional emplacement history of the NagaAndaman ophiolites and the position of the eastern Indian suture[J]. J. Asian Earth Sci., 29(2/3):229-242. http://www.sciencedirect.com/science/article/pii/S1367912006000757

    Agard P, Jolivet L, Vrielynck B, Burov E, Monié P. 2007. Plate acceleration:The obduction trigger?[J]. Earth and Planetary Science Letters, 258:428-441. doi: 10.1016/j.epsl.2007.04.002

    Brett R C, Russell J K, Andrews G D M, Jones T J. 2015. The ascent of kimberlite:Insights from olivine[J]. Earth and Planetary Science Letters, 424:119-131. doi: 10.1016/j.epsl.2015.05.024

    Brown R J, Manya S, Buisman I, Fontana G, Field M, Mac Niocaill C, Sparks R S J, Stuart F M. 2012. Eruption of kimberlite magmas:Physical volcanology, geomorphology and age of the youngest kimberlitic volcanoes known on earth (the Upper Pleistocene/Holocene Igwisi Hills volcanoes, Tanzania)[J]. Bull. Volcanol, 74:1621-1643. doi: 10.1007/s00445-012-0619-8

    Cooper L B, Plank T A, Arculus R J, Hauri E H, Hall P S, Parman S W. 2010. High-Ca boninites from the active Tonga arc[J]. J. Geophys. Res., B115. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=08434982329970c23a9f1520c44e0639

    Dai J G, Wang C S, Polat A, Santosh M, Li Y L, Ge Y K. 2013. Rapid forearc spreading between 130 and 120 Ma:Evidence from geochronology and geochemistry of the Xigaze ophiolite, southern Tibet[J]. Lithos, 172-173:1-16. doi: 10.1016/j.lithos.2013.03.011

    Dilek Y. 2003. Ophiolite concept and its evolution[J]. Geological Society of America, Special Paper 373:1-16. http://petrology.oxfordjournals.org/cgi/ijlink?linkType=ABST&journalCode=papersgsa&resid=373/0/1

    Duretz T, Agard P, Yamato P, Ducassou C, Burov E B, Gerya T V. 2016. Thermo-mechanical modeling of the obduction process based on the Oman Ophiolite case[J]. Gondwana Research, 32:1-10. doi: 10.1016/j.gr.2015.02.002

    Filiberto J, Dasgupta R. 2011. Fe2+-Mg partitioning between olivine and basaltic melts:Applications to genesis of olivine-phyric shergottites and conditions of melting in the Martian interior[J]. Earth and Planetary Science Letters, 304:527-537. doi: 10.1016/j.epsl.2011.02.029

    González-Jiménez J M, Griffin W L, Gervilla F, Proenza J A, O'Reilly S Y, Pearson N J. 2014a. Chromitites in ophiolites:How, where, when, why? Part Ⅰ. A review and new ideas on the origin and signifi cance of platinum-group minerals[J]. Lithos, 189:127-139. doi: 10.1016/j.lithos.2013.06.016

    González-Jiménez J M, Griffin W L, Proenza J A, Gervilla F, O'Reilly S Y, Akbulut M, Pearson N J, Arai S[J]. 2014b. Chromitites in ophiolites:How, where, when, why? Part Ⅱ. The crystallization of chromitites[J]. Lithos., 189:140-158. doi: 10.1016/j.lithos.2013.09.008

    Grant T B, Harlov D E, Rhede D. 2016. Experimental formation of pyroxenite veins by reactions between olivine and Si, Al, Ca, Na, and Cl-rich fuids at 800℃ and 800 MPa:Implications for fuid metasomatism in the mantle wedge[J]. American Mineralogist, 101:808-818. doi: 10.2138/am-2016-5441

    Griffin W L, Afonso J C, Belousova E A, Gain S E, Gong X H, González-Jiménez J M, Howell D, Huang J X, McGowan N, Pearson N J, Satsukawa T, Shi R, Williams P, Xiong Q, Yang J S, Zhang M, O'Reilly S Y. 2016. Mantle recycling:Transition zone metamorphism of Tibetan ophiolitic peridotites and its tectonic implications[J]. Journal of Petrology, 57(4):655-684. doi: 10.1093/petrology/egw011

    Hébert R, Bezard R, Guilmette C, Dostal J, Wang C S, Liu Z F. 2012. The Indus-Yarlung Zangbo ophiolites from Nanga Parbat to Namche Barwa syntaxes, southern Tibet:First synthesis of petrology, geochemistry, and geochronology with incidences on geodynamic reconstructions of Neo-Tethys[J]. Gondwana Research, 22(2):377-397. doi: 10.1016/j.gr.2011.10.013

    Hildreth W. 2007. Quaternary magmatism in the Cascades:Geological perspectives[J]. USGS Professional Paper, 1744, 1-125

    Kanayama K, Umino S, Ishizuka O. 2012. Eocene volcanism during the incipient stage of Izu-Ogasawara arc:Geology and petrology of the Mukojima Island Group, the Ogasawara Islands[J]. The Island Arc, 21:288-316. doi: 10.1111/iar.2012.21.issue-4

    Kelley S P, Wartho J A. 2000. Rapid kimberlite ascent and the significance of Ar-Ar ages in xenolith phlogopites[J]. Science, 289:609-611. doi: 10.1126/science.289.5479.609

    Litasov K D, Shatskiy A, Ohtani E. 2014. Melting and subsolidus phase relations in peridotite and eclogite systems with reduced CO-H fluid at 3-16 GPa[J]. Earth and Planetary Science Letters, 391:87-99. doi: 10.1016/j.epsl.2014.01.033

    Majumdar A S, Hövelmann J, Vollmer C, Berndt J, Mondal S K, Putnis A. 2016. Formation of Mg-rich olivine pseudomorphs in serpentinized dunite from the Mesoarchean Nuasahi massif, eastern India:Insights into the evolution of fluid composition at the mineralfluid interface[J]. Journal of Petrology, 57(1):3-26. doi: 10.1093/petrology/egv070

    Rutherford M J. 2008. Magma ascent rates[J]. Reviews in Mineralogy and Geochemistry, 69:241-271. doi: 10.2138/rmg.2008.69.7

    Tang Juxing, Wang Liqiang, Wang Guozhi, Lang Xinghai, Wang Xiongwu, Zheng Wenbao, Gao Yiming, Ying Lijuan, Huang Yong, Luo Maocheng, Chen Wei, Tang Xiaoqian, Zhang Juncheng, Leng Qiufeng, Li Na, Zhao Fufeng, Zhang Tingtingting, Yao Xiaofeng, Kang Haoran, Cai Huihui, Yang Chao, Duan Jilin, Lin Xin, Tang Pan. 2017. Lithogeochemical and chronological test dataset of Mesozoic and Cenozoic porphyry metallogenic system in the eastern section of the Gangdise Metallogenic Belt, Tibet[J]. Geology in China, 44(S1):64-71(in Chinese with English abstract).

    Yajima K and Fujimaki H. 2001. High-Ca and low-Ca boninites from Chichijima, Bonin (Ogasawara) archipelago, Jap[J]. Magazine Min. Petrol. Sci., 30:217-236.

    Zhang Qizhi, Ba Dengzhu, Xiong Fahui, Yang Jingsui. 2017. Discussion on genesis process and deep prospecting breakthrough of Luobusa chromitite, Tibet[J]. Geology in China, 44(2):224-241(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi201702002

    Zhou M F, Robinson P T. 1994. High-Cr and high-Al podiform chromitites, Western China:Relationship to partial melting and melt/rock reaction in the upper mantle[J]. International Geology Review, 36(7):678-686. doi: 10.1080/00206819409465481

    白文吉, 杨经绥, 方青松, 任玉峰, 颜秉刚, 戎合. 2005.西藏罗布莎蛇绿岩的Os -Ir -Ru合金及其中玻安岩质包体的研究[J].地质学报, 79(6):814-822. doi: 10.3321/j.issn:0001-5717.2005.06.010

    鲍佩声, 苏犁, 王军, 翟国庆. 2015.雅鲁藏布江蛇绿岩[M].北京:地质出版社, 267.

    鲍佩声. 2009.再论蛇绿岩中豆荚状铬铁矿的成因——质疑岩石-熔体反应成矿说[J].地质通报, 8(12):1741-1761. doi: 10.3969/j.issn.1671-2552.2009.12.008

    陈根文, 夏斌, 钟志洪, 王国强, 王核, 赵太平, 汪劲草, 张莉, 漆亮, 李荪蓉. 2003.西藏得几蛇绿岩体中玻安岩的地球化学特征及其地质意义[J].矿物学报, 23(1):91-96. doi: 10.3321/j.issn:1000-4734.2003.01.015

    方青松, 白文吉. 1981.西藏首次发现含金刚石的阿尔卑斯型岩体[J].地质论评, 27(5):455-457. doi: 10.3321/j.issn:0371-5736.1981.05.013

    郭铁鹰, 梁定益, 张益智, 等. 1991.西藏阿里地质[M].武汉:中国地质大学出版社, 464.

    江万. 2014.西藏罗布莎铬铁矿总结研究[R].中国地质科学院地质力学研究所, 146.

    康志强, 付文春, 田光昊. 2015.西藏桑日县地区中生代火山岩地层层序——基于锆石U-Pb年龄及地球化学数据[J].地质通报, 34(2/3):318-327. http://d.old.wanfangdata.com.cn/Periodical/zgqydz201502009

    李重. 2018.西藏罗布莎铬铁矿包壳纯橄榄岩特征对流体扩散的指示意义[D].北京: 中国地质大学(北京)硕士学位论文, 60.

    梁凤华, 许志琴, 巴登珠, 徐向珍, 刘飞, 熊发挥, 贾毅. 2011.西藏罗布莎-泽当蛇绿岩体的构造产出与侵位机制探讨[J].岩石学报, 27(11):3255-3268. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201111008

    罗照华, 卢欣祥, 陈必河, 等. 2009.透岩浆流体成矿作用导论[M].北京:地质出版社, 177.

    罗照华, 江秀敏, 刘晓, 李重, 吴宗昌, 井文超. 2019.蛇绿岩型铬铁矿床包壳纯橄榄岩中的流体过程印记:来自西藏雅鲁藏布江缝合带罗布莎和泽当岩体的地质学、岩石学和橄榄石晶体化学证据[J].地学前缘, 26(1):272-285.

    罗照华. 2017.为什么火成岩地球化学需要地质学岩石学和矿物学证据约束?[J].地球科学与环境学报, 39(3):326-343. doi: 10.3969/j.issn.1672-6561.2017.03.003

    莫宣学, 董国臣, 赵志丹, 周肃, 王亮亮, 邱瑞照, 张风琴. 2005.西藏冈底斯带花岗岩的时空分布特征及地壳生长演化信息[J].高校地质学报, 11(3):281-290. doi: 10.3969/j.issn.1006-7493.2005.03.001

    潘桂棠, 莫宣学, 侯增谦, 朱弟成, 王立全, 李光明, 赵志丹, 耿全如, 廖忠礼. 2006.冈底斯造山带的时空结构及演化[J].岩石学报, 22(3):521-533. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200603001

    邱瑞照, 蔡志勇, 李金发. 2004.青藏高原西部蛇绿岩中玻安岩(boninite)及其地质意义[J].现代地质, 18(3):305-308. doi: 10.3969/j.issn.1000-8527.2004.03.006

    邱瑞照. 2002.青藏高原西部火成岩与新特提斯构造演化[D].北京: 中国地质大学(北京), 99.

    唐菊兴, 王立强, 王国芝, 郎兴海, 汪雄武, 郑文宝, 高一鸣, 应立娟, 黄勇, 罗茂澄, 陈伟, 唐晓倩, 张俊成, 冷秋锋, 李娜, 赵甫峰, 张婷婷, 姚晓峰, 康浩然, 蔡惠慧, 杨超, 段吉琳, 林鑫, 唐攀. 2017.西藏冈底斯成矿带东段中、新生代斑岩成矿系统岩石地球化学与年代学测试数据集[J].中国地质, 44(S1):64-71. http://geochina.cgs.gov.cn/geochina/ch/reader/view_abstract.aspx?file_no=2017S108&flag=1

    王成善, 李亚林, 刘志飞, 李祥辉, 唐菊兴, Hebert R J, Dubois C, Varfalv Y V, Huo T F. 2005.雅鲁藏布江蛇绿岩再研究:从地质调查到矿物记录[J].地质学报, 79(3):323-330. doi: 10.3321/j.issn:0001-5717.2005.03.005

    吴福元, 刘传周, 张亮亮, 张畅, 王建刚, 纪伟强, 刘小驰. 2014.雅鲁藏布蛇绿岩——事实与臆想[J].岩石学报, 30(2):293-325. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201402001

    谢冰晶, 周肃, 谢国刚, 田明中, 廖忠礼. 2013.西藏冈底斯中段孔隆至丁仁勒地区林子宗群火山岩锆石SHRIMP年龄和地球化学特征的区域对比[J].岩石学报, 29(11):3803-3814. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201311013

    徐向珍, 杨经绥, 巴登珠, 陈松永, 方青松, 白文吉. 2008.雅鲁藏布江蛇绿岩带的康金拉铬铁矿中发现金刚石[J].岩石学报, 24(7):1453-1462. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200807003

    杨经绥, 白文吉, 方青松, 孟繁聪, 陈松永, 张仲明, 戎合. 2007.极地乌拉尔蛇绿岩铬铁矿中发现金刚石和一个异常矿物群[J].中国地质, 34(5):950-952. doi: 10.3969/j.issn.1000-3657.2007.05.024 http://geochina.cgs.gov.cn/geochina/ch/reader/view_abstract.aspx?file_no=20070524&flag=1

    杨经绥, 白文吉, 方青松, 戎合. 2008.西藏罗布莎蛇绿岩铬铁矿中的超高压矿物和新矿物(综述)[J].地球学报, 19(3):263-274. doi: 10.3321/j.issn:1006-3021.2008.03.002

    杨经绥, 徐向珍, 李源, 李金阳, 戎合, 巴登珠, 张仲明. 2011.西藏雅鲁藏布江缝合带的普兰地幔橄榄岩中发现金刚石及其意义[J].岩石学报, 27(11):3207-3222. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201111002.htm

    杨经绥, 徐向珍, 戎合, 牛晓露. 2013.蛇绿岩地幔橄榄岩中的深部矿物:发现与研究进展[J].矿物岩石地球化学通报, 32 (2):159-170. doi: 10.3969/j.issn.1007-2802.2013.02.002

    杨经绥, 许志琴, 段向东, 李静, 熊发挥, 刘钊, 蔡志慧, 李化启. 2012.缅甸密支那地区发现侏罗纪的SSZ型蛇绿岩[J].岩石学报, 28(6):1710-1730. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201206002

    杨经绥, 张仲明, 李天福, 任玉峰, 徐向珍, 巴登珠, 白文吉, 方青松, 陈松永, 戎合. 2008.西藏罗布莎铬铁矿体围岩方辉橄榄岩中的异常矿物[J].岩石学报, 24(7):1545-1552. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200807002

    张浩勇, 巴登珠, 郭铁鹰, 莫宣学, 薛君治, 阮桂甫, 王志宜. 1996.西藏自治区曲松县罗布莎铬铁矿床研究[M].拉萨:西藏人民出版社, 181.

    张旗. 2015.日喀则蛇绿岩研究中的几个问题[J].岩石学报, 31(1):37-46. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201501002

    章奇志, 巴登珠, 熊发挥, 杨经绥. 2017.西藏罗布莎豆荚状铬铁矿床深部找矿突破与成因模式讨论[J].中国地质, 44(2):224-241. http://geochina.cgs.gov.cn/geochina/ch/reader/view_abstract.aspx?file_no=20170202&flag=1

    郑来林, 耿全如, 欧春生, 王小伟. 2003.藏东南迦巴瓦地区雅鲁藏布江蛇绿混杂岩中玻安岩的地球化学特征和地质意义[J].地质通报, 22(11/12):908-911. http://d.old.wanfangdata.com.cn/Periodical/zgqydz200311013

  • 加载中

(5)

计量
  • 文章访问数:  2995
  • PDF下载数:  1043
  • 施引文献:  0
出版历程
收稿日期:  2018-07-22
修回日期:  2019-01-17
刊出日期:  2019-02-25

目录