The response characteristics of microbial diversity to shallow groundwater contamination in the piedmont of the Taihang Mountains using molecular biotechnologies: A case study of groundwater of Hutuo River Basin
-
摘要:
分子生物学技术是地下水污染研究的前沿技术,常用于场地尺度,区域尺度罕见。以太行山前平原滹沱河流域的典型浅层地下水为研究对象,沿河布点采样67组,采用高通量测序技术,测定样品16S rDNA基因序列,以化学需氧量、硝酸盐、溶解性总固体为环境因子,分析与污染相关的微生物种群结构响应及功能性指示菌属。结果显示:采用累积概率分布法将样品分为背景(B)、硝酸盐污染(N)、有机污染(Y)3组,该分类阈值与地下水质量标准的Ⅲ类水阈值可较好对应;微生物群落丰富度为B组> N组> Y组,有机污染使微生物种群趋于单一,且与背景差异更大。有机污染功能性指示菌属为Acinetobacter,硝酸盐污染为Nitrospira。以上形成的分子生物学响应特征研究方法可为区域调查及修复提供技术方法理论依据。
Abstract:In the groundwater contamination research, molecular biotechnologies are one of the cutting-edge technologies. This kind of technologies have been commonly used at site scale, but rarely applied at regional scale. The shallow groundwater in Hutuo River Basin was selected as the study subject, because of it is one of the typical regions in front of the Taihang Mountains.67 samples were collected along the river. The 16s rDNA gene sequences were tested by high-throughput sequencing technology. According to the environmental factors of NO3-, COD and TDS, the microbial communities and the functional indicator microorganisms related to groundwater contamination were studied. The results showed that, using the cumulative probability distribution method, the samples were divided into three groups:background (B group), nitrate pollution (N group), and organic pollution (Y group).This grouping rule was close to the Ⅲ water grade threshold in the quality standard of groundwater. The order of microbial community richness is B group > N group > Y group. The organic pollution could decrease the richness diversity of microbial communities, and the difference was more significant in comparison with background microorganisms. The functional indicator microorganisms related to organic pollution was Acinetobacter, and the functional indicator microorganisms related to nitrate pollution was Nitrospira. The molecular biotechnologies and analysis methods used in this research could provide the theoretical evidence for regional environmental investigation and bioremediation.
-
1. 引言
东天山是中亚地区东西走向的天山造山系的主要组成部分,在吐哈盆地南缘,不仅发育高钕低锶同位素初始比值的花岗岩(李锦轶等, 2006),而且从镜儿泉向西,经黄山、土墩、白鑫滩、海豹滩、红岭、康古尔塔格、恰特卡尔、路北,到色尔特能,出露100多个侵入到晚古生代地层的基性超基性岩(图 1), 构成了沿康古尔—黄山断裂长达数百千米的基性超基性岩带(李锦轶等, 2006),其产出受康古尔塔格—黄山大断裂及其次级断裂控制(毛亚晶等, 2014),且很多基性超基性岩有铜镍矿化,构成了恰特卡尔—黄山—镜儿泉铜镍成矿带,铜镍总储量达到百万吨,迄今这些含矿岩体中获得锆石U-Pb年龄为269~285 Ma(邓宇峰等, 2011)。以往该地区基性超基性岩的研究多集中在该带东段含铜镍硫化物矿床的杂岩体(韩宝福等, 2004;Zhou et al., 2004;李锦轶,2006)。近年来,白鑫滩、路北和海豹滩等杂岩型铜镍矿的相继发现,将东天山沿康古尔—黄山大断裂分布的基性超基性杂岩型铜镍矿,由黄山经土墩向西过沙垄,经土屋延伸到石英滩东北,大大拓宽了东天山基性超基性杂岩型铜镍矿的找矿范围(杨万志等, 2017)。近年来虽然西段杂岩体研究成果明显增多,但集中于二叠纪基性超基性岩的研究,对石炭纪基性超基性岩文献报道较少,发现也很少。2014年新疆地质调查院承担的“新疆东天山成矿带中段1∶5万综合地质调查”项目在该地区新发现石炭纪黑石墩基性岩,并通过系统的岩相学、岩石地球化学、锆石U-Pb年代学和Sr-Nd-Hf同位素研究,为进一步探讨东天山地区的构造演化与成矿时代提供新的依据。
2. 岩体地质背景及岩相学特征
2.1 地质背景
东天山处于西伯利亚、准噶尔—哈萨克斯坦和塔里木三大板块的接合处(Windley et al., 1990;肖序常等, 1992;何国琦等, 1994;Qin et al., 2003;何国琦和朱永峰, 2006;Zhu et al., 2007),属中亚造山带的组成部分。区内蕴藏着丰富的矿产资源,是新疆乃至中国重要的铜、镍、金、铁、铅、锌等大型矿床集中区(王京彬等, 2006)。与铜镍矿相关的基性超基性岩石十分发育,且呈现含矿岩体以规模小、多阶段侵入、岩相分带清楚、成群成带出现的特点,小岩体成大矿是普遍的成矿现象,也是我国铜镍矿床的主要产出特点(顾连兴等, 2007;汤中立等, 2007;秦克章等, 2007;王玉往等, 2010)。对这些基性超基性杂岩的成因分歧较大:一是认为其归属蛇绿岩套的组成,其源区为软流圈地幔;二是认为形成于板块俯冲碰撞阶段,其源区为俯冲交代地幔;三是认为形成于碰撞造山后伸展环境,其源区为俯冲交代地幔或软流圈地幔;四是认为与塔里木地幔柱活动有关(邓宇峰等, 2011)。
黑石墩基性岩位于东天山中段鄯善县南侧,吐哈盆地南缘,恰特卡尔古火山机构东侧康古尔塔格一带,北距卡拉塔格约15 km,南距康古尔塔格—黄山大断裂约10 km,南邻康古尔韧性剪切带,构造位置属于小热泉子—大南湖岛弧带(舍建忠等, 2018),带内主要出露奥陶纪、志留纪、泥盆纪和石炭纪火山岩、火山沉积碎屑岩,也发育华力西中晚期岛弧型中酸性侵入岩。黑石墩基性岩地表被晚石炭世底坎尔组不整合覆盖,呈透镜体状出露,受断层控制,围岩无明显矿化蚀变。
2.2 岩相学特征
黑石墩基性岩岩性以辉长岩和橄榄辉长岩为主,有少量的辉石岩和辉绿岩分布。辉长岩均发生较强的蚀变。
辉长岩(图 2a)主要矿物为斜长石、蛇纹石、普通辉石,极少量磁铁矿、钛铁矿,斜长石含量约74%,呈半自形—自形长板状杂乱分布,局部黝帘石化、绢云母化,蛇纹石含量约20%,呈鳞片状分布于斜长石间,部分蛇纹石集合体中可见辉石残留,普通辉石含量约为5%,呈半自形—他形柱粒状分布于斜长石间,部分为蚀变残留;橄榄辉长岩(图 2b)主要矿物为普通辉石、斜长石、橄榄石,见少量钛铁矿和磁铁矿,普通辉石含量22%,呈半自形—他形柱粒状分布于斜长石间,粒径较大,部分粒径细小者包裹于粒径粗大者中,斜长石含量约60%,呈半自形长板状、板状、粒状分布,表面干净,未见明显蚀变,橄榄石含量为15%,呈半自形—他形粒状,强蚀变,多已完全被蚀变矿物伊丁石、皂石所取代,保留其外形,分布于辉石中或斜长石间。
3. 样品采集及分析方法
样品选取探槽里新鲜的岩石,硅酸盐、稀土-微量元素样品8件。测试单位为新疆维吾尔自治区矿产实验测试中心,主量元素使用X射线荧光光谱仪(XRF)进行测试,精度在0.1%以内;微量元素采用ICP-MS(ElementⅡ)(Agilent7500a)测试。
锆石U-Pb年龄样品岩性为辉长岩,锆石制靶由河北省区域地质矿产调查研究所完成,阴极发光显微照相由北京锆年领航科技有限公司完成,锆石U-Pb同位素测试由中国科学院广州地球化学研究所实验室完成,采用激光剥蚀电感耦合等离子质谱仪(LA-ICP-MS)分析,使用标准锆石91500作为外标加以校正,每测6个数值后进行一次91500标样测定,激光束斑直径为30 μm,使用29Si作为内标测定锆石的U、Th、Pb含量。相关数据采用GLITTER和Isoplot软件进行数据处理。
锆石原位Hf同位素测试由中国地质调查局西安地质调查中心国土资源部岩浆作用成矿与找矿重点实验室完成,使用Neptune型多接收等离子体质谱仪和Geolas Pro型激光剥蚀系统联用的方法完成,详细测试流程见侯可军等(2007)。测试束斑直径为44 μm。测试位置与测年点位相同或靠近。每分析10个样品测点插入一次标样测定(锆石标准GJ-1,GJ-1的测试精准度为0.282030±40(2SE))。
全岩Sr-Nd同位素化学前处理与质谱测定由南京聚谱检测科技有限公司完成。数据测试及处理流程详见Gao et al.(2004)。
4. 分析结果
4.1 主、微量元素特征
样品的主量元素数据(表 1)表明,黑石墩基性岩体SiO2含量在47.59%~50.79%,相对富Na2O(2.72%~4.42%,平均3.28%),贫K2O(0.26%~1.15%,平均0.48%)及Na2O>K2O的特征,在TAS图解中(图 3a)除H-266外其余落在玄武岩区,在SiO2-K2O相关图解中(图 3b)除H-266为钙碱性系列外,其余为低钾拉斑系列。MgO含量较低(3.94%~12.55%,平均6.87%),Mg#为47.6~66.64,m/f为0.89~1.966,Al2O3含量较高,为14.75%~19.65%。在Harker图中,MgO与SiO2、Al2O3、CaO、P2O5、Na2O、K2O有明显的负相关性,与TiO2具有弱负相关性(图 4a、c~g),与T Fe2O3具有正相关关系(图 4b)。
表 1. 黑石墩基性岩岩石地球化学数据(含量单位: 主量元素为%, 微量元素为10-6)Table 1. Major elements (%) and trace elements(10-6)data of the Heishidun basic rocks样品稀土总量偏低(∑REE在47.29×10-6~74.19×10-6),(La/Yb)N介于1.83~2.12,说明轻重稀土元素之间分馏程度中等,LREE/HREE为2.59~2.86,轻微的Eu正异常(1.00~1.25),这是岩浆结晶分异成岩过程中,斜长石富集而造成的。在稀土元素球粒陨石标准化配分图中(图 5a),所有样品曲线表现出一致的变化趋势,说明样品应该同源,并呈现出轻稀土略微富集的右倾特征,与E-MORB形态相似。微量元素原始地幔标准化蛛网图(图 5b)中,所有样品都富集大离子亲石元素Ba、U、Sr,富集Pb,亏损高场强元素Ta、Nb、Th、Ti。
图 5. 黑石墩基性岩稀土元素球粒陨石标准化配分曲线(a)和微量元素原始地幔标准化蛛网图(b)(据Sun and McDonough, 1989)Figure 5. Chondrite-normalized REE patterns(a)and Primitive mantle-normalized spidergrams(b)of Heishidun basic rocks(after Sun and McDonough, 1989)4.2 锆石U-Pb年龄
阴极发光图像显示锆石大多呈长柱状,自形晶,晶面整洁光滑,裂纹少,环带构造特征明显(图 6a)。由表 2可知,锆石Th含量为34.33×10-6~753.69×10-6,U含量为51.59×10-6~624.31×10-6,Th/U比值较高(0.56~1.21),多数在0.5~0.9,为岩浆锆石U、Th成分特征(吴元宝, 2004)。锆石年龄数据绝大多数落于谐和线上或其附近,个别数据落于谐和线右侧附近,说明有少量铅丢失,代表有后期热事件的干扰(张志诚等, 2009)。锆石206Pb/U238年龄加权平均值为(342.6 ±3.2)Ma(n=15,MSWD=0.54)(图 6b),代表黑石墩岩体的形成时代为早石炭世。
表 2. 黑石墩辉长岩LA-ICP-MS锆石U-Pb同位素数据Table 2. LA-ICP-MS zircon U-Pb dating results of Heishidun gabbro4.3 锆石Hf同位素特征
本次对测年锆石进行了复位Lu-Hf同位素分析,所有测试位置与U-Pb测年点位相同或靠近。由表 3可知锆石176Lu /177Hf比值最大值为0.000939,说明锆石形成后放射成因Hf的积累较少(杨进辉等, 2006b),因此所测定的176Hf /177Hf比值代表了其形成时体系的Hf同位素组成(吴福元等, 2007b)。176Hf /177Hf比值为0.282539~0.282950,εHf(t)为正值(9.82~13.74),平均值为11.93,二阶段Hf模式年龄(tDM2)在473~724 Ma,平均值为587 Ma,与其形成年龄(342.6 ±3.2)Ma相差不大。
表 3. 黑石墩基性岩锆石Lu-Hf同位素组成Table 3. Zircn Lu-Hf isotopic composition of Heishidun basic rocks4.4 Sr-Nd同位素特征
全岩Nd、Sr同位素按照t=342.6 Ma计算,由表 4可知,全岩样品Nd、Sr同位素组成基本一致,(87Sr/86Sr)i为0.703421~0.704551,比值较高且变化范围相对较大;εNd(t)值则变化范围较小,在7.6~8.1;147Sm/144Nd比值较大(0.17564~0.18453);二阶段Nd模式年龄(tDM2)范围为436~480 Ma,平均值为461 Ma。
表 4. 黑石墩基性岩的全岩Sr-Nd同位素组成Table 4. Whole-rock Sr-Nd isotopic compositions of Heishidun basic rocks5. 讨论
5.1 岩浆演化(结晶分异)
原始岩浆从源区地幔源经部分熔融作用开始发生、到迁移至岩浆房、再到最终喷出地表,是一个不断结晶分异、物质不断带出或带入、岩浆和矿物间平衡和再平衡的过程(张柳毅等, 2016)。黑石墩岩体与黄山东、黄山、香山等东天山典型含铜镍矿镁铁-超镁铁质岩体处于同一区域,但是这几处为高镁拉斑玄武质母岩浆(唐冬梅等, 2009; 范亚洲等, 2014; 尤敏鑫等, 2017)。黑石墩岩体锆石U-Pb测年所获得的年龄((342.6 ±3.2)Ma) 说明黑石墩岩体形成时间相对早。与黄山等典型含铜镍矿镁铁-超镁铁质岩体不同的是黑石墩基性岩具有较低的Mg(MgO=3.94%~12.55%,Mg#=47.6~66.74)以及较低的相溶元素Cr(80×10-6~220×10-6)、Co(21.8×10-6~60.6×10-6)和Ni(40.6×10-6~128.5×10-6)含量,说明该岩体来源于分异程度相对较高的岩浆(Liu et al., 2008)。在Harker图解中(图 4),MgO与TFe2O3具有正相关性,说明岩浆在上升侵位过程中经历了橄榄石和斜方辉石的分离结晶作用,而MgO与TiO2、P2O5、Al2O3以及CaO之间具有负相关性,暗示富含Ti矿物(金红石、钛铁矿和榍石)、磷灰石和单斜辉石不是主要的结晶相(冯光英等, 2011)。对于橄榄石和辉石而言,Mg与Co、Ni是相溶元素,该岩体Co、Ni与MgO呈正相关性(图 7a、b),说明该岩体发生过橄榄石、辉石的结晶作用。综上所述,黑石墩基性岩在岩浆演化过程中经历了橄榄石、辉石和斜长石的分离结晶作用,这与岩相学特征一致。
5.2 源区特征及部分熔融程度
黑石墩基性岩具有较低的Sr同位素初始比值(0.703421~0.704551),正的εNd(t)值(7.6~8.1),以及模式年龄与岩石形成年龄相近,说明岩体来源于亏损地幔。其Sr同位素显示为亏损,说明该亏损地幔可能为新生,但随后经历了一定程度的不相容元素富集作用(Wu et al., 2004; 冯光英等, 2011)。从稀土元素球粒陨石标准化配分图解中和原始地幔标准化微量元素蛛网图(图 5)可以看出,黑石墩基性岩微量元素组成特征与N-MORB和OIB有明显的差异,与E-MORB较相似。
前人研究认为REE的含量主要受地幔组成和部分熔融程度的控制,地幔橄榄岩熔融过程中Yb元素来源于残留石榴石,所以,含有石榴石残留的地幔橄榄岩部分熔融熔体具有Yb元素含量低,La/ Yb和Sm/ Yb比值高的特征(Pearce and Peate, 1995; Johnson, 1998; Münker, 2000; Zhao and Zhou, 2007; Liu et al., 2010b; 冯光英等, 2011)。在Sm/Yb-Sm图解中(图 8),黑石墩基性岩的Sm/Yb比值分布于尖晶石二辉橄榄岩和石榴石+尖晶石二辉橄榄岩熔融曲线之间,且接近E-MORB,显示为较低程度的部分熔融(15%~25%)的产物。较低程度的部分熔融会导致La/Sm和La/Yb的强烈分异,且地幔橄榄岩熔融过程中铁优先进人熔体,随着熔融程度的升高,岩浆中的镁含量随之升高(冯光英等, 2011)。而黑石墩基性岩具有较高的La/Sm (1.87~2.1)和(La / Yb)N(2.65~2.96)比值,较低的MgO含量和Mg#值(47.6~66.64)、较高的稀土含量(∑REE=47.29×10-6~74.19×10-6),都暗示原始岩浆经过了较低程度的部分熔融。
图 8. 黑石墩基性岩Sm/Yb-Sm相关图解熔融曲线为尖晶石二辉橄榄岩(模式及熔体模式: ol 0.530+opx 0.270+cpx 0.170+spo.030 and ol 0.060+opx 0.280+ cpx 0.670+sp 0.110)(据Kinzler,1997)和石榴子石二辉橄榄岩(模式及熔体模式: ol 0.600+opx 0.200+cpx 0.100+gt 0.100 and ol 0.030+opx 0.160+cpx0.880+gt 0.090)(据Walter,1998); 矿物/基质分配系数以及DMM引自Mc Kenzie and O'Nions(1991, 1995); PM,N-MORB和E-MORB组成引自Sun and Mc Donough(1989); 每条曲线上的数字对应于给定地幔源区的部分熔融程度Figure 8. Sm/Yb vs.Sm diagram of the Heishidun basic rocksMelt curves are drawn for spinel-lherzolite(with mode and melt mode of ol 0.530 + opx 0.270 + cpx 0.170 + sp 0.030 and ol 0.060+opx0.280+cpx0.670+ sp 0.110, respectively; after Kinzler, 1997) and for garnet-lherzolite(with mode and melt mode of ol 0.600+opx 0.200+cpx0.100+gt 0.100and ol 0.030+opx0.160+cpx 0.880+gt 0.090, respectively; after Walter, 1998); Mineral/matrix partition coefficients and DMM arefrom the compilation of Mc Kenzie and O'Nions(1991, 1995); PM, N-MORB and E-MORB compositions are from Sun and Mc Donough(1989); Tickmarks on each curve(or line)correspond to degrees of partial melting for a given mantle source5.3 地壳混染
幔源岩浆在上升或者侵位过程中一般都会受到不同程度地壳混染(Mohr, 1987),黑石墩基性岩亏损高场强元素Ta、Nb、Th和Ti,富集LILE和LREE,且Ta / La比值(0.019~0.034)低于原始地幔(Ta/La=0.06,Wood et al., 1979),说明在上升或者侵位过程中可能存在壳源物质的混染(冯光英等, 2011)。地壳中富集Zr和Hf元素,地壳混染会导致Zr和Hf元素含量显著增高(舍建忠等, 2017),而样品中Zr和Hf元素没有明显异常(图 5b),其较低的含量指示壳源物质的混染程度较低。一般来说地壳混染也会导致MgO和εNd(t)之间具有正相关性,MgO和(87Sr/86Sr)i之间具有负相关性(Liu et al., 2010b),表 1、表 4、图 4说明黑石墩基性岩不存在这种相关性,故笔者认为黑石墩基性岩原始岩浆在上升或侵位过程中地壳物质的混染程度较低。此外样品具有较低的(87Sr/86Sr)i(0.703421~0.704551),正的εNd(t) (7.6~8.1)和εHf(t) (9.82~13.74)(表 3,表 4),同样原始岩浆在上升或侵位过程中地壳混染的程度不大。通常情况下可以用亏损地幔与上地壳作为两端元、亏损地幔与下地壳作为两端元混合计算方式来检验是否存在地壳混染及混染程度(冯光英等, 2011),由图 9可知,黑石墩基性岩成岩过程中几乎没有受到下地壳物质的混染,上地壳物质的混染也不明显(混染程度为1%左右)。所以黑石墩基性岩的地球化学特征可能主要呈现源区岩浆的特征。另外,因为锆石具有封闭温度高、Hf含量高和Lu/Hf比值低等特征,常用于测年、指示岩浆源区性质以及混合过程(Griffin et al., 2002; Kemp and Hawkesworth, 2006; Yang et al., 2006a; 吴福元, 2007b; 胡芳芳等, 2007; Liu et al., 2010a)。黑石墩基性岩体锆石εNd(t) 值较高且变化不大(表 3),也说明原始源区岩浆比较单一。
图 9. 黑石墩基性岩(87Sr/86Sr)i-εNd(t)图解其中数字表示地壳物质参与的比例,计算采用的参数Nd(10-6)、εNd(t)、Sr(10-6)和(87Sr/86Sr)i值如下: 软流圈地幔(DM)分别为1.2、+8、20和0.703;玄武岩分别为15、+8、200和0.704; 上地壳(UCC)分别为30、-12、250和0.740(据Jahn et al., 1999); 下地壳(LCC)分别为20、-15、230和0.708(据Wu et al., 2000)Figure 9. (87Sr/86Sr)ivs. εNd(t)diagram of the Heishidun basic rocksThe numbers indicate the percentages of participation of the crustal materials. The calculated parameters of Nd(10-6), εNd(t), Sr(10-6) and(87Sr/86Sr)iare1.2、+8、20、and 0.703 for asthenospheric mantle(DM); 15、+8、200and 0.704 for basalt; 30、-12、250and 0. 740 for upper continental crust(UCC) (after Jahn et al., 1999); 20、-15、230、0.708 for lower continental crust(LCC). All data derive from Wu et al. (2000a)5.4 流体交代
黑石墩基性岩Sr元素含量较高(278×10-6~715×10-6,平均值为432×10-6),明显高于地幔Sr元素含量(17.8×10-6)(Taylor and Mc Lennan, 1985)。Sr元素含量增高可能受围岩混染或者俯冲板片流体交代作用的影响(Mc Culloch and Gamble, 1991; Hawkesworth et al., 1993; 熊富浩等, 2011),而根据前述,黑石墩基性岩受围岩混染程度非常低,那么造成Sr元素含量高的原因可能是受到俯冲板片流体交代作用的影响。
前人研究认为地幔流体交代作用主要有深部地幔上升过程中的流体、俯冲板片中富含大离子亲石元素和轻稀土元素的深海沉积物在俯冲深部脱水熔融产生的流体和俯冲板片熔融生成的流体等3种形式(Meen et al., 1989;Maury et al., 1992;Hawkesworth et al., 1993;Elliott et al., 1997;Ishikawa and Tera, 1999; 熊富浩等, 2011)。深部地幔源区的岩浆一般具有洋岛构造环境背景的岩石地球化学特征(熊富浩等, 2011),而俯冲板片中富含大离子亲石元素和轻稀土元素的深海沉积物在俯冲深部脱水熔融产生的流体一般则与地幔交代从而形成富含钾和高场强元素的岩浆(Sajona et al., 2000; Defant and Kepezhinskas, 2001; 熊富浩等, 2011),俯冲板片熔融生成的流体则会影响亲湿岩浆元素的含量,高场强元素又因在水中的溶解度较小呈现出相对亏损(Regelous, 1997; Johnson and Plank, 1999; 冯光英, 2011)。而黑石墩基性岩具有中等的Mg#、相对富集Ba、U、Sr等大离子亲石元素和轻稀土元素,强烈富集Pb元素,亏损Ta、Nb、Th、Ti等高场强元素。因此,笔者认为研究区地幔流体交代作用主要是通过俯冲板片中富含LILE和LREE的海洋沉积物脱水形成的流体完成的。
5.5 构造意义
分析表明黑石墩基性岩岩浆源区受到俯冲作用影响。高场强元素Nb、Ta、Zr和Hf在岩石蚀变和变质等过程中一般具有很好的稳定性,可以作为岩石成因和源区性质的示踪剂,并且一般岛弧玄武岩和部分亏损型洋中脊玄武岩(N-MORB)的Ta、Nb丰度分别不大于0.7×10-6和12×10-6,Nb/La < 1,Hf/Ta>5,La/Ta>15,板内玄武岩(WPB)、过渡型洋中脊玄武岩(T-MORB)和富集型洋中脊玄武岩(E-MORB)则正好相反(Condie et al., 1989)。黑石墩样品中玄武岩的Ta元素含量(平均0.18×10-6)和Nb元素含量(平均2.4×10-6)较低,Nb/La比值为0.36,Hf/Ta比值15.17,La/Ta比值37.22,表明该玄武岩形成环境与WPB、T-MORB、E-MORB构造环境无关,类似于岛弧玄武岩或N-MORB的构造环境。笔者采用不同构造环境判别图来进一步分析黑石墩岩体形成的环境,在2Nb- Nb /4-Y构造判别图解中(图 10a),样品投影点落入火山弧玄武岩区;在Ti- Zr-Sr构造判别图解中(图 10b),样品投影点落入岛弧拉斑玄武岩区和钙碱性玄武岩区界线上;在TiO2-MnO-P2O5构造判别图解中(图 10c),样品投影点落入洋中脊玄武岩区和岛弧拉斑玄武岩区界线上;在Zr/117-Th-Nb构造判别图解中(图 10d),样品投影点落入破坏板块边缘玄武岩区。投图样品具有与俯冲有关的环境特征。
图 10. 主量及微量元素构造环境判别图解(a, 据Meschede, 1986;b, 据Pearce and Cann, 1973;c, 据Mullen, 1983;d, 据Wood et al., 1979)Figure 10. Tectonic discriminative diagrams by major-and trace-elements (a, after Meschede, 1986;b, after Pearce and Cann, 1973;c, after Mullen, 1983;d, after Wood et al., 1979)长期以来对东天山造山带内觉罗塔格地区的大地构造背景及演化存在争议,归纳起来主要有3种认识:一是为晚古生代裂陷槽(肖序常等, 1992; 成守德等, 2001; 冯益民等, 2002; 秦克章等, 2002; 潘桂棠等, 2009);二是为晚古生代被动大陆边缘(何国琦等, 1994; 侯广顺等, 2006);三是为塔里木板块和哈萨克斯他—准噶尔板块的缝合带(姬金生等, 1994; 李锦轶等, 2004; 肖文交等, 2006; 左国超等, 2006; 舍建忠等, 2018)。笔者同意第三种认识,综合该地区岩浆岩地球化学特征,认为北天山洋从奥陶纪开始沿康古尔塔格—黄山大断裂向北俯冲(李锦轶等, 2004; 舍建忠等, 2018),并在志留纪显示出洋盆闭合的特征(舍建忠等, 2017),在早石炭世开始双向俯冲(舍建忠等, 2018),在晚石炭世晚期闭合(李锦轶等, 2004; 舍建忠等, 2018)。
综合岩石地球化学、矿物学、同位素等方面的研究,笔者认为黑石墩基性岩岩浆为北天山洋在早石炭世沿康古尔塔格—黄山大断裂向北俯冲,富含大离子亲石元素和轻稀土元素的海洋沉积物在俯冲过程中脱水形成的流体,改造先存亏损的岩石圈地幔发生较低程度部分熔融形成原始岩浆,且上升或者侵位过程中经历了程度不同的橄榄石、辉石和斜长石分离结晶作用,最后形成了研究区早石炭世基性岩。
6. 结论
(1) 锆石U-Pb年龄表明黑石墩基性岩形成于(342.6 ±3.2)Ma(n=15,MSWD=0.54)(图 6b),代表其结晶年龄为早石炭世,佐证东天山秋格明塔什—黄山断裂带不仅有二叠纪基性超基性杂岩,还有华里西中期基性岩浆活动。
(2) 黑石墩基性岩主体属于低钾拉斑系列,具有中等的Mg#值、大离子亲石元素富集,轻稀土元素相对富集,Pb元素强烈富集,高场强元素亏损,具有较低的(87Sr/86Sr)i,正的εNd(t)和εHf(t),为亏损地幔较低程度的部分熔融(15%~25%)的产物。
(3) 岩石具有俯冲环境特征,结合区域构造演化特征,认为黑石墩基性岩岩浆为北天山洋在早石炭世沿康古尔塔格—黄山大断裂向北俯冲,造成俯冲板片流体,交代亏损地幔发生较低程度部分熔融形成原始岩浆,在上升或者侵位过程中经历了程度不同的橄榄石、辉石和斜长石分离结晶作用。
致谢:感谢新疆地质调查院杨万志教授级高级工程师在本次研究工作中给予的指导和帮助;感谢李永军教授对论文提供的建设性意见;感谢编辑老师和匿名评审专家提供的宝贵意见。
-
表 1 样品Alpha多样性指数(每组均值)
Table 1. the Alpha-diversity of samples
-
Abbai N S, Pillay B.2013.Analysis of hydrocarbon-contaminated groundwater metagenomes as revealed by high-throughput sequencing[J].Molecular Biotechnology, 54 (3):900-912. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=9d23cb99620db007313998c00aa4a2ad
Bekins B A, Cozzarelli I M, Godsy E M, Warren E, Essaid H I, Tuccillo M E.2001.Progression of natural attenuation processes at a crude oil spill site:Ⅱ.Controls on spatial distribution of microbial populations[J].Journal of Contaminant Hydrology, 53(3):387-406.
Bradley P M.2000.Microbial degradation of chloroethenes in groundwater systems[J].Hydrogeology Journal, 8 (1):104-111. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=3f49fde1bc8519d2b7962f8ac22d6f3c
Casci T.2010.Microbial biodiversity in groundwater ecosystems[J].Freshwater Biology, 54 (4):649-677. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=678f950ef7ef6f69d72526d1558aef60
Chen B, Teh B S, Sun C, Hu S, Lu X, Boland W, Shao Y.2016.Biodiversity and Activity of the Gut Microbiota across the Life History of the Insect Herbivore Spodoptera littoralis[J].Scientific Reports, 6 29505. doi: 10.1038/srep29505
Chen Y, Li C, Zhou Z, Wen J, You X, Mao Y, Lu C, Huo G, Jia X.2014.Enhanced biodegradation of alkane hydrocarbons and crude oil by mixed strains and bacterial community analysis[J].Applied Biochemistry & Biotechnology, 172 (7):3433-3447. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=2603381d88205995f82e91af273c8f7e
China Geolegical Survey.2015.Specification for Regional Groundwater Contamination Survey and Evaluation (DZ/T 0288-2015)[S] (in Chinese).
Daims H, Lebedeva E V, Pjevac P, Han P, Herbold C, Albertsen M, Jehmlich N, Palatinszky M, Vierheilig J, Bulaev A.2015.Complete nitrification by Nitrospirabacteria[J].Nature, 528 (7583):504-509. doi: 10.1038/nature16461
Daims H, Nielsen J L, Nielsen P H, Schleifer K H, Wagner M.2001.In situ characterization of Nitrospira-like nitrite-oxidizing bacteria active in wastewater treatment plants[J].Applied & Environmental Microbiology, 67 (11):5273. http://d.old.wanfangdata.com.cn/NSTLQK/10.1128-AEM.67.11.5273-5284.2001/
Fei Yuhong, Zhang Zhaoji, Yang Mei, Li Yasong, Qian Yong, Meng Suhua, Chen Jingsheng.2010.Health risk assessment of groundwater organic pollution in the Hutuohe Plain[J].Shanghai Geology, (2):13-19(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=shdz201002003
Feng Y, Li X, Song T, Yu Y, Qi J.2017.Stimulation effect of electric current density (ECD) on microbial community of a three dimensional particle electrode coupled with biological aerated filter reactor (TDE-BAF)[J].Bioresource Technology, 243 (Supplement C):667-675. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=44ceded9258e1a5be76d0020136ee3c6
Fout G S, Cashdollar J L, Griffin S M, Brinkman N E, Varughese E A, Parshionikar S U.2016.EPA Method 1615.Measurement of enterovirus and norovirus occurrence in water by culture and RTqPCR.Part Ⅲ.Virus detection by RT-qPCR[J].Journal of Visualized Experiments:JoVE, (107):52646.
Groffman P M, Howard G, Gold A J, Nelson W M.1996.Microbial nitrate processing in shallow groundwater in a riparian forest[J].Journal of Environmental Quality, 25 (6):1309-1316. http://cn.bing.com/academic/profile?id=1e9c4c8933368303eaa81653d4469386&encoded=0&v=paper_preview&mkt=zh-cn
Guo Haipeng, Bai Jinbin, Zhang Youquan, Wang Liya, Shi Jusong, Li Wenpeng.2017.The evolution characteristics and mechanism of the land subsidence in typical areas of the North China Plain[J].Geology in China, 44 (6):1115-1127(in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi201706008
Hassanshahian M, Emtiazi G, Cappello S.2012.Isolation and characterization of crude-oil-degrading bacteria from the Persian Gulf and the Caspian Sea[J].Marine Pollution Bulletin, 64 (1):7-12. doi: 10.1016/j.marpolbul.2011.11.006
Hendrickx B, Dejonghe W, Faber F, Boënne W, Bastiaens L, Verstraete W, Top E M, Springael D.2010.PCR-DGGE method to assess the diversity of BTEX mono-oxygenase genes at contaminated sites[J].Fems Microbiology Ecology, 55 (2):262-273. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=94f0a8054965fcd081cbe6b396289c68
Hovanec T A, Taylor L T, Blakis A, Delong E F.1998.Nitrospira-like bacteria associated with nitrite oxidation in freshwater aquaria[J].Applied & Environmental Microbiology, 64 (1):258. http://d.old.wanfangdata.com.cn/OAPaper/oai_pubmedcentral.nih.gov_124703
Huang Xiaolan, Chen Jianyao, Xie Lichun, Fu Congsheng, Zhou Shining.2010.Spatial characteristics of microbial groups associated with the groundwater flow in a small watershed[J].Environmental Science, 31(10):2299-2304(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/hjkx201010006
Ji P, Rhoads W J, Edwards M A, Pruden A.2017.Impact of water heater temperature setting and water use frequency on the building plumbing microbiome[J].Isme Journal, 11 (6):1318-1330. doi: 10.1038/ismej.2017.14
Jin S, Zhao D, Cai C, Song D, Shen J, Xu A, Qiao Y, Ran Z, Zheng Q.2017.Low-dose penicillin exposure in early life decreases Th17 and the susceptibility to DSS colitis in mice through gut microbiota modification[J].Scientific Reports, 7:43662. doi: 10.1038/srep43662
John D E, Rose J B.2005.Review of factors affecting microbial survival in groundwater[J].Environmental Science & Technology, 39 (19):7345-7356. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=a1041488df0c26fb0ed0e926ca396b80
Kao C M, Liao H Y, Chien C C, Tseng Y K, Tang P, Lin C E, Chen S C.2016.The change of microbial community from chlorinated solvent-contaminated groundwater after biostimulation using the metagenome analysis[J].Journal of hazardous materials, 302:144-150. doi: 10.1016/j.jhazmat.2015.09.047
Karczewski K, Riss H W, Meyer E I.2017.Comparison of DNAfingerprinting (T-RFLP) and high-throughput sequencing (HTS) to assess the diversity and composition of microbial communities in groundwater ecosystems[J].Limnologica-Ecology and Management of Inland Waters, 67:45-53. doi: 10.1016/j.limno.2017.10.001
Kate M S, Kristin A H.2005.Natural attenuation and enhanced bioremediation of organic contaminants in groundwater[J].Current Opinion in Biotechnology, 16 (3):246-253. doi: 10.1016/j.copbio.2005.03.009
Kimura H, Sugihara M, Yamamoto H, Patel B K, Kato K, Hanada S.2005.Microbial community in a geothermal aquifer associated with the subsurface of the Great Artesian Basin, Australia[J].Extremophiles, 9(5):407-414. doi: 10.1007/s00792-005-0454-3
Lautenschlager K, Hwang C, Liu W T, Boon N, Köster O, Vrouwenvelder H, Egli T, Hammes F.2013.A microbiology-based multi-parametric approach towards assessing biological stability in drinking water distribution networks[J].Water Research, 47 (9):3015-3025. doi: 10.1016/j.watres.2013.03.002
Leung M H Y, Chan K C K, Lee P K H.2016.Skin fungal community and its correlation with bacterial community of urban Chinese individuals[J].Microbiome, 4 (1):46. doi: 10.1186/s40168-016-0192-z
Li Yasong, Zhang Zhaoji, Fei Yuhong, Wang Zhao, Chen Jingsheng, Zhang Fenge, Qian Yong.2012.Preliminary study on organic pollution of shallow groundwater in the alluvial plain of Hutuo River[J].Journal of Arid Land Resources & Environment, 26 (8):52-56(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ghqzyyhj201208009
Ma Zhen, Xie hailan, Lin Liangjun, Hu Qiuyun, Qian Yong, Zhang Surong, Wang Guiling, Li Jianguo, Tan Chengxuan, Guo Haipeng, Zhang Fucun, Zhao Changrong, Liu Hongwei.2017.The environmental geological conditions of Land resources in the Beijing-Tianjin-Hebei region[J].Geology in China, ,44 (5):857-873(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi201705004
Macler B A, Merkle J C.2000.Current knowledge on groundwater microbial pathogens and their control[J].Hydrogeology Journal, 8(1):29-40. http://d.old.wanfangdata.com.cn/NSTLQK/10.1007-s100400050002/
Ning Zhuo, Guo Caijuan, Cai Pingping, Zhang Min, Chen Zongyu, He Ze.2018.Geochemical evaluation of biodegradation capacity in a petroleum contaminated aquifer[J].China Environmental Science, 38(11):4068-4074(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/zghjkx201811010
Ning Z, Zhang M, He Z, Cai P, Guo C, Wang P.2018.Spatial Pattern of Bacterial Community Diversity Formed in Different Groundwater Field Corresponding to Electron Donors and Acceptors Distributions at a Petroleum-Contaminated Site[J].Water, 10 (7):842. doi: 10.3390/w10070842
Pronk M, Goldscheider N, Zopfi J.2009.Microbial communities in karst groundwater and their potential use for biomonitoring[J].Hydrogeology Journal, 17 (1):37-48. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=a39a71b90551ad266c51fd0a1f2eee73
Rogers M B, Firek B, Min S, Yeh A, Brower-Sinning R, Aveson V, Kohl B L, Fabio A, Carcillo J A, Morowitz M J.2016.Disruption of the microbiota across multiple body sites in critically ill children[J].Microbiome, 4 (1):66. doi: 10.1186/s40168-016-0211-0
Safonov A V, Babich T L, Sokolova D S, Grouzdev D S, Tourova T P, Poltaraus A B, Zakharova E V, Merkel A Y, Novikov A P, Nazina T N.2018.Microbial Community and in situ Bioremediation of Groundwater by Nitrate Removal in the Zone of a Radioactive Waste Surface Repository[J].Frontiers in microbiology, 9:1985. doi: 10.3389/fmicb.2018.01985
Shen L, Wu H, Gao Z, Xu L, Ji L.2016.Comparison of community structures of Candidatus Methylomirabilis oxyfera-like bacteria of NC10 phylum in different freshwater habitats[J].Scientific Reports, 6:25647. doi: 10.1038/srep25647
Shi Jiansheng, Wang Zhao, Zhang Zhaoji, Fei Yuhong, Zhang Fenge, Li Yasong, Chen Jingsheng, Qian Yong.2011.Preliminary analysis on the organic contamination of groundwater in the North China Plain[J].Ecology & Environmental Sciences, 20 (11):1695-1699(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=tryhj201111019
Song C, Wang B, Tan J, Zhu L, Lou D, Cen X.2017.Comparative analysis of the gut microbiota of black bears in China using highthroughput sequencing[J].Molecular Genetics & Genomics, 292(2):407-414. https://reference.medscape.com/medline/abstract/28028611
Spor A, Violle C, Bru D, Bizouard F, Calderón K, Philippot L, Breuil M C, Barnard R L.2016.Effectiveness of ecological rescue for altered soil microbial communities and functions[J].Isme Journal, 11 (1):272-283. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ef7c4b19d70f6b8eec09ece2a81e42b6
Watanabe K, Watanabe K, Kodama Y, Syutsubo K, Harayama S.2000.Molecular characterization of bacterial populations in petroleumcontaminated groundwater discharged from underground crude Oil storage cavities[J].Appl. Environ. Microbiol, 66 (11):4803-4809. doi: 10.1128/AEM.66.11.4803-4809.2000
Wen Dongguang, Lin Liangjun, Sun Jichao, He Jiangtao, Wang Suming, Rao Zhu, Qi Jixiang.2008.Approach to investigation and assessment of organic contaminants in regional groundwater[J].Geology in China, 35 (5):814-819(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi200805003
Wright J, Kirchner V, Bernard W, Ulrich N, Mclimans C, Campa M F, Hazen T, Macbeth T, Marabello D, Mcdermott J.2017.Bacterial community dynamics in dichloromethane-contaminated groundwater undergoing natural attenuation[J].Frontiers in Microbiology, 8:2300. doi: 10.3389/fmicb.2017.02300
Xue J, Caton K, Sherchan S.2018.Comparison of next-generation droplet digital PCR with quantitative PCR for enumeration of Naegleria fowleri in environmental water and clinical samples[J].Letters in Applied Microbiology, 67 (4):322-328. doi: 10.1111/lam.2018.67.issue-4
Ye Hao, Liu Changli, Jiang Jianmei, Pei Lixin, Zhang Yun, Hou Hongbing, Dong Hua, Guo Jiao.2008.Risk assessments of groundwater pollution in the Shijiazhuang reach of the Hutuo River, China[J].Geological Bulletin of China, 27(7):1065-1070(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz200807019
Ye J, Joseph S D, Ji M, Nielsen S, Mitchell D R G, Donne S, Horvat J, Wang J, Munroe P, Thomas T.2017.Chemolithotrophic processes in the bacterial communities on the surface of mineral-enriched biochars[J].Isme Journal, 11 (5):1087-1101. doi: 10.1038/ismej.2016.187
Yuan H, Yao J, Masakorala K, Wang F, Cai M, Yu C.2013.Isolation and characterization of a newly isolated pyrene-degrading Acinetobacter strain USTB-X[J].Environmental Science & Pollution Research International, 21 (4):2724. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=f7d57367d48105287791212ca165c411
Zhang Qianqian, Wang Huiwei, Zhai Tianlun, Hua Mengjian.2017.Characteristics and source apportionment of groundwater nitrate contamination in the Hutuo River alluvial-pluvial fan regions[J].Hydrogeology & Engineering Geology, 44(6):110-117 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=swdzgcdz201706017
Zhang Yun, Wang Xiuyan, Liu Changli, Zhang Ming.2007.Engineering technology of recharging groundwater in Shijiazhuang with water diverted from the Yangtze River[J].Geology in China, 34(1):160-165(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi200701023
Zhang Zhaoji, Luo Guozhong, Wang Zhao, Liu Chunhua, Li Yasong, Jiang Xianqiao.2009.Studyon sustainable utilization of groundwater in North China Plain[J].Resources Science, 31(3):355-360(in Chinese with English abstract). http://cn.bing.com/academic/profile?id=332d52e33861442895f870e051ffe629&encoded=0&v=paper_preview&mkt=zh-cn
Zhang Zhaoji, Fei Yuhong, Guo Chunyan, Qian Yong.2012.Regional groundwater contaminati on assessment in the North China Plain[J].Journal of Jilin University, 42 (5):1456-1461. http://cn.bing.com/academic/profile?id=39b0b4f69e4541d4c174dc6c19f0f1c0&encoded=0&v=paper_preview&mkt=zh-cn
Zheng Z, Zhang Y, Su X, Cui X.2016.Responses of hydrochemical parameters, community structures, and microbial activities to the natural biodegradation of petroleum hydrocarbons in a groundwater-soil environment[J].Environmental Earth Sciences, 75 (21):1400. doi: 10.1007/s12665-016-6193-1
Zhou J, Xia B, Treves D S, Wu L Y, Marsh T L, O'neill R V, Palumbo A V, Tiedje J M.2002.Spatial and resource factors influencing high microbial diversity in soil[J].Appl. Environ. Microbiol., 68(1):326-334. http://d.old.wanfangdata.com.cn/OAPaper/oai_pubmedcentral.nih.gov_126564
费宇红, 张兆吉, 杨梅, 李亚松, 钱永, 孟素花, 陈京生.2010.滹沱河平原地下水有机污染健康风险评价[J].上海国土资源, (2):13-19. doi: 10.3969/j.issn.2095-1329.2010.02.003
郭海朋, 白晋斌, 张有全, 王丽亚, 石菊松, 李文鹏, 张作辰, 王云龙, 朱菊艳, 王海刚.2017.华北平原典型地段地面沉降演化特征与机理研究[J].中国地质, 44 (6):1115-1127. http://geochina.cgs.gov.cn/geochina/ch/reader/view_abstract.aspx?file_no=20170607&flag=1
黄小兰, 陈建耀, 谢丽纯, 付丛生, 周世宁.2010.小流域地下水流微生物空间差异分析[J].环境科学, 31 (10):2299-2304. http://d.old.wanfangdata.com.cn/Periodical/hjkx201010006
李亚松, 张兆吉, 费宇红, 王昭, 陈京生, 张凤娥, 钱永.2012.滹沱河冲积平原浅层地下水有机污染研究[J].干旱区资源与环境, 26(8):52-56. http://d.old.wanfangdata.com.cn/Periodical/ghqzyyhj201208009
马震, 谢海澜, 林良俊, 胡秋韵, 钱永, 张素荣, 王贵玲, 李建国, 谭成轩, 郭海朋, 张福存, 赵长荣, 刘宏伟.2017.京津冀地区国土资源环境地质条件分析[J].中国地质, 44 (5):857-873. http://geochina.cgs.gov.cn/geochina/ch/reader/view_abstract.aspx?file_no=20170503&flag=1
宁卓, 郭彩娟, 蔡萍萍, 张敏, 陈宗宇, 何泽.2018.某石油污染含水层降解能力地球化学评估[J].中国环境科学, 38 (11):4068-4074. doi: 10.3969/j.issn.1000-6923.2018.11.010
石建省, 王昭, 张兆吉, 费宇红, 张凤娥, 李亚松, 陈京生, 钱永.2011.华北平原地下水有机污染特征初步分析[J].生态环境学报, 20(11):1695-1699. doi: 10.3969/j.issn.1674-5906.2011.11.019
文冬光, 林良俊, 孙继朝, 何江涛, 王苏明, 饶竹, 齐继祥.2008.区域性地下水有机污染调查与评价方法[J].中国地质, 35 (5):814-819. doi: 10.3969/j.issn.1000-3657.2008.05.003 http://geochina.cgs.gov.cn/geochina/ch/reader/view_abstract.aspx?file_no=20080503&flag=1
叶浩, 刘长礼, 姜建梅, 裴丽欣, 张云, 侯宏冰, 董华, 郭娇.2008.滹沱河石家庄段地下水污染风险评价[J].地质通报, 27 (7):1065-1070. doi: 10.3969/j.issn.1671-2552.2008.07.019
张千千, 王慧玮, 翟天伦, 花勐健.2017.滹沱河冲洪积扇地下水硝酸盐的污染特征及污染源解析[J].水文地质工程地质, 44 (6):110-117. http://d.old.wanfangdata.com.cn/Periodical/swdzgcdz201706017
张云, 王秀艳, 刘长礼, 张明.2007.利用北调江水补充调蓄石家庄地下水的工程技术方法探讨[J].中国地质, 34(1):160-165. doi: 10.3969/j.issn.1000-3657.2007.01.023 http://geochina.cgs.gov.cn/geochina/ch/reader/view_abstract.aspx?file_no=20070123&flag=1
张兆吉, 费宇红, 郭春艳, 钱永, 李亚松.2012.华北平原区域地下水污染评价[J].吉林大学学报(地球科学版), 2012 (5):1456-1461. http://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201205019.htm
张兆吉, 雒国中, 王昭, 刘春华, 李亚松, 姜先桥.2009.华北平原地下水资源可持续利用研究[J].资源科学, 31 (3):355-360. doi: 10.3321/j.issn:1007-7588.2009.03.001
中国地质调查局.2015.区域地下水污染调查评价规范(DZ/T 0288-2015)[S].
期刊类型引用(1)
1. 冯京,朱志新,赵同阳,陈正乐,顾雪祥,孟贵祥,徐仕琪,田江涛,李平. 新疆大地构造单元划分及成矿作用. 中国地质. 2022(04): 1154-1178 . 本站查看
其他类型引用(0)
-