中国地质调查局 中国地质科学院主办
科学出版社出版

基于地表水-地下水耦合模型的未来气候变化对西北干旱区水资源影响研究——以黑河中游为例

吴斌, 王赛, 王文祥, 安永会. 2019. 基于地表水-地下水耦合模型的未来气候变化对西北干旱区水资源影响研究——以黑河中游为例[J]. 中国地质, 46(2): 369-380. doi: 10.12029/gc20190213
引用本文: 吴斌, 王赛, 王文祥, 安永会. 2019. 基于地表水-地下水耦合模型的未来气候变化对西北干旱区水资源影响研究——以黑河中游为例[J]. 中国地质, 46(2): 369-380. doi: 10.12029/gc20190213
WU Bin, WANG Sai, WANG Wenxiang, AN Yonghui. 2019. Impact of future climate change on water resources in the arid regions of Northwest China based on surface water-groundwater coupling model: A case study of the middle reaches of the Heihe River[J]. Geology in China, 46(2): 369-380. doi: 10.12029/gc20190213
Citation: WU Bin, WANG Sai, WANG Wenxiang, AN Yonghui. 2019. Impact of future climate change on water resources in the arid regions of Northwest China based on surface water-groundwater coupling model: A case study of the middle reaches of the Heihe River[J]. Geology in China, 46(2): 369-380. doi: 10.12029/gc20190213

基于地表水-地下水耦合模型的未来气候变化对西北干旱区水资源影响研究——以黑河中游为例

  • 基金项目:
    中国地质调查局项目"河西走廊黑河流域1:5万水文地质调查(DD20160292)"及青年自然科学基金"气候变化和人类活动条件下流域尺度地表-地下水综合优化利用及不确定性问题研究(4170021290)"联合资助
详细信息
    作者简介: 吴斌, 男, 1987年生, 博士, 工程师, 从事水资源数值模拟方面研究; E-mail:pkuwubin@gmail.com
    通讯作者: 王赛, 女, 1984年生, 博士, 工程师, 从事环境地质方面研究; E-mail:wakineen@gmail.com
  • 中图分类号: P641

Impact of future climate change on water resources in the arid regions of Northwest China based on surface water-groundwater coupling model: A case study of the middle reaches of the Heihe River

  • Fund Project: Supported by geological survey project of 1:50, 000 hydrogeological survey of the Heihe River Basin in the Hexi Corridor (No. DD20160292) and the National Natural Science Foundation of China (No. 41702280)
More Information
    Author Bio: WU Bin, male, born in 1987, doctor, engineer, mainly engages in the study of water resources modeling; Email: pkuwubin@gmail.com .
    Corresponding author: WANG Sai, female, born in 1984, doctor, engineer, majors in the study of geological environment; E-mail: wakineen@gmail.com
  • 基于物理过程的地表-地下水耦合模型能全面、系统地刻画流域水循环过程,并为水资源管理提供详细信息。同时,未来水资源的变化趋势受到气候变化的影响显著,在未来气候情景下水资源如何变化将影响水资源管理措施。本文以黑河中游盆地为例,基于地表水-地下水耦合模型GSFLOW,评估区域水资源对气候变化的响应,预测未来气候情景(CMIP5)下区域水资源变化趋势,为西北干旱区水资源管理提供参考。研究表明:(1)GSFLOW模型能很好地模拟黑河中游盆地复杂的水循环过程。(2)在中等排放强度(RCP4.5)下,平均每年降水上升0.6 mm,温度上升0.03℃,地下水储量减少0.38亿m3;在高排放强度(RCP8.5)下,降水上升0.8 mm,温度上升0.06℃,地下水储量减少0.34亿m3

  • 加载中
  • 图 1  黑河中游盆地研究区概况

    Figure 1. 

    图 2  子流域划分、数字河道及HRU情况

    Figure 2. 

    图 3  盆地出流量(正义峡)校正结果(亿m3

    Figure 3. 

    图 4  地下水水位校正结果

    Figure 4. 

    图 5  区域水循环通量

    Figure 5. 

    图 6  未来百年降水变化情况

    Figure 6. 

    图 7  未来百年温度变化情况

    Figure 7. 

    图 8  两种气候情景下水资源变化情况(a—地下水储量;b—研究区出流量)

    Figure 8. 

    图 9  两种气候情景下典型井水位变化情况

    Figure 9. 

    表 1  9种全球气候模式及机构

    Table 1.  Descriptions of the 9 models from CMIP5 applied in this study

    下载: 导出CSV

    表 2  历年降水量与历年预测降水量

    Table 2.  Precipitation and predicted precipitation over years

    下载: 导出CSV
  • Arnold J G, Srinivasan R, Muttiah R S, Williams J R. 1998. Large area hydrologic modeling and assessment:Part Ⅰ. Model development[J]. Journal of the American Water Resources Association, 34 (1):73-89.

    Beven K J, Kirkby M J. 1979. A physically based, variable contributing area model of basin hydrology[J]. Hydrological Sciences Bulletin, 24 (1):43-69. doi: 10.1080/02626667909491834

    Brunner P, Simmons C T. 2012. HydroGeoSphere:A fully integrated, physically based hydrological model[J]. Groundwater, 50 (2):170-176. doi: 10.1111/gwat.2012.50.issue-2

    Chen Z, Nie Z, Zhang G, Wan L, Shen J. 2006. Environmental isotopic study on the recharge and residence time of groundwater in the Heihe River Basin, northwestern China[J]. Hydrogeology Journal, 14 (8):1635-1651. doi: 10.1007/s10040-006-0075-7

    Graham N, Refsgaard A. 2001. MIKE SHE:A distributed, physically based modelling system for surface water/groundwater interactions[M]. Golden, Colorado.

    Harbaugh A W. 2005. MODFLOW-2005, The U.S. Geological Survey modular ground-water model——the Ground-Water Flow Process[R]. U.S. Geological Survey Techniques and Methods.

    Hu L T, Chen C X, Jiao J J, Wang Z J. 2007. Simulated groundwater interaction with rivers and springs in the Heihe river basin[J]. Hydrological Processes, 21 (20):2794-2806. doi: 10.1002/(ISSN)1099-1085

    Kollet S J, Maxwell R M. 2006. Integrated surface-groundwater flow modeling:A free-surface overland flow boundary condition in a parallel groundwater flow model[J]. Advances in Water Resources, 26 (7):945-958. http://cn.bing.com/academic/profile?id=bb065107ee16cffb933c37f704d14571&encoded=0&v=paper_preview&mkt=zh-cn

    Leavesley G H, Lichty R W, Troutman B M, Saindon L G. 1983.Precipitation-runoff Modeling System——User's manual[R]. U.S. Geological Survey Water-Resources Investigations Report.

    Markstrom S L, Niswonger R G, Regan R S, Prudic D E, Barlow P M. 2008. GSFLOW——Coupled Ground-Water and Surface-Water Flow Model Based on the Integration of the Precipitation-Runoff Modeling System (PRMS) and the Modular Ground-Water Flow Model (MODFLOW-2005)[R]. U.S. Geological Survey Techniques and Methods.

    Panday S, Huyakorn P S. 2004. A fully-coupled physically-based spatially distributed model for evaluating surface/subsurface flow[J]. Advances in Water Resources, 27 (4):361-382. doi: 10.1016/j.advwatres.2004.02.016

    Rigon R, Bertoldi G, Over T M. 2006. GEOtop:A distributed hydrological model with coupled water and energy budgets[J]. Journal of Hydrometeorology, 7 (3):371-388. doi: 10.1175/JHM497.1

    Schmidt S, Geyer T, Marei A, Guttman J, Sauter M. 2013.Quantification of long-term wastewater impacts on karst groundwater resources in a semi-arid environment by chloride mass balance methods[J]. Journal of Hydrology, 502:177-190. doi: 10.1016/j.jhydrol.2013.08.009

    Sebben M L, Werner A D, Liggett J E, Partington D, Simmons C T. 2013. On the testing of fully integrated surface-subsurface hydrological models[J]. Hydrological Processes, 27 (8):1276-1285. doi: 10.1002/hyp.9630

    Shen C, Niu J, Phanikumar M S. 2013. Evaluating controls on coupled hydrologic and vegetation dynamics in a humid continental climate watershed using a subsurface-land surface processes model[J]. Water Resources Research, 49 (5):2552-2572. doi: 10.1002/wrcr.20189

    Simpson S C, Meixner T, Hogan J F. 2013. The role of flood size and duration on streamflow and riparian groundwater composition in a semi-arid basin[J]. Journal of Hydrology, 488:126-135. doi: 10.1016/j.jhydrol.2013.02.049

    Sophocleous M. 2002. Interactions between groundwater and surface water:The state of the science[J]. Hydrogeology Journal, 10 (1):52-67. doi: 10.1007/s10040-001-0170-8

    Weill S, Mazzia A, Putti M, Paniconi C. 2011. Coupling water flow and solute transport into a physically-based surface-subsurface hydrological model[J]. Advances in Water Resources, 34 (1):128-136. doi: 10.1016/j.advwatres.2010.10.001

    Wen X, Wu Y, Su J, Zhang Y, Liu F. 2005. Hydrochemical characteristics and salinity of groundwater in the Ejina Basin, Northwestern China[J]. Environmental Geology, 48 (6):665-675. doi: 10.1007/s00254-005-0001-7

    Wen X H, Wu Y Q, Lee L J E, Su J P, Wu J. 2007. Groundwater flow modeling in the Zhangye Basin, Northwestern China[J]. Environmental Geology, 53 (1):77-84. doi: 10.1007/s00254-006-0620-7

    Wu B, Zheng Y, Tian Y, Wu X, Yao Y, Han F, Liu J, Zheng C. 2014.Systematic assessment of the uncertainty in integrated surface water-groundwater modeling based on the probabilistic collocation method[J]. Water Resources Research, 50 (7):5848-5865. doi: 10.1002/wrcr.v50.7

    Wu Yanqng, Zhang Ynighua, Wen Xiaohu, Su Jianping. 2010.Hydrologic Cycle and Water Resource Modeling for the Heihe River Basin in Northwestern China[M]. Beijing:Science Press (in Chinese).

    Yin L, Zhou Y, Ge S, Wen D, Zhang E, Dong J. 2013. Comparison and modification of methods for estimating evapotranspiration using diurnal groundwater level fluctuations in arid and semiarid regions[J]. Journal of Hydrology, 496:9-16. doi: 10.1016/j.jhydrol.2013.05.016

    Zhang Hesheng, Ding Hongwei, Wei Yuguang, Jia Guiyi. 2003. Hexi Corridor Hroundwater Exploration Report[R]. Geol. Surv. of Gansu Province (in Chinese).

    Zhang Yongshuang, Sun Lu, Yin Xiulan, Meng Hui. 2017. Progress and prospect of research on environmental geology of China:A review[J]. Geology in China, 44(5):901-912(in Chinese with English abstract).

    仵彦卿, 张应华, 温小虎, 苏建平. 2010.中国西北黑河流域水文循环与水资源模拟[M].北京:科学出版社.

    张荷生, 丁宏伟, 魏余广, 贾贵义. 2003.河西走廊地下水勘察报告[R].甘肃省地质调查局.

    张永双, 孙璐, 殷秀兰, 孟晖. 2017.中国环境地质研究主要进展与展望[J].中国地质, 44(5):901-912. http://geochina.cgs.gov.cn/geochina/ch/reader/view_abstract.aspx?file_no=20170505&flag=1

  • 加载中

(9)

(2)

计量
  • 文章访问数:  2541
  • PDF下载数:  874
  • 施引文献:  0
出版历程
收稿日期:  2018-09-15
修回日期:  2019-03-12
刊出日期:  2019-04-25

目录