-
摘要:
以页岩油气为代表的低品位油气资源勘探与开发不断取得重大突破,已经成为中国重要的接替性资源。开展页岩气渗流机理和数值模拟模型研究有助于实现页岩气藏开发的动态变化过程,为认识页岩气渗流规律、优化数学模型、产能评价和预测奠定技术基础。围绕页岩气多尺度多流态多重介质下的运移机理,系统地阐述了页岩气数值模拟模型的研究进展,页岩气数值模拟模型可分为等效连续介质模型、离散裂缝网络模型和混合模型,总结了这3类数值模拟模型的优缺点。等效连续介质模型原理简单,追求宏观尺度的等效,忽略了储层内部真实流态,适用于裂缝发育程度低的均质页岩气藏;离散裂缝网络模型准确反映复杂裂缝网络的渗流特征,可以描述高度离散裂缝的形态规律,适用于勘探程度高且裂缝高度发育的页岩气藏;混合模拟模型结合两者的优点,能够准确反映复杂裂缝网络和流体运移规律,在满足计算精度的同时又节约了大量的计算资源,随着计算处理能力的增强,混合模拟模型是今后的发展趋势。最后分析了页岩气藏数值模拟模型中存在的问题,并指出了发展方向。
Abstract:The exploration and development of low grade oil and gas resources which have become important alternative resources in China have made great breakthrough. Research on numerical simulation of shale gas is helpful to realizing the dynamic process of shale gas development, laying a technical foundation for understanding seepage law of shale gas, optimizing mathematical model and evaluating as well as predicting productivity. Based on intensive investigation of literature from China and abroad, this paper systematically expounds the research progress of numerical simulation methods of shale gas and summarizes advantages and disadvantages of these methods. Shale gas numerical simulation models can be divided into equivalent continuous medium model, discrete fracture network model and mixed simulation model. The equivalent continuum model is simple in principle, pursues the macroscopic equivalent, neglects the true flow mechanism inside the reservoir, and is hence suitable for homogeneous shale gas reservoirs with low development of fractures. The discrete fracture network model accurately can reflect the porous flow characteristics of complex fracture networks and describe the objective regularity of highly discrete fractures and is hence suitable for shale gas reservoirs with completed exploration and high fracture development. The mixed simulation model combines the advantages of these two models to accurately reflect the complex fracture network and fluid migration law, meet the calculation accuracy, and save a lot of computing resources. With the improvement of computing and processing capabilities, the mixed simulation model is the future development trend. Finally, various problems in the numerical simulation model of shale gas reservoir are analyzed, and the development trends of shale gas numerical simulation are pointed out.
-
图 1 页岩气藏等效连续介质模拟模型(据Wu et al., 2009)
Figure 1.
图 2 Warren-Root双重介质模型(据Warren et al., 1963)
Figure 2.
图 3 Kazemi层状双重介质模型(据Kazemi, 1969)
Figure 3.
图 4 Deswaan双重介质模型(据Deswaan et al., 1976)
Figure 4.
图 5 多重连续介质(MINC)概念模型图(据Pruess et al., 1983)
Figure 5.
图 6 三重介质概念模型(据Wu et al., 2009, 有改动)
Figure 6.
图 7 页岩气三重介质扩散渗流模型(据程远方等, 2012)
Figure 7.
图 10 EDFM原理示意图(据Xu et al., 2017)
Figure 10.
图 11 三孔双渗模型与双重介质模型流动示意图(据李泽沛等, 2016)
Figure 11.
图 12 混合裂缝模拟模型示意图(据陈小凡等, 2018)
Figure 12.
表 1 页岩气数值模拟模型优缺点及适用范围
Table 1. Comparison of mathematical models in shale gas reservoir
-
Abdassah D, Ershaghi I. 1986. Triple-porosity systems for representing naturally fractured reservoirs[J]. SPE 13409. https://www.onepetro.org/journal-paper/SPE-13409-PA
Abelin H. 1986. Migration in a Single Fracture: An in Situ Experiment in A Natural Fracture[D]. DeP. of Chem. Eng. Royal Inst. of Technol., Stockholm, Sweden.
Azom P N, Javadpour F. 2012. Dual-continuum modelling of shale and tight gas reservoir[C]//Proceedings-SPE Annual Technical Conference and Exhibition. 4.10.2118/159584-MS.
Barenblatt G I, Zheltov I P, Kochina I N. 1960. Basic concept in the theory of homogeneous liquids in fissured rocks[J]. J. Appl. Math.Mech. (USSR), 24:1286-1303. doi: 10.1016/0021-8928(60)90107-6
Beskok Ali, Karniadakis George. 1999. A model for flows in channels pipes and ducts at micro and nanoscales[J]. Microscale Thermophysical Engineering, 3(3):43-77.
Bustin A M M, Bustin R M, Cui X. 2008. Importance of Fabric on the Production of Gas Shale[R]. SPE 114167-MS.
Bustin A M M, Bustin R M, Cui X. 2008. Importance of Fabric on the Production of Gas Shale[R]. SPE 114167-MS.
Carlson E S, James C M. 1991. Devonian Shale Gas Production: Mechanisms and Simple Models[R]. Journal of Petroleum Technology, 43(4), 476-482.
Carlson, E S, Mercer, J C. 1991. Devonian Shale Gas Production:Mechanisms and simple models[J]. Society of Petroleum Engineers. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0219277368/
Cavalcante F, Jose S D A, Xu Y F, Sepehrnoori K. 2015. Modeling fishbones using the embedded discrete fracture model formulation: Sensitivity analysis and history matching[C]//SPE Annual Technical Conference and Exhibition.
Chai Z, Yan B, Killough J E, Wang Y. 2018. An efficient method for fractured shale reservoir history matching: The embedded discrete fracture multi-continuum approach[C]//SPE Annual Technical Conference and Exhibition.
Chen Xianglin, Bao Shujing, Zhai Gangyi, Zhai Gangyi, Zhou Zhi, Tong Chuanchuan, Wang Chao. 2018. The discovery of shale gas within Lower Cambrian marine facies at Shan Nandi-1 well on the margin of Hannan palaeouplift[J]. Geology in China, 45(2):412-413(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/zgdizhi201802017
Chen Xiaofan, Tang Chao, Du Zhimin, Tang Liandong, Wei Jiabao, Ma Xu. 2018. Numerical simulation on multi-stage fractured horizontal wells in shale gas reservoirs based on the finite volume method[J]. Natural Gas Industry, 38(12):77-86(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/trqgy201812009
Cheng Handing, Cai Junrui, Li Yameng. 2007. Brief overview on solute transport in fractured rock masses[J]. Water Resources and Power, 25(3):33-37(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sdnykx200703010
Cheng Yuanfang, Dong Bingxiang, Shi Xian, Li Na, Yuan Zheng. 2012. Seepage mechanism of a triple-porosity/dual-permeability model for shale gas reservoirs[J]. Natural Gas Industry, 32(9):44-47(in Chinese with English abstract).
Cipolla C L, Lolon E P, Mayerhofer M J, Mayerhofer. 2009. Fracture Design Consideration in Horizontal Wells Drilled in Unconventional Gas Reservoirs[R]. SPE 119366-MS.
Cipolla C L, Lolon E P. 2009. Reservoir Modeling and Production Evaluation in Shale Gas Reservoirs[R]. SPE 13185-MS.
Civan F, Rai C, Sondergeld C H. 2012. Determining shale permeability to gas by simultaneous analysis of various pressure tests[J]. SPE Journal, 17(1):717-726. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=6a19e09fbe6b9cf2ab58f4a772ef3543
Civan Farukrai. 2010. Effective correlation of apparent gas permeability in tight porous media[J]. Transport in Porous Media, 82(1):375-384. https://link.springer.com/article/10.1007%2Fs11242-009-9432-z
Cominelli A, Panfili P, Scotti A, Milano. 2013. Using embedded discrete fracture models (EDFMs) to simulate realistic fluid flow problems[C]//Second Workshop on Naturally Fractured Reservoirs: Naturally Fractured Reservoirs in Real Life.
Cominelli A, Panfili P. 2014. Simulation of miscible gas injection in a fractured carbonate reservoir using an embedded discrete fracture model[C]//Abu Dhabi International Petroleum Exhibition and Conference.
Cominelli, Alberto, Panfili P, Scotti, Anna, Milano. 2013. Using Embedded Discrete Fracture Models (EDFMs) to Simulate Realistic Fluid Flow Problems[C]//2nd EAGE Workshop Naturally Fractured Reservoirs: Naturally Fractured Reservoirs in Real Life.
Dershowitz W S, Einstein H H. 1987. Three-dimensional flow modelling in jointed rock masses[C]//Herget, Vongpaisal, editors.Proceedings of the Sixth Cong. ISRM, vol. 1. Montreal, Canada, 87-92.
Deswaan O A. 1976. Analytic solutions for determining naturally fractured reservoir properties by well testing[C]//SPE 5346.
Fang Wenchao, Jiang Hanqiao, Li Junjian, Wang Qing, Killough John, Li Linkai, Peng Yongcan, Yang Hanxu. 2017. A numerical simulation model for multi-scale flow in tight oil reservoirs[J]. Petroleum Exploration and Development, 44(3):415-422(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syktykf201703011
Gao Shusheng, Liu Huaxun, Ye Liyou, Hu Zhiming, Chang Jin, An Weiguo. 2017. A coupling model for gas diffusion and seepage in SRV section of shale gas reservoirs[J]. Natural Gas Industry, 37(1):97-103(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=trqgy201701012
Ge Mingna, Bao Shujing, He Wei, Chen Xianglin, Lin Tuo, Chen Ke. 2018. The discovery of shale gas in Lower Cambrian marine shale gas at Huangdi-1 well in Huangping region of northern Guizhou[J]. Geology in China, 45(4):851-852(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi201804016
Hoteit H, Firoozabadi A. 2006. Compositional modeling of discretefractured media without transfer functions by the discontinuous galerkin and mixed methods[J]. SPE Journal, 11(3):341-352. doi: 10.2118/90277-PA
Hugo Araujo, Pablo Lacentre, Tomas Zapata. 2004. Dynamic behavior of discrete fracture network models. The 2004 SPE International Petroleum Conference[C]//Puebla, Mexico: SPE 91940.
Jack H, Norbeck, Mark W. McClure, Jonathan W. Lo, Raland N.Horne. 2015. An embedded fracture modeling framework for simulation of hydraulic fracturing and shear stimulation[J]. Computational Geosciences, 20(1):1-18. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=94aed4d5960670ce352babe0efe0228d
James R Glman, Hossein Kazemi. 1982. Improvements in simulation of naturally fractured Reservoirs[C]//SPE 10511.
Javadpour F. 2009. Nanopores and apparent permeability of gas flow in mudrocks(Shales and Siltstone)[J]. Petroleum Society of Canada, 48(8):16-21. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ec81e94c9fee0298eb521b2779a59a95
Javadpour F, Fisher D, Unsworth M. 2007. Nanoscale gas flow in shale gas sediments[J]. Journal of Canadian Petroleum Technology, 46(10):55-61. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=464138fa91f96656ef74df2d4d7931eb
Jiang J, Younis R. 2016. Hybrid coupled discrete-fracture/matrix and multicontinuum models for unconventional-reservoir simulation[J]. SPE Journal, 20(3):1009-1027. https://www.onepetro.org/journal-paper/SPE-178430-PA
Kazemi H, Seth M S, Thomas G W. 1969. Pressure transient analysis of naturally fractured reservoir with uniform fracture distribution[C]//SPE 2153.
Klimkowski L, Nagy S. 2014. Key factors in shale gas modeling and simulation[J]. Archives of Mining Sciences, 59(4):987-1004. doi: 10.2478/amsc-2014-0068
Li Bo. 2018. Numerical Study of Multiple-stage Fractured Horizontal Well in Tight Oil Reservoirs Based on Embedded Discrete Fracture Model[D]. Southwest Petroleum University Master's thesis, 1-121.
Li Zepei, Peng Xiaolong, Wang Yi. 2016. Numerical simulation method of shale gas reservoirs after stimulated reservoir volume fracturing based on triple porous media model[J]. Petroleum Geology and Recovery Efficiency, 23 (6):105-111(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yqdzycsl201606018
Li Zhiping, Li Zhifeng. 2012. Dynamic characteristics of shale gas flow in nanoscale pores[J]. Natural Gas Industry, 32(4):50-53(in Chinese with English abstract). https://www.scientific.net/AMR.524-527.1266
Lian Peiqing, Duan Taizhong.2018. Research progress on flow characteristic and numerical simulation of shale gas reservoir[J]. Advances in Fine Petrochemicals, 19 (4):6-11, 15(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/jxsyhgjz201804003
Liang Bin, Jiang Hanqiao, Li Junjian, Mi Lidong, Wang Lei. 2015.Calculation model of multi-factor shale gas adsorption Capacity[J]. Special Oil and Gas Reservoirs, 22(1):121-123, 157(in Chinese with English abstract).
Liu, Cigun. 1982. The unsteady radial flow- of compressible liquids through a medium with multiple porosity[C]//SPE 10580.
Long J C S, Witherspoon P A. 1985. The relationship of the degree of interconneetion to permeability in fractured networks[J]. Journal of Geophysical Research, 90(134):3087-3098. https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/JB090iB04p03087#references-section
Louis C, Wittke W. 1971. Experimental study of water flow in jointed rock massif[J]. Tachien Project Formosa. Geotechnique, 21 (1):29-35.
Lü Xinrui, Yao Jun, Huang Zhaoqin, Zhao Juan. 2012. Study on discrete fracture model two-phase flow simulation based on finite volume method[J]. Journal of Southwest Petroleum University:Science & Technology Edition, 34(6):123-130(in Chinese with English abstract).
Ma Yongsheng, Cai Xunyu, Zhao Peirong. 2018. China's shale gas exploration and development:Understanding and practice[J]. Petroleum Exploration and Development, 45(4):561-574(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/syktykf201804003
Meng Fanyang, Chen Ke, Bao Shujing, Lin Tuo, Zhang Rui, Dong Zhoubin. 2017. Determination of marine-continental transitional facies shale gas:A case study of Baye No. 1 well in Badong area, western Hubei Province[J]. Geology in China, 44(2):403-404(in Chinese with English abstract).
Mi Lidong, Jiang Hanqiao, Hu Xiangyang, Li Junjian, Jia Ying.2018.Evaluation and selection of numerical simulation methods for shale gas reservoirs[J]. Scientia Sinica Tech., 48(6):680-690(in Chinese with English abstract). doi: 10.1360/N092017-00152
Mi Lidong, Jiang Hanqiao, Li Junjian. 2014. Investigation of shale gas numerical simulation method based on discrete fracture network model[J]. Natural Gas Geoscience, 25(11):1795-1803(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/trqdqkx201411013
Mirzaei M, Cipolla C L. 2012. A workflow for modeling and simulation of hydraulic fractures in unconventional gas reservoirs[C]//Paper 153022-MS presented at the SPE Middle East Unconventional Gas Conference and Exhibition, 23-25 January, Abu Dhabi, UAE.
Moinfar A, Narr W, Hui M H, Mallison B T, Lee S H. 2011.Comparison of discrete-fracture and dual-permeability models for multiphase flow in naturally fractured reservoirs[C]//Paper 142295-MS presented at the SPE Reservoir Simulation Symposium, 21-23 February, The Woodlands, Texas, USA.
Moinfar A, Varavei A, Sepehrnoori K, Johns R T. 2013. Development of a coupled dual continuum and discrete fracture model for the simulation of unconventional reservoirs[C]. SPE 163647.
Moinfar A, Varavei A, Sepehrnoori K. 2014. Development of an efficient embedded discrete fracture model for 3D compositional reservoir simulation in fractured reservoirs[J]. SPE Journal, 19(2):289-303. doi: 10.2118/154246-PA
Monteagudo J E P, Firoozabadi A. 2004. Numerical simulation of water injection in disconnected and connected fractured media using jacobian-free fully implicit control volume method. The 2004 SPE/DOE 14the Symposium on Improved Oil Recovery[C]//Tulsa, Oklahoma, USA. SPE 89449.
Moridis, G J, Blasingame T A, Freeman C M. 2010. Analysis of Mechanisms of Flow in Fractured Tight-Gas and Shale-Gas Reservoirs[C]//SPE 139250, presented at the SPE Latin American & Caribbean Petroleum Engineering Conference held in Lima, Peru, 1-3 December.
National Research Council. 1996. Rock Fractures and Fluid Flow: Contemporary Understanding and Applications[M]. Washington: National Academy Press.
Ozkan E, Raghavan R. 2009. Modeling of Fluid Transfer from Shale Matrix to Fracture Network[R]. SPE 134830-MS.
Passey Q R, Bohacs K M, Esch W L, Klimentidis R, Sinha S. 2010.From oil-prone source rock to gas-producing shale reservoirgeological and petrophysical characterization of unconventional shale gas reservoirs from oil-prone source rock to gas-producing shale reservoir-geological and petrophysical characterization of unconventional shale-gas reservoirs[C]//SPE 131350.
Peng Kai, Ning Zhengfu, Wang Guili. 2012. Study for flow model in dual-porosity of shale gas reservoirs[J]. Journal of Chongqing University of Science and Technology (Natural Sciences Edition), 14(1):8-11, 22(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CQSG201201004.htm
Pruess K. 2008. GMINC-A mesh generator for flow simulations in fractured reservoirs[J]. Lawrence Berkeley Laboratory.
Ren Lan, Lin Ran, Zhao Jinzhou, Rong Mang, Chen Jianda.2018. A stimulated reservoir volume (SRV) evaluation model and its application to shale gas well productivity enhancement[J]. Natural Gas Industry, 38(8):47-56(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/trqgy201808007
Rubin B. 2010. Accurate simulation of non-darcy flow in stimulated fractured shale reservoirs[C]//Paper 132093-MS presented at the SPE Western Meeting, Anaheim, California, USA.
Sangnimnuan A, Li J W, Wu K. 2018. Development of efficiently coupled fluid flow and geomechanics model for refracturing optimization in highly fractured reservoirs[C]//SPE Hydraulic Fracturing Technology Conference and Exhibition.
Saputelli L, Lopez C, Chacon A, Soliman M. 2014. Design optimization of horizontal wells with multiple hydraulic fractures in the Bakken Shale[C]//SPE/EAGE European Unconventional Resources Conference and Exhibition, 25-27 February, Vienna, Austria.
Snow D T. 1965. A Parallel Plate Model of Fracture Permeable Media[D]. Berkeley: Univ. of California.
Snow D T.1968. Fracture deformation and changes of permeability and storage upon changes of fluid pressure quart[J]. Colorado School of Mines, 63(1):201-244.
Song Teng, Chen Ke, Bao Shujing, Guo Tianxu, Lei Yuxue, Wang Yi, Meng Fanyang, Wang Peng.2018. The discovery of shale gas in Wufeng-Longmaxi Formation at Hongdi-1 Well on the northern limb of Shennongjia anticline in northwestern Hubei Province[J]. Geology in China, 45(1):195-196(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi201801017
Song Xiaochen, Xu Weiya.2004. A study on conceptual models of fluid flow in fractured rock[J]. Rock and Soil Mechanics, (2):226-232 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YTLX200402015.htm
Swami Vivek, Settari A. 2012. A pore scale gas flow model for shale gas reservoir[C]//SPE Americas Unconventional Resources Conferences, Pittsburgh, Pennsylvania: Society of Petroleum Engineers, 1-10.
Swani Vivek, clarkson C R, Settari A. 2012. Non-darcy flow in shale nanopores do we have a final answer[C]//SPE162665: 1-14.
Teng Bailu, Cheng Linsong, Huang Shijun, Jia Zhen, Ai Shuang. 2016.Prediction of the drainage volume of shale gas reservoir with fast marching method[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 38(2):122-128(in Chinese with English abstract).
Van Kruysdijk C P J W, Dullaert G M. 1989. A boundary element solution of the transient pressure response of multiple fractured horizontal wells[C]//Presented at the 2nd European Conference on the Mathematics of Oil Recovery, Cambridge, England.
Wang F P, Reed R M. 2009. Pore networks and fluid flow in gas shales[C]//Anon.Paper SPE124253. SPE Annual Technical Conference and Exhibition. New Orleans, Louisiana, USA.
Warpinski, N R, M J Mayerhofer, M C Vincent, C L Cipolla, E P Lolon. 2008. Stimulating unconventional reservoirs: maximizing network growth while optimizing fracture conductivity[C]//2008 SPE Shale Gas Production Conference, Fort Worth, Texas, 16-18 November.
Warren J E, Root P J.1963. The behavior of naturally fracture reservoirs[J]. Society of Petroleum Engineering Journal, (3):245-255. http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_69b9c572f99bea4c3ca72e88a1763582
Watson A T, Iii J M G, Lee W J, Rahim Z. 1990. An Analytical Model for History Matching Naturally Fractured Reservoir Production Data[R]. SPE Reservoir Engineering, 5(3), 384-388.
Wei Pengyun, Shi Anfeng, Wang Xiaohong, Zhou Fangqi. 2015. A discrete fracture-dual porosity coupling model for shale gas reservoirs[J]. Chinese Quarterly of Mechanics, 36(2):179-188(in Chinese with English abstract).
Wei Shiming, Xia Yang, Jin Yan, Chen Mian, Lu Yuanhu.2019. Study on the 3D fluid-solid coupling model with multi-pressure system of shale[J]. Scientia Sinica(Physica, Mechanica & Astronomica), 49(1):40-52(in Chinese with English abstract). http://engine.scichina.com/publisher/scp/journal/SSPMA/49/1/10.1360/SSPMA2018-00278?slug=fulltext
Wilson C R, Witherspoon P A. 1974. Steady state flow in rigid networks of fractures[J]. Water Resources Research, 10(2):328-339. http://d.old.wanfangdata.com.cn/NSTLQK/10.1029-WR010i002p00328/
Wu Y S, Moridis G, Berkeley L, Bai B, Zhang K.2009. A multicontinuum model for gas production in tight fractured reservoirs[C]//SPE 118944. SPE Hydraulic Fracturing Technology Conference. Society of Petroleum Engineers.
Wu Y S, Wang C, Li J, Fackahroenphol P. 2012. Transient gas flow in unconventional gas reservoirs[C]//SPE154448, The EAGE Annual Conference & Exhibition incorporating SPE Europec held in Copenhagen, Denmark.
Xia Daoying. 2018. Study on the Model of Fluid-solid Coupling of the Numerical Simulation on Shale Gas Reservoirs[D]. Xi'an: Xi'an Shiyou University.
Xu Y, Yu W, Sepehmoori K. 2017. Modeling dynamic behaviors of complex fractures in conventional reservoir simulators[C]//Unconventional Resources Technology Conference.
Yao Jun, Sun Hai, Fan Dongyan, Huang Zhaoqin, Sun Zhixue, Zhang Guohao. 2013.Transport mechanisms and numerical simulation of shale gas reservoirs[J]. Journal of China University of Petroleum(Natural Sciences Edition), 37(1):91-98(in Chinese with English abstract).
Yao Jun, Wang Zisheng, Zhang Yun, Huang Zhaoqin.2010. Numerical simulation method of discrete fracture network for naturally fractured reservoirs[J]. Acta Petrolei Sinica, 31(2):284-288(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-SYXB201002019.htm
Zhang Liehui, Shan Baochao, Zhao Yulong, Guo Jingjing, Tang Hongming. 2017. Establishment of apparent permeability model and seepage flow model for shale reservoir[J]. Lithologic Reservoirs, 29(6):108-118(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yxyqc201706014
Zhang Min, Yao Jun, Sun Hai, Zhao Jianlin, Fan Dongyan, Huang Zhaoqin, Wang Yueying. 2015. Triple-continuum modeling of shale gas reservoirs considering the effect of kerogen[J]. Journal of Natural Gas Science and Engineering, 24:252-263. doi: 10.1016/j.jngse.2015.03.032
Zhang X, Du C, Deimbacher F. 2009. Sensitivity studies of horizontal wells with hydraulic fractures in shale gas reservoirs[J]. IPTC 13338.
Zhao Jinzhou, Ren Lan, Shen Pin, Li Yongming.2018. Latest research progresses in network fracturing theories and technologies for shale gas reservoirs[J]. Natural Gas Industry, 38(3):1-14(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=trqgy201803001
Zhao Wenzhi, Li Jianzhong, Yang Tao, Wang Shufang, Huang Jinliang. 2016. Geological difference and its significance of marine shale gases in south China[J]. Petroleum Exploration and Development, 43(4):499-510. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syktykf201604001
Zhou Zhi, Bao Shujing, Chen Ke, Xu Qiufeng, Zhang Shousong, Wang Chao, Wang Peng. 2018. An important discovery of shale gas in Permian formation of Jianshi area, Hubei Province[J]. Geology in China. 45(6):1304-1305(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi201806020
Zhu Weiyao, Ma Qian, Deng Jia. 2014.Mathematical model and application of gas flow in nano-micron pores[J]. Journal of University of Science and Technology Beijing, 36(6):709-715(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bjkjdxxb201406001
Zou Caineng. 2013. Unconventional Petroleum Geology[M]. Beijing:Geological Publishing House, 1-310(in Chinese).
陈相霖, 包书景, 翟刚毅, 周志, 童川川, 王超.2018.汉南古隆起周缘下寒武统(陕南地1井)发现海相页岩气[J].中国地质, 45(2):412-413. http://geochina.cgs.gov.cn/geochina/ch/reader/view_abstract.aspx?file_no=20180216&flag=1
陈小凡, 唐潮, 杜志敏, 汤连东, 魏嘉宝, 马旭. 2018.基于有限体积方法的页岩气多段压裂水平井数值模拟[J].天然气工业, 38(12):77-86. doi: 10.3787/j.issn.1000-0976.2018.12.009
程汉鼎, 柴军瑞, 李亚盟.2007.裂隙岩体溶质运移研究简述[J].水电能源科学, 25(3):33-37. doi: 10.3969/j.issn.1000-7709.2007.03.010
程远方, 董丙响, 时贤, 李娜, 袁征. 2012.页岩气藏三孔双渗模型的渗流机理[J].天然气工业, 32(9):44-47. doi: 10.3787/j.issn.1000-0976.2012.09.010
方文超, 姜汉桥, 李俊键, 王青, Kilkough John, 李林凯, 彭永灿, 杨晗旭.2017.致密储集层跨尺度耦合渗流数值模拟模型[J].石油勘探与开发, 44(3):415-422. http://d.old.wanfangdata.com.cn/Periodical/syktykf201703011
冯其红, 徐世乾, 王森, 杨毅, 高方方, 徐亚娟.2017.基于嵌入离散裂缝的页岩气藏视滲透率模型[J].地球科学, 42(8):1301-1313. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201708007
高树生, 刘华勋, 叶礼友, 胡志明, 常进, 安卫国.2017.页岩气藏SRV区域气体扩散与渗流耦合模型研究[J].天然气工业, 37(1):97-103. http://www.cnki.com.cn/Article/CJFDTotal-TRQG201701019.htm
葛明娜, 包书景, 何伟, 陈相霖, 林拓, 陈科.2018.黔北黄平地区黄地1井下寒武统发现海相页岩气[J].中国地质, 45(4):851-852. http://geochina.cgs.gov.cn/geochina/ch/reader/view_abstract.aspx?file_no=20180414&flag=1
姜瑞忠, 原建伟, 崔永正, 潘红, 李广, 张海涛. 2019.考虑岩石变形的页岩气藏双重介质数值模拟[J].油气地质与采收率, 26(4):70-76. http://d.old.wanfangdata.com.cn/Periodical/yqdzycsl201904010
李博. 2018.致密油藏分段压裂水平井嵌入式离散裂缝模型数值模拟研究[D].西南石油大学, 1-121.
李泽沛, 彭小龙, 王毅. 2016.基于三重介质模型的体积压裂后页岩气储层数值模拟模型[J].油气地质与采收率, 23 (6):105-111. doi: 10.3969/j.issn.1009-9603.2016.06.018
李治平, 李智锋. 2012.页岩气纳米级孔隙渗流动态特征[J].天然气工业, 32(4):50-53. doi: 10.3787/j.issn.1000-0976.2012.04.012
廉培庆, 段太忠.2018.页岩气藏渗流特征及数值模拟研究进展[J].精细石油化工进展, 19 (4):6-11, 15. doi: 10.3969/j.issn.1009-8348.2018.04.003
梁彬, 姜汉桥, 李俊键, 糜利栋, 王磊.2015.考虑多因素的页岩气吸附能力计算模型[J].特种油气藏, (1):121-123. doi: 10.3969/j.issn.1006-6535.2015.01.028
吕心瑞, 姚军, 黄朝琴, 赵娟.2012.基于有限体积法的离散裂缝模型两相流动模拟[J].西南石油大学学报(自然科学版), 34(6):123-130. http://d.old.wanfangdata.com.cn/Periodical/xnsyxyxb201206019
马永生, 蔡勋育, 赵培荣.2018.中国页岩气勘探开发理论认识与实践[J].石油勘探与开发, 45(4):561-574. http://d.old.wanfangdata.com.cn/Periodical/syktykf201804003
孟凡洋, 陈科, 包书景, 林拓, 张瑞, 董周宾. 2017.鄂西巴东地区(巴页1井)发现海陆过渡相页岩气[J].中国地质, 44(2):403-404. http://geochina.cgs.gov.cn/geochina/ch/reader/view_abstract.aspx?file_no=20170216&flag=1
糜利栋, 姜汉桥, 胡向阳, 李俊健, 贾英. 2018.页岩气藏数值模拟模型评价及选择[J].中国科学:技术科学, 48(6):680-690.
糜利栋, 姜汉桥, 李俊键. 2014.页岩气离散裂缝网络模型数值模拟模型研究[J].天然气地球科学, 25(11):1795-1803. doi: 10.11764/j.issn.1672-1926.2014.11.1795
彭凯, 宁正福, 王桂丽. 2012.页岩气藏双重介质渗流模型研究[J].重庆科技学院学报(自然科学版), 14(1):8-11, 22. doi: 10.3969/j.issn.1673-1980.2012.01.003
任岚, 林然, 赵金洲, 荣莽, 陈建达. 2018.页岩气水平井增产改造体积评价模型及其应用[J].天然气工业, 38(8):47-56. http://d.old.wanfangdata.com.cn/Periodical/trqgy201808007
宋腾, 陈科, 包书景, 郭天旭, 雷玉雪, 王亿, 孟凡洋, 王鹏. 2018.鄂西北神农架背斜北翼(鄂红地1井)五峰-龙马溪组钻获页岩气显示[J].中国地质, 45(1):195-196. http://geochina.cgs.gov.cn/geochina/ch/reader/view_abstract.aspx?file_no=20180117&flag=1
宋晓晨, 徐卫亚.2004.裂隙岩体渗流概念模型研究[J].岩土力学, (2):226-232. doi: 10.3969/j.issn.1000-7598.2004.02.013
滕柏路, 程林松, 黄世军, 贾振, 艾爽. 2016.基于波前快速推进法的页岩气储层动用预测[J].西南石油大学学报(自然科学版), 38(2):122-128. http://d.old.wanfangdata.com.cn/Periodical/xnsyxyxb201602015
韦世明, 夏阳, 金衍, 陈勉, 卢运虎. 2019.三维页岩储层多重压力流固耦合模型研究[J].中国科学:物理学力学天文学, 49(1):40-52. http://www.cnki.com.cn/Article/CJFDTotal-JGXK201901004.htm
卫鹏云, 施安峰, 王晓宏, 周方奇. 2015.页岩气藏的双重介质离散裂缝模型[J].力学季刊, 36(2):179-188. http://d.old.wanfangdata.com.cn/Conference/8681115
夏道应. 2018.页岩气藏流固耦合模型数值模拟研究[D].西安: 西安石油大学.
严侠, 黄朝琴, 姚军, 黄涛. 2014.基于模拟有限差分的嵌入式离散裂缝数学模型[J].中国科学:技术科学, 44(12):1333-1342. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-ce201412011
姚军, 孙海, 樊冬艳, 黄朝琴, 孙致学, 张国浩. 2013.页岩气藏运移机制及数值模拟[J].中国石油大学学报(自然科学版), 37(1):91-98 doi: 10.3969/j.issn.1673-5005.2013.01.015
姚军, 王子胜, 张允, 黄朝琴. 2010.天然裂缝性油藏的离散裂缝网络数值模拟模型[J].石油学报, 31(2):284-288. http://www.cnki.com.cn/Article/CJFDTotal-SYXB201002019.htm
张烈辉, 单保超, 赵玉龙, 郭晶晶, 唐洪明. 2017.页岩气藏表观渗透率和综合渗流模型建立[J].岩性油气藏, 29(6):108-118. doi: 10.3969/j.issn.1673-8926.2017.06.014
赵金洲, 任岚, 沈骋, 李勇明. 2018.页岩气储层缝网压裂理论与技术研究新进展[J].天然气工业, 38(3):1-14. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=trqgy201803001
周志, 包书景, 陈科, 徐秋枫, 张守松, 王超, 王鹏. 2018.湖北建始地区二叠系鄂建业1井钻获页岩气[J].中国地质, 45(6):1304-1305. http://geochina.cgs.gov.cn/geochina/ch/reader/view_abstract.aspx?file_no=20180619&flag=1
朱维耀, 马千, 邓佳, 马东旭, 宋智勇, 岳明. 2014.纳微米级孔隙气体流动数学模型及应用[J].北京科技大学学报, 2014, 36(6):709-715. http://d.old.wanfangdata.com.cn/Periodical/bjkjdxxb201406001
邹才能. 2013.非常规油气地质学[M].北京:地质出版社, 1-310.