Geochemistry and geochronotry of intermediate-basic dikes in Awengcuo area of north Tibet and intraplate extensional structures
-
摘要:
班公湖—怒江缝合带在中生代的构造岩浆演化是青藏高原基础地质研究的热点之一。在该缝合带南部的北冈底斯地区发育有大量的中生代火山岩及相关岩浆岩,其岩石成因与成岩地球动力学背景长期以来存在较大的争议。本文以班公湖—怒江缝合带西段阿翁错地区的中基性脉岩为研究对象,对该地区广泛发育的脉岩的形成时代、岩石成因、构造环境以及动力学背景进行了探讨。研究区辉绿岩脉以低硅(SiO2=50.03%~51.13%)、低铝(Al2O3=15.52%~16.03%、低钛(TiO2=1.22%~1.31%)、富镁(MgO=9.19%~10.37%)、富钠(Na2O=3.10%~3.58%,Na2O/K2O=1.73~1.87)为特征;闪长岩脉以相对高硅(SiO2=55.58%~56.22%)、低镁(MgO=4.69%~4.64%)、低钛(TiO2=1.01%~1.06%)、高铝(Al2O3=17.74%~18.72%)、富钠(Na2O=1.55%~5.03%,Na2O/K2O=1.81~3.61)为特征,属于钠质低钾钙碱性系列岩石。二者轻重稀土元素分馏明显,均表现为右倾型,具弱的Eu负异常,重稀土元素总体上变化不大。微量元素上均表现出以富集Rb、U等大离子亲石元素和轻稀土(LREE)元素,亏损Nb、Ta、Ti高场强元素(HFSE)为特征。年代学分析结果显示研究区闪长岩脉LA-ICP-MS锆石U-Pb年龄为(99.2±1.2)Ma,辉绿岩脉LA-ICP-MS锆石U-Pb年龄为(108.4±2.9)Ma,属于早白垩世晚期向晚白垩世过渡期间,其岩浆源区遭受了一定程度的地壳物质的混染,后经历了不同程度的铁镁矿物和斜长石的结晶分离作用。构造环境分析显示研究区中基性岩脉形成于伸展构造环境下,其产状受区域应力场控制,其动力学背景可能与班公湖—怒江特提斯洋南向俯冲消减过程中板片断离导致的软流圈上涌,诱发岛弧和岛弧后方的地幔岩浆发生补充性对流循环而形成的伸展构造背景有关。表明研究区至少在99.2 Ma时,班公湖—怒江特提斯洋俯冲消减已经完成,由早期构造挤压环境转向晚期构造伸展环境。
Abstract:The Bangong Co-Nujiang suture zone and its tectonic-magmatic evolution constitute one of the hottest scientific problems related to fundamental geology of the Tibetan Plateau. The Mesozoic volcanic-intrusive rocks are widely distributed in the north Gangdese belt,which is also located in southern Bangong Co-Nujiang suture zone. The petrogenesis and geodynamic setting of those rocks remain controversial. In this paper,the authors reported the newly found intermediate-basic dikes in Awengcuo area which is located at the west segment of Bangong Co-Nujiang suture zone so as to explore these problems,and detailed LA-ICP-MS zircon U-Pb dating geochronological and element geochemical studies were carried out for the intermediatebasic dikes. The basic dikes exhibit SiO2 content of 50.03%-51.13%,Al2O3 content of 15.52%-16.03% with TiO2 content of 1.22%-1.31%,MgO content of 6.12%-8.51%,Na2O content of 3.10%-3.58%,with Na2O/K2O ratio of 1.73-1.87. The diorite dikes have values of SiO2 (55.58%-56.22%),MgO (4.69%-4.64%),Al2O3 (1.01%-1.06%) with TiO2 (1.01%-1.06%),Na2O (1.55%-5.03%),and Na2O/K2O (1.81-3.61). The diabase veins belong to alkaline basalt series and the diorites are subalkaline-series rocks. All of their light rare elements are concentrated evidently and heavy rare elements are deficient with a right dip distribution mode of REE,slightly negative Eu anomalies and content of HREE. On primitive mantle-normalized trace element diagrams,the intermediate-basic dikes display different degrees of enrichment of LIFEs (e.g.,Rb,U),relative depletion of HFSE (Nb,Ta,Ti). The zircon U-Pb dating of diorite-dyke yielded a weighted average age of (99.2±1.2)Ma,and the basic-dyke U-Pb dating yielded an age of (108.4±2.9)Ma,indicating that the diorite-dykes in Awengcuo area were formed at the late stage of early Cretaceous. The magma source region was mainly influenced by the crustal material and underwent different degrees of fractionation crystallization of mafic minerals and plagioclases when uplifting from the high magmatic chamber. The intermediate-basic dikes were generated in a contineral intraplate setting,as shown by analyzing tectonic setting,and its attitudes were controlled by the regional tectonic stress field. The tectonic dynamics background of the dikes formed in slab break-off caused asthenosphere upwelling extension during the Bangong Co-Nujiang Tethyan Ocean's southward subduction at the late stage of early Cretaceous,indicating that the Bangong Co-Nujiang Tethyan Ocean finished the subduction at 99.2 Ma at least,and the regional stress state turned from collision to intraplate extension at the late stage.
-
图 1 研究区大地构造位置(a,据Zhang et al., 2004)和区域地质简图(b)
Figure 1.
图 4 藏北阿翁错地区Nb/Y − Zr/TiO2图解(a, 据Winchester and Floyd, 1977)和SiO2−Na2O+K2O岩石系列划分图解(b, 据Irvine and Baragar, 1971)
Figure 4.
图 5 研究区中基性脉岩稀土元素球粒陨石标准化配分图(a)和微量元素原始地幔标准化蛛网图(b) (球粒陨石、原始地幔、N-MORB、E-MORB以及OIB数据均引自Sun and McDonough, 1989)
Figure 5.
图 6 研究区脉岩La/Yb-Th/Ta图解(底图据Condie, 1997)
Figure 6.
表 1 阿翁错地区闪长岩脉样品锆石LA-ICP-MS U-Pb分析结果
Table 1. LA-ICP-MS zircon U-Th-Pb analyses of of diorite dike, Awengcuo area, north Tibet
表 2 阿翁错地区辉绿岩脉样品锆石LA-ICP-MS U-Pb分析结果
Table 2. LA-ICP-MS zircon U-Th-Pb analyses of diabase dike, Awengcuo area, north Tibet
表 3 阿翁错地区中基性脉岩主量元素(%)和微量元素(10-6)组成
Table 3. Major elements (%), trace elements and REE composition (10-6) of the intermediate-basic dikes, Awengcuo area, north Tibet
-
Allen C M. 2010, Evolution of a post-batholith dike swarm in central coastal Queensland, Australia:Arc-front to backarc?[J]. Lithos, 51(4):331-349.
Ancochea E, Brändle J L, Huertas M J, Cubas C.R, Hernan F. 2003.The felsic dikes of La Gomera (Canary Islands):Identification of cone sheet and radial dike swarms[J]. Journal of Volcanology and Geothermal Research, 120(3):197-206.
Bao Peisheng, Xiao Xuchang, Su Ni, Wang Jun. 2007. Geochemical characterristics and isotopic dating for the Dongcuo Ophiolite Tibet Plateau[J]. Science in China (ser. D), 37(3):298-307 (in Chinese).
Chen Yulu, Zhang Kuanzhong, Yang Zhimin, Luo Tao. 2006. Discovery of a complete ophiolite section in the Jueweng area, Nagqu County, in the central segment of the Bangong Co-Nujiang junction zone, Qinghai-Tiebet Plateau[J]. Geological Bulletin of China, 25(6):694-699(in Chinese with English abstract).
Condie K C, 1997. Sources of Proterozoic mafic dyke swarms:Constraints from Th/Ta and La/Yb ratios[J]. Precambrian Reasearch, 81:3-14. doi: 10.1016/S0301-9268(96)00020-4
Condie K C. 1989. Geochemical changes in baslts and andesites across theArchean-Proterozoicboundary:Identificationandsignificance[J]. Lithos, 23(1/2):1-18.
Dini A, Innocenti F, Rocchi S, Tonarini S, Westerman D S. 2002. The magmatic evolution of the late Miocene laccolith-pluton-dyke granitic complex of Elba Island, Italy[J]. Geological Magazine, 139(3):257-279. doi: 10.1017/S0016756802006556
Dong Chuanwang, Zhang Dengrong, Xu Xisheng. 2006. SHRIMP UPb Dating and Lithigeochemistry of basic-intermediate dike swarms fron Jinjiang, Fujian Province[J]. Acta Petrologica Sinica, 22(6):1696-1702 (in Chinese with English abstract).
Dong MingChun, Zhao Zhidan, Zhu Dicheng, Liu Dong, Dong Guochen, Mo Xuanxue, Hu Zhaochu, Liu Yongsheng, Zou Zihao. 2015. Geochronology, geochemistry, and petrogenesis of the intermediate and dykes in Linzhou Basin, Southern Tibet[J]. Acta Petrologica Sinica, 31(5):1268-1284 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201505006
Fan J J, Li C, Xue C M, Wang M.2014. Petrology geochemistry and geochronology of the Zhonggang ocean island northern Tiber:Implications for the evolution of the Bangongco-Nujiang oceanic arm of Neo-tethys[J]. International Geology Review, 56(12):1504-1520. doi: 10.1080/00206814.2014.947639
Frey F A, Green D H, Roy S D. 1978. Integrated models of basalt petrogenesis:A study of quartz tholeiites to olivine melilitites from South Eastern Australia utilizing geochemical and experimental petrological data[J]. Journal of Petrology, 19(3):463-513. doi: 10.1093/petrology/19.3.463
Geng Quanru, Pan Guitang, Wang Liquan, Peng Zhiming, Zhang Zhang. 2011. Tethyan evolution and metallogenic geological background of the Bangong Co-Nujiang belt and the Qiangtang massif in Tibet[J]. Geological Bulletin of China, 30(8):1261-1274(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz201108013
Halls H C. 1982. The importance and potential of mafic dykes warms in studies of geodynamic processes[J]. Geoscience Canada, 9(3):145-154.
Hart S R, Davis K E. 1978. Nickel Partitioning between olivine and silicate melt[J]. Earth amd Planetary Science Letters, 40:203-219. doi: 10.1016/0012-821X(78)90091-2
Hart S R, Hauri E H. 1992. Mantle plumes and entrainment:Isotopic evidence[J]. Science, 256(5056):517-520. doi: 10.1126/science.256.5056.517
Hoek J D, Seitz H M. 1995. Continental mafic dyke swarms as tectonic indicators:An example from the Vestfold Hills, East Antarctica[J]. Precambrian Research, 75(3/4):121-139.
Hoskin P W, Black L P. 2000. Metamorphic zircon formation by solid, state recrystallization of protolith igneous zircon[J]. Journal of Metamorphic Geology, 18(4):423-439. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1046/j.1525-1314.2000.00266.x
Hou Guiting, Li Jianghai, Halls H C, Qian Xianglin. 2003. The flow structures and mechanics of Late Precambrian mafic dyke swarms in North China Craton[J].Acta Geologica Sinica, 77(2):210-215(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb200302009
Irvine T N, Baragar W R A. 1971. A guide to the chemical classification of the common volcanic rocks[J]. Canadian Journal of Earth Sciences, 8(5):523-548. doi: 10.1139/e71-055
Jiang Junhua, Wang Ruijiang, Qu Xiaoming. 2011. Crustal extension of the Bangong Lake Arc Zone, western Tibetan Plateau, after the closure of the Tethys Oceanic basin[J]. Earth Science-Journal of China University of Geoscience, 36(6):1021-1032 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201106007
Jiang Sihong, Nie Fengjun, Hu Peng, Liu Yan, Lai Xinrong. 2007.Geochemical characteritics of the mafic dyke swarms in South Tibet[J]. Acta Geologica Sinica, 81(1):60-70 (in Chinese)
Jiang Y H, Jiang S Y, Zhao K D, Ling Hongfei. 2006. Petrogenesis of Late Jurassic Qianlishan granites and mafic dykes, Southeast China:Implications for a back-arc extension setting[J]. Geological Magazine, 143(4):457-474. doi: 10.1017/S0016756805001652
Jung C, Jung S, Hoffer E. 2006. Petrogenesis of Tertiary mafic alkaline magmas in the Hocheifel, Germany[J]. Journal of Petrology, 47(8):1637-1671. doi: 10.1093/petrology/egl023
Jung S, Masberg P. 1998. Major- and trace-element systematics and isotope geochemistry of Cenozoic mafic volcanic rocks from the Vogelsberg (central Germany):Constraints on the origin of continental alkaline and tholeiitic basalts and their mantle sources[J]. Journal of Volcanology and Geothermal Research, 86(1):151-177.
Kang Lei, Xiao Peixi, Gao Xiaofeng, Zhu Haiping, Xi Rengang, Guo Lei, Dong Zengchan. 2012. The age and origin of the Kongjirap Pluton in Northwestern Tibetan Plateau and its tectonic significance[J].Acta Geologica Sinica, 86(7):1063-1076 (in Chinese with English abstract).
Kang Zhiqiang, Xu Jifeng, Wang Baodi, Chen Jianlin. 2010. Qushenla Formation volcanic rocks in north Lhasa block:Products of Bangong Co-Nujiang Tethy's southward subduction[J]. Acta Petrologica Sinica, 26(10):3106-3116 (in Chinese with English abstract).
Lai Shaocong, Liu Chiyang, Yi Haisheng, O'Reilly S Y, Zhang Ming. 2003. The In situ La-ICP-MS analysis and trace element features for the feldspars form Cenozoic trachyandesite in North Qiangtang, Tibetan Plateau[J]. Chinese Journal of Geology, 38(4):539-545 (in Chinese with English abstract).
Lei Chuanyang, Wu Jianliang, Yin Xianke, Liu Wen, Wang Bo, Li Wei, Yuan Huayun, Zhang Wei, Yin Tao, Pei Yalun. 2019.Geochronology, geochemistry and geodynamic significance of Awengcuo composite pluton and its dark microgranular enclaves in the north of Tibet[J]. Geological Bulletin of China, 38(4):494-508(in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz201904003
Li Dewei. 2008. Three-stage tectonic evolution and metallogenic evolution in the Qinghai-Tibet Plateau and its adjacent area[J]. Earth Science-Journal of China University of Geosciences, 33(6):723-742 (in Chinese with English abstract). doi: 10.3799/dqkx.2008.089
Li Hualiang, Gao Cheng, Li Zhenghan, Zhang Zhang, Peng Zhimin, Guan Junlei. 2016. Age and tectonic significance of Jingzhushan Formation in Bangong Lake Area, Tibet[J]. Geotectonica et Metallogenia, 40(4):663-673 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ddgzyckx201604004
Li Xianhua, Hu Ruizhong, Rao Bing. 1997. Geochronology and geochemistry of Cretaceous mafic dikes from northern Guangdong, SE China[J]. Geochmica, 26(2):14-31 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199700050343
Liu Y S, Hu Z C, Cao S, Günther D, Xu J, Gao C G, Chen H H. 2008.In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J]. Chemical Geology, 257(1/2):34-43 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=babd721ac13e2675d9485b52683be64c
Liu Y S, Hu Z C, Zong K Q, Gao C G, Xu J, Chen H H. 2010.Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS[J]. Chinese Science Bulletin, 55(15):1535-1546. doi: 10.1007/s11434-010-3052-4
Luo Zhaohua, Lu Xinxiang, Wang Bingzhang. 2008. Post-orogenic dike complexes and implications for metallogenesis[J]. Earth Science Frontiers, 15(4):1-12(in Chinese with English abstract). doi: 10.1016/S1872-5791(08)60034-2
Luo Zhaohua, Wei Yang, Xin Houtian, Zhan Huaming, Ke Shan. 2006.Petrogenesis of the post-orgenic dike complex-Constraints to Lithosphere delamination[J]. Acta Petrologica Sinica, 22(6):1672-1684 (in Chinese with English abstract).
Mayborn K R, Lesher C E, Connelly J N. 2008. Geochemical constraints on the late-stage evolution of basaltic magma as revealed by composite dikes within the Kangamiut dike swarm, West Greenland[J]. Lithos, 104(1/4):428-438. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=42744c30e3e7519252bc658519b221b4
Meschede M. 1986. A method of discriminating between different types of mid-ocean ridge basalts and continental tholeiites with the Nb-Zr-Y diagram[J]. Chemical Geology, 56(3):207-218.
Pan Guitang, Mo Xuanxue, Hou Zengqian, Zhu Dicheng, Wang Liquan, Li Guangming, Zhao Zhidan, Geng Quanru, Liao Zhongli. 2006. Spatial-temporal framework of the Gangdese orogenic belt and its evolution[J]. Acta Petrologica Sinica, 22(03):521-533 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200603001
Pearce J A. 1982. Trace element characteristics of lavas from destructive plate boundaries[J]. Andesites, 8:525-548.
Poland M P, Fink J H, Tauxe L. 2004. Patterns of magma flow in segmented silicic dikes at Summer Coon volcano, Colorado:AMS and thin section analysis[J]. Earth and Planetary Science Letters, 219(1):155-169.
Qiu Ruizhao, Zhou Su, Deng Jinfu, Li Jinfa, Xiao Qinghui, Cai Zhiying. 2004. Dating of grabbro in the Shemalagou ophiolite in the western segment of the bangong Co-Nujiang ophiolite belt, Tibet-with a discussion of the age of the banggong Co-Nujiang ophiolite belt[J]. Geology in China, 31(3):262-268 (in Chinese with English abstract).
Ren Junhu, Liu Yiqun, Zhou Dingwu, Feng Qiao, Zhang Kun, Dong Zhongliang, Qin Pingli. 2010. Geochemical characteristics and LaICP-MS Zircon U-Pb dating of basic dykes in the Xiaomiao Area, Eastern Kunlun[J]. Journal of Jilin University (Earth Science Edition), 40(4):859-868(in Chinese with English abstract).
Righter K. 2000. A comparison of basaltic volcanism in the Cascades and western Mesico:Composition diversity in continental arcs[J]. Tectonophysics, 318:99-117. doi: 10.1016/S0040-1951(99)00308-X
Rudnick R L, Fountain D M. 1995. Nature and composition of the continental crust:A lower crustal perspective[J]. Reviews of geophysics, 33(3):267-309. doi: 10.1029/95RG01302
Scarrow J H, Leat P T, Wareham C D, Millar I L. 1998. Geochemistry of mafic dykes in the Antarctic Peninsula continental-margin batholith:A record of arc evolution[J]. Contribution to Mineralogy Petrology, 131(2/3):289-305.
Shi Rengdeng. 2007. Restricting to age of the Bangong-Nujiang ocean from Banggong Lake SSZ ophiolite[J]. Chinese Sciencec Bulletin, 52(2):223-227 (in Chinese with English abstract). doi: 10.1360/csb2007-52-2-223
Sui Qingling, Wang Qing, Zhu Dicheng, Zhao Zhidan, Chen Y, Santosh M, Hu Z C, Yuan H L, Mo X X. 2013. Compositional diversity of ca.110 Ma magmatism in the northern Lhasa Terrane, Tibet:Implications for the magmatic origin and crustal growth in a continent-continent collision zone[J]. Lithos, 168:144-159.
Sun S S, McDonough W F. 1989. Implications for Mantle Composition and Processes Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes[M]. Geological Society, London, Special Publications, 42(1): 313-345.
Taylor B, Martinez F. 2003. Back-arc basin basalt systematics[J]. Earth and Planetary Science Letters, 210(3):481-497.
Von Blanckenburg F, Davis J H. 1995. Slab break off:A model for syncollisional magmatism and tectonics in the Alps[J]. Tectonics, 14:120-131. doi: 10.1029/94TC02051
Walker G P L, Eyre P R, 1995. Dike complexes in America Samoa[J]. J. Volc. Geother. Res., 69:241-245. doi: 10.1016/0377-0273(95)00041-0
Wang Yunliang, Zhang Chengjiang, Xiu Shuzhi. 2001. Th/Hf-Ta/Hf identification of tectonic-setting of basalts[J]. Acta Petrologiea Sinica, l7(3):413-421 (in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200103009
Wang Jian, Fu Xiugen. 2018. Sedimentary evolution of the Qiangtang Basin[J]. Geology in China, 45(2):237-259 (in Chinese with English abstract).
Wang Zhongheng, Wang Yongsheng, Xie Yuanhe, Sun Zhonggang, Qu Yonggui, Li Cunzhi, Jiang Xuefei. 2005. The Tarenben oceanicisland basalts in the middle part of the Bangong-Nujiang suture zone, Xizang and their geological implations[J]. Sedimentary Geology and Tethyan Geology, 25(1/2):153-162 (in Chinese with English abstract).
Weaver B L. 199l. The origin of ocean island basalt endmember composition:Trace element and isotopic constraints[J]. Earth Planet Sci. Lett., 104:381-397. doi: 10.1016/0012-821X(91)90217-6
Wilson M. 1993. Magmatic differentiation[J]. Journal of the Geological Society, 150(4):611-624. doi: 10.1144/gsjgs.150.4.0611
Wilson M. 1989. Igneous Petrogenesis[M]. London:Unwin Hyman, 101-149.
Winchester J A, Floyd P A. 1977. Geochemical discrimination of different magma series and their differentiation products using immobile elements[J]. Chemical Geology, 20:325-343. doi: 10.1016/0009-2541(77)90057-2
Xia Linqi, Xia Zuchuan, Xu Xueyi, Li Xiangmin, Ma Zhongping. 2007. The discrimination between continental basalt and island arc basalt based on geochemical method[J]. Acta Petrologica et Mineralogica, 26(1):77-89 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yskwxzz200701011
Xie Guiqing, Hu Ruizhong, Jia Dacheng. 2002. Geological and Geochemical characteristics and its significance of mafic dikes from Northwest Jiangxi Province[J]. Geochimica, 31(4):329-338(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqhx200204004
Xu X W, Zhang B L, Qin K Z, Mao Q, Cai X P. 2007. Origin of lamprophyres by the mixing of basic and alkaline melts in magma chamber in Beiya area, western Yunnan, China[J]. Lithos, 99(3/4):339-362.
Yang J H, Chung S L, Zhai M G, Zhou Xinhua. 2004. Geochemical and Sr-Nd-Pb isotopic compositions of mafic dikes from the Jiaodong Peninsula, China:Evidence for vein-plus-peridotite melting in the lithospheric mantle[J]. Lithos, 73(3):145-160.
Ye Lijuan, Zhao Zhidan, Liu Dong, Zhu Dicheng, Dong Guochen, Mo Xuanxue, Hu Zhaochu, Liu Yongsheng. 2015. Late Cretaceous diabase and granite dike in Namling, Tibet:Petrogenesis and implications for extension[J]. Acta Petrologica Sinica, 31(5):1298-1312 (in Chinese with English abstract).
Yang Shao, Li Dewei, Chen Guifan, Li Hualiang, Zhang Shuo, Zhou Tao. 2018. The discovery of the Wuluqiong magnetite deposit in Tibet and its geological characteristics[J]. Geology in China, 45(6):1214-1227 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi201806012
Yue Yahui, Ding Lin. 2006. 40Ar/39Ar geochronology, geochemistry characteristics and genesis of the Linzhou basic dikes, Tibet[J]. Acta Petrologica Sinica, 22(4):855-866 (in Chinese with English abstract).
Zhang K J, Xia B D, Wang G M, Li Y T, Ye H F. 2004. Early Cretaceous stratigraphy, depositional environments, sandstone provenance, and tectonic setting of central Tibet, western China[J]. Geological Society of America Bulletin, 116(9):1202-1222. doi: 10.1130/B25388.1
Zhang Liangliang, Zhu Dicheng, Zhao Zhidan, Liao Zhongli, Wang Liquan, Mo Xuanxue. 2011. Early Cretaceous granitoids in Xainza, Tibet:Evidence of slab break-off[J]. Acta Petrologica Sinica, 27(7):1938-1948.
Zhang Xin, Wu Cailai, Chen Hongjie. 2017. The U-Pb zircon dating of the granite dike in Nanzhao pluton and it's constraints on tectonic setting in Yanshanian[J]. Geology in China, 44(5):938-958(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi201705009
Zheng YongFei. 1999. Chemical Geodynamics[M]. Beijing:Science Press, 137-143(in Chinese with English abstract).
Zhu D C, Li S M, Cawood P A, Wang Q, Zhao Z D, Liu S A, Wang L Q. 2015. Assembly of the Lhasa and Qiangtang terranes in central Tibet by divergent double subduction[J]. Lithos, 245:7-17. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=be4c438f22b463f182154e4494786812
Zhu Dicheng, Mo Xuanxue, Zhao Zhidan. 2008. Zircon U-Pb geochronology of Zenong Group volcanic rocks in Coqen area of the Gangdese, Tibet and tectonic significance[J]. Acta Petrologica Sinica, 24(3):401-412. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200803001
Zhu Dicheng, Pan Guitang, Mo Xuanxue, Wang Liquan, Liao Zhongli, Zhao Zhidan, Dong Guocheng, Zhou Changyong. 2006. Late Jurassic-Early Cretaceous geodynamic setting in middle-northern Gangdese:New insights from volcanic rocks[J]. Acta Petrotogica Sinica, 22(3):534-546 (in Chinese with English abstract).
Zhu D C, Mo X X, Niu Y L, Zhao Z D, Wang L Q, Liu Y S, Wu F Y. 2009. Geochemical investigation of Early Cretaceous igneous rocks along an east-west traverse throughout the central Lhasa Terrane, Tibet[J]. Chemical Geology, 268:298-312. doi: 10.1016/j.chemgeo.2009.09.008
鲍佩声, 肖序常, 苏犁, 王军. 2007.西藏洞错蛇绿岩的构造环境:岩石学、地球化学和年代学制约[J].中国科学(D辑), 37(3):298-307.
陈玉禄, 张宽忠, 杨志民, 罗涛. 2006.青藏高原班公湖-怒江结合带中段那曲县觉翁地区发现完整的蛇绿岩剖面[J].地质通报, 25(6):694-699. doi: 10.3969/j.issn.1671-2552.2006.06.007
董传万, 张登荣, 徐夕生. 2006.福建晋江中-基性岩脉的锆石SHRIMP U-Pb定年和岩石地球化学[J].岩石学报, 22(6):1696-1702.
董铭淳, 赵志丹, 朱弟成, 刘栋, 董国臣, 莫宣学, 胡兆初, 刘永胜, 邹子昊. 2015.西藏林周盆地中酸性脉岩的年代学、地球化学和岩石成因[J].岩石学报, 31(5):1268-1284. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201505006
耿全如, 潘桂堂, 王立全, 彭智敏, 张璋. 2011.班公湖-怒江、羌塘地块特提斯演化与成矿地质背景[J].地质通报, 30(8):1261-1274. doi: 10.3969/j.issn.1671-2552.2011.08.013
侯贵廷, 李江海, Halls HC, 钱祥麟. 2003.华北前寒武纪镁铁质岩脉的流动构造及侵位基质[J].地质学报, 77(2):210-215. doi: 10.3321/j.issn:0001-5717.2003.02.009
江军华, 王瑞江, 曲晓明. 2011.青藏高原西部班公湖岛弧特提斯洋盆闭合后的地壳伸展作用[J].地球科学——中国地质大学学报, 36(6):1021-1032.
江思宏, 聂凤军, 胡朋, 刘妍, 赖欣荣. 2007.藏南基性岩墙群的地球化学特征[J].地质学报, 81(1):60-70. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb200701008
康磊, 校培喜, 高晓峰, 朱海平, 奚仁刚, 过磊, 董增产. 2012.青藏高原西北缘红其拉普岩体的岩石成因、时代及其构造意义[J].地质学报, 86(7):1063-1076. doi: 10.3969/j.issn.0001-5717.2012.07.003
康志强, 许继峰, 王保弟, 陈建林. 2010.拉萨地块北部去申拉组火山岩:班公湖-怒江特提斯洋南向俯冲的产物?[J].岩石学报, 26(10):3106-16.
雷传扬, 吴建亮, 尹显科, 刘文, 王波, 李威, 袁华云, 张伟, 尹滔, 裴亚伦. 2019.藏北阿翁错复式岩体及其暗色微粒包体年龄、地球化学与地球动力学意义[J].地质通报, 38(4):494-508. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz201904003
赖绍聪, 刘池阳, 伊海生, O'Reilly S. Y, 张明. 2003.北羌塘新生代火山岩长石矿物激光探针原位测试及其微量元素特征初探[J].地质科学, 38(4):539-545. doi: 10.3321/j.issn:0563-5020.2003.04.015
李德威. 2008.青藏高原及邻区三阶段构造演化与成矿演化[J].地球科学——中国地质大学学报, 33(6):723-742. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx200806001
李华亮, 高成, 李正汉, 张璋, 彭智敏, 关俊雷. 2016.西藏班公湖地区竟柱山组时代及其构造意义[J].大地构造与成矿学, 40(4):663-673. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ddgzyckx201604004
李献华, 胡瑞忠, 饶冰. 1997.粤北白垩纪基性岩脉的年代学和地球化学[J].地球化学, 26(2):14-31. doi: 10.3321/j.issn:0379-1726.1997.02.004
罗照华, 卢新祥, 王秉璋, 2008.造山后脉岩组合与内生成矿作用[J].地学前缘, 15(4):1-12. doi: 10.3321/j.issn:1005-2321.2008.04.001
罗照华, 魏阳, 辛后田, 詹华明, 柯珊, 李文韬. 2006.造山后脉岩组合的岩石成因——对岩石圈拆沉作用的约束[J].岩石学报.22(6):1672-1684.
潘桂棠, 莫宣学, 侯增谦, 朱弟成, 王立全, 李光明, 赵志丹, 耿全如, 廖忠礼. 2006.冈底斯造山带的时空结构及演化[J].岩石学报, 22(3):521-533. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200603001
邱瑞照, 周肃, 邓晋幅, 李金发, 肖庆辉, 蔡志勇. 2004.西藏班公湖-怒江西段舍马拉沟蛇绿岩中辉长岩年龄测定——兼论班公湖-怒江蛇绿岩带形成时代[J].中国地质, 31(3):262-268. doi: 10.3969/j.issn.1000-3657.2004.03.004 http://geochina.cgs.gov.cn/geochina/ch/reader/view_abstract.aspx?file_no=20040304&flag=1
任军虎, 柳益群, 周鼎武, 冯乔, 张琨, 董忠良, 秦萍莉. 2010.东昆仑小庙基性岩脉地球化学及LA-ICP-MS锆石U-Pb定年[J].吉林大学学报(地球科学版), 40(4):859-868. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cckjdxxb201004015
史仁灯. 2007.班公湖SSZ型蛇绿岩年龄对班-怒洋时限的制约[J].科学通报, 52(2):223-227. doi: 10.3321/j.issn:0023-074X.2007.02.016
汪云亮, 张成江.修淑芝. 2001.玄武岩类形成的大地构造环境的Th/Hf-Ta/Hf图解判别[J].岩石学报, 17(3):413-421. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200103009
王剑, 付修根. 2018.论羌塘盆地沉积演化[J].中国地质, 45(2):237-259. http://geochina.cgs.gov.cn/geochina/ch/reader/view_abstract.aspx?file_no=20180203&flag=1
王忠恒, 王永胜, 谢元和, 孙忠刚, 鲁宗林, 曲永贵, 李存直, 姜雪飞. 2005.西藏班公湖-怒江缝合带中段塔仁本洋岛型玄武岩的发现及地质意义[J].沉积与特提斯地质, 25(1/2)153-162. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yxgdl200501029
夏林圻, 夏祖春, 徐学义, 李向民, 马中平. 2007.利用地球化学方法判别大陆玄武岩和岛弧玄武岩[J].岩石矿物学杂志, 26(1), 77-89. doi: 10.3969/j.issn.1000-6524.2007.01.011
谢桂青, 胡瑞忠, 贾大成. 2002.赣西北基性岩脉的地质地球化学特征及其意义[J].地球化学, 31(4):329-338. doi: 10.3321/j.issn:0379-1726.2002.04.004
杨绍, 李德威, 陈桂凡, 李华亮, 张硕, 周涛. 2018.西藏乌鲁穷含铜磁铁矿床的发现及地质特征[J].中国地质, 45(6):1214-1227. http://geochina.cgs.gov.cn/geochina/ch/reader/view_abstract.aspx?file_no=20180611&flag=1
叶丽娟, 赵志丹, 刘栋, 朱弟成, 董国臣, 莫宣学, 胡兆初, 刘永胜. 2015.西藏南木林晚白垩世辉绿岩与花岗质脉岩成因及其揭示的伸展背景[J].岩石学报, 31(5):1298-1312. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201505008
岳雅慧, 丁林. 2006.西藏林周基性岩脉的40Ar/39Ar年代学、地球化学及其成因[J].岩石学报, 22(4):855-866. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200604009
张亮亮, 朱弟成, 赵志丹, 廖忠礼, 王立全, 莫宣学. 2011.西藏申扎早白垩世花岗岩类:板片断离的证据[J].岩石学报, 27(7):1938-1948.
张昕, 吴才来, 陈红杰. 2017.秦岭南召岩体中花岗岩脉的锆石UPb定年:对燕山期构造环境的约束[J].中国地质, 44(5):938-958. http://geochina.cgs.gov.cn/geochina/ch/reader/view_abstract.aspx?file_no=20170508&flag=1
郑永飞.化学地球动力学[M].北京:科学出版社, 1999:137-143.
朱弟成, 莫宣学, 赵志丹. 2008.西藏冈底斯带措勤地区则弄群火山岩锆石U-Pb年代学格架及构造意义[J].岩石学报, 24(3):401-12. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200803001
朱弟成, 潘桂堂, 莫宣学, 王立全, 廖忠礼, 赵志丹, 董国臣, 周长勇. 2006.冈底斯中北部晚侏罗世-早白垩世地球动力学环境:火山岩约束[J].岩石学报, 2(3):534-546.