Practice in Comprehensive Utilization of Urban Underground Space Resources―Taking the Dataset of Geological Environmental Atlas of Chengdu (2017) as a Case Study
-
摘要:
在全面收集地质和工程勘察资料基础上,系统梳理了成都市地下空间资源综合利用需要防范关注的7类地质问题以及需要统筹保护的4类地质资源。根据城市地下空间资源综合利用约束性地质要素(地质问题、地质资源)和地质结构在垂向上的差异,将成都市0~200 m地下空间划分为0~30 m、30~60 m、60~100 m、100~200 m 4个层位,在此基础上,提出了成都市地下空间分区、分层开发利用建议,编制了《支撑服务成都市地下空间资源综合利用地质环境图集》。图集范围覆盖成都市中心城区、高新西区、高新南区、国际生物城、天府新区成都直管区、天府空港新城、简州新城、淮州新城等重点地区,包括39张图件和1个地质调查报告。图集为成都市城市地下空间综合利用、城市空间优化拓展、城市功能品质提升以及国土空间开发、空间转型升级和城市集约、绿色、可持续发展提供了地质依据,对于全国其他城市开展同类图集编制具有示范和借鉴意义。
Abstract:In this paper, based on the extensive collection of materials of geological and engineering investigation, seven categories of geological problems to be prevented and noted and four categories of geological resources to be protected in Chengdu were systematically collated for urban underground space utilization. The underground space in Chengdu has a depth of 200 m that is divided into four layers: 0−30 m, 30−60 m, 60−100 m and 100−200 m, which differ in geological elements (in terms of geology and geological resources) constraining urban underground space utilization, as well as geological structure in vertical direction. Afterwards, the recommendation that the urban underground space in Chengdu should be developed and utilized by zones and layers was proposed, and the Geological Environmental Atlas of Chengdu for Supporting and Serving Comprehensive Utilization of Urban Underground Space Resources (also referred to as the Atlas
-
Key words:
- urban geology /
- underground space /
- geological problems /
- geological resources /
- mapping /
- urban geological survey engineering /
- Chengdu /
- Sichuan
-
表 1 数据库(集)元数据简表
条目 描述 数据库(集)名称 支撑服务成都市地下空间资源综合利用地质环境图集(2017)数据集 数据库(集)作者 王东辉,中国地质调查局成都地质调查中心
倪化勇,中国地质调查局成都地质调查中心
郭子奇,中国地质调查局成都地质调查中心
王春山,中国地质调查局成都地质调查中心
李鹏岳,中国地质调查局成都地质调查中心
陈绪钰,中国地质调查局成都地质调查中心
唐业旗,中国地质调查局成都地质调查中心
李胜伟,中国地质调查局成都地质调查中心数据时间范围 2017 地理区域 东经102°54′~104°53′、北纬30°05′~31°26′ 数据格式 shp、png 数据量 4 GB 数据服务系统网址 http://dcc.cgs.gov.cn 基金项目 中国地质调查局地质调查项目“成渝经济区宜宾-万州沿江发展带1∶50 000
环境地质调查”(DD20160249)、“成都多要素城市地质调查”(DD20189210)语种 中文 数据库(集)组成 本图集包含基础地理类、地质剖面类、专题类及地质调查报告附件4大类空间图层:
1. 基础地理类图层:编图区乡镇、成都市机场、成都市县界、高速、国道、省道、四川省地级市、四川省会、四川省市界、四川省县、四川水系、铁路、乡镇。
2. 地质剖面类图层:地铁1号线、地铁2号线、地铁7号线、30~60 m C-C’剖面图、100~200 m C-C’剖面图、60~100 m D-D’剖面图、100~200 m D-D’剖面图、60~100 m E-E’剖面图、B-B’剖面综合建议图、C-C’剖面综合建议图。
3. 专题类图层:0~30 m适宜性、30~60 m适宜性、30~60 m相对隔水层分布区、60~100 m含膏盐泥岩分布区、60~100 m基岩含水层分布区、60~100 m适宜性、60~100 m微咸水分布区、60~100 m优质水源地分布区、100~200 m含膏盐泥岩分布区、100~200 m基岩含水层、100~200 m适宜性、100~200 m微咸水分布区、100~200 m下部含水层、成都市地质灾害、地层、地层产状、地埋管地源热泵潜力评价、地下水水源热泵潜力评价、地貌分区、地下水富水性分区、地震、地震动峰值加速度区划、地质遗迹、第四系厚度等值线、第一隔水层底板埋深等值线、断裂、富水砂砾石分布区、工程地质分区、轨道交通、含膏盐泥岩分布区、环城生态带、活动断裂、夹关组分布区、矿泉水、芒硝厂区、膨胀性黏土分布区、平原区相对隔水层分布区、软土分布区、生态涵养区、瓦斯分布区、微咸水分布区、文物古迹、优质水源地分布区、综合适宜性分区。
4. 附件:支撑服务成都市城市地下空间资源综合利用地质调查报告(2017)表 2 主要数据基础简表
类 亚类 主要内容 资料来源 区域地质背景类 基础地质类 1∶200 000、1∶250 000区域地质调查成果 朱兵等,2013 水文地质类 地下水资源评价、水文地质普查及1∶200 000、1∶500 000区域水文地质调查成果 李永健等,2002;
黄荣开等,1977;
刘云从等,1978;
李家康等,1977;
徐启彬等,1977环境地质类 水工环综合勘查、矿山地质环境调查、地下水污染调查、城市群环境地质调查、地质环境监测、地质灾害调查等成果 汪天寿等,2005;
刘俊贤等,1990地球化学类 多目标地球化学调查、土地质量地球化学调查等成果 刘应平等,2002 资源类 地热、浅层地热能、地下水调查评价成果,文物古迹、公园湿地等资料 刘俊贤等,1990;
杨明等,2013气象水文类 气候、降水、水文等资料 城市建设规划类 城市社会经济现状 城市规模、人口、社会经济发展等资料 城市规划建设现状 城市总体规划、重大工程建设规划、轨道交通规划等资料 城市土地利用现状 多期遥感影像图及解译成果、土地三调成果 城市地下空间开发利用现状 地铁、地下商场、人防工程、地下管线等资料 地质勘查类 岩土工程勘
察类桥梁、地铁、房屋等建设工程岩土工程勘查成果,含钻探、基坑及相应的测试成果,约3 000个钻孔。 水源地勘查类 水文地质钻探成果、水质分析成果,约160个钻孔 油气勘查类 钻探、二维地震成果,4个钻孔 物探类 重力、磁法、电法、地震等综合研究成果 表 3 图层内容分类汇总表
分类 要素 要素内容 表达内容 遥感 遥感 遥感影像、地形阴影 植被、生态、建筑、水系等变化情况 地理要素 交通 铁路、高速、省道、国道、 交通线路分布 行政区划 地级市、县、乡镇、行政区边界、发展布局规划 各行政区界线及发展布局规划 水系 水系,湖泊 河流、湖泊 专题图 地质资源 文物古迹、矿泉水点、地质遗迹、优质水源、砂砾石厚度等值线,地埋管地源热泵分区、地下水水源热泵潜力评价 各类地质资源空间分布 地质问题 地下水污染状况、地质灾害、断层、含膏岩泥岩等值线、成都黏土、软土、含瓦斯地层 各类地质问题空间分布 地质建议 0~30 m/30~60 m/60~100 m/100~200 m地下空间开发利用地质适宜性 地下空间开发利用地质适宜性 剖面图 构造 断裂构造、褶皱、背斜 构造形态 地铁 地物、地下工程、监测点,换乘站,地下地铁线路、地铁运用地质建议 地铁空间展布、运营地质建议、监测点分布 表 4 各要素主要属性内容
分类 要素 要素内容 要素主要属性内容 遥感 遥感 遥感影像、地形阴影 OID,Value,Count 地理要素 交通 铁路、国道、高速、省道、 Fid,shape*,PYNAME,NAME,MAPID,ID,KIND,SNODE_ID,ENODE_ID,FUNCCLASS,LENGTH,ADMINCODEL,SPEEDCLASS,VEHCL_TYPE,SPDLMTE2S,SPDSECS2e,SPDSRCE2S 行政区划 地级市、县、乡镇、行政区边界、发展布局规划 Fid,shape*,NAME,PYNAME,MAPID,KIND,ZIPCODE,ADMINCODE,DISPLAY_X,DISPLAY_Y,ADDRESS,FID_县界,AREA,PERMIETER,BOUNT_,BOUNT_ID,GBCODE,ADCODE99,SH2,DI2,X2,CENTRIOD_Y,CENTROID_X,LCFLAG724,Shape_Leng,分区 水系 水系,湖泊 Fid,shape*,MAPID,ID,长度,CODE,GB,HYDC,TN,NAME,KIND,ADMINCODE,AOICODE,DISPCLASS,XZQMC,KZMJ,JSMJ,ZXMC。 专题图 地质资源 文物古迹、矿泉水点、地质遗迹、优质水源、砂砾石厚度等值线,地埋管地源热泵分区、地下水水源热泵潜力评价 Fid,shape*,年代,地质,名称,类别;出水量,孔深(m),矿泉水名,埋深,地貌区,适宜性分区,潜力 地质问题 地下水污染状况、地质灾害、断层、含膏岩泥岩等值线、成都黏土、软土、含瓦斯地层 Fid,shape*,ID,统一编号,样品编号,经度,纬度,位置,类别,综合评价,备注;隐患点类型,规模等级;断层性质,产状倾角,倾向顶板埋深;代号,地质名称,标注 地质建议 0~30 m / 30~60 m /
60~100 m / 100~200 m地下空间开发利用地质适宜性Fid,shape*,适宜性 剖面图 构造 断裂构造、褶皱、背斜 Fid,shape*,ID,花纹,填充图案,要素,注释文字 地铁 地物、地下工程、监测点,换乘站,地下地铁线路,地铁运营地质建议 Fid,shape*,ID,DXF图元名,DXF图层名,高程,注释文字 Table 1. Metadata Table of Database (Dataset)
Items Description Database (dataset) name Dataset of Geological Environmental Atlas of Chengdu (2017) for Supporting and Serving Comprehensive Utilization of Urban Underground Space Resources Database (dataset) authors Wang Donghui, Chengdu Center, China Geological Survey
Ni Huayong, Chengdu Center, China Geological Survey
Guo Ziqi, Chengdu Center, China Geological Survey
Wang Chunshan, Chengdu Center, China Geological Survey
Li Pengyue, Chengdu Center, China Geological Survey
Chen Xuyu, Chengdu Center, China Geological Survey
Tang Yeqi, Chengdu Center, China Geological Survey
Li Shengwei, Chengdu Center, China Geological SurveyData acquisition time 2017 Geographic area E 102°54′−104°53′, N 30°05′−31°26′ Data format .shp,.png Data size 4 GB Data service system URL http://dcc.cgs.gov.cn Fund project China Geological Survey Projects named “1∶50 000-scale Environmental Geological Survey of Yibin–Wanzhou Development Belt Along the Yangtze River in the Chengdu–Chongqing Economic Zones” (DD20160249) and “Multi-element Urban Geological Survey of Chengdu” (DD20189210) Language Chinese Database (dataset) composition The Atlas covers map layers of four major categories, i.e., basic geographic layers, geologic profiles, thematic layers and a geological survey report.
1. Basic geographic layers. This covers the towns, airports, county borders, expressways, national highways and provincial highways of the region to be mapped, and prefecture-level cities, capital, city borders, counties, water systems, railways and towns of Sichuan Province.
2. Geologic profiles. This covers subways #1, #2 and #7, C-C’ profiles of the underground spaces at the depths of 30−60 m and 100−200 m, D-D’ profiles of the underground spaces at the depths of 60−100 m and 100−200 m, E-E’ profile of the underground spaces at the depth of 60−100 m and comprehensive recommendation maps of B-B’ and C-C’ profiles.
3. Thematic layers. This covers the suitability of the underground spaces at the depths of 0−30 m, 30−60 m, 60−100 m and 100−200 m, distribution area of the relative aquiclude at the depth of 30−60 m, distribution area of mudstone bearing gypsum salt at the depths of 60−100 m and 100−200 m, bedrock aquifer distribution area at the depths of 60−100 m and 100−200 m, brackish water distribution area at the depths of 60−100 m and 100−200 m, distribution area of high-quality water sources at the depths of 60−100 m, and aquifer distribution area at the depth of 100−200 m, geological disasters, strata, stratum occurrence, assessment of ground-source and groundwater-source heat pump potential, landform-based zones, groundwater-yield-property-based zones, earthquakes, peak ground acceleration zoning, geological relics, quaternary thickness contours, depth contours of the footwall of the first aquiclude, fractures, distribution area of sandy gravel bearing rich water, engineering geology-based zones, rail transit, distribution area of mudstone bearing gypsum salt, ecological belt encircling the city, active fractures, distribution area of Jiaguan Formation, mineral water, sodium sulphate factory area, distribution area of expansive clay, distribution area of relative aquiclude in plains, distribution area of soft soil, ecological conservation area, gas distribution area, distribution area of brackish water, cultural relics, distribution area of high-quality water sources and comprehensive suitability-based zones.
4. Attachment. one geological survey report supporting and serving comprehensive utilization of urban underground space resources in Chengdu (2017)Table 2. Main Basic Data
Category Sub-category Main content References Regional geological background Basic geology 1∶200 000-scale and 1∶250 000-scale regional geological survey results Zhu B et al., 2013 Hydrogeology groundwater resource assessment, hydrogeological reconnaissance survey and 1∶200 000-scale and 1∶500 000-sclale regional hydrogeological survey results Li YJ et al., 2002,
Huang RK et al., 1977;
Liu YC et al., 1978;
Li JK et al., 1977;
Xu QB et al., 1977Environmental geology Results of the comprehensive survey of hydrogeology, engineering geology and environmental geology; as well as the geo-environmental survey of mines, groundwater pollution survey, environmental geological survey of urban agglomerations, geological environmental monitoring, geologic disaster survey, etc. Wang TS et al., 2005;
Liu JX et al., 1990Geochemistry Results of the multi-purpose geochemical survey, geochemical survey of land quality, etc. Liu YP et al., 2002 Resources Results of survey and assessment of geothermal energy, shallow geothermal energy and groundwater; information on cultural relics, parks, wetlands, etc. Liu JX et al., 1990;
Yang M et al., 2013Urban construction planning Hydrometeorology Data on climate, precipitation and hydrology, etc. Urban society and economy Data on the area, population, social and economic development of the urban area, etc. Urban planning and construction Data on overall urban planning, construction planning of major projects, rail transit planning, etc. Utilization of urban land Multi-phase remote sensing images and their interpretation of results and results of the third nationwide land survey Development and utilization of urban underground spaces Data on subways, underground malls, civil air defense projects, underground pipelines, etc. Geological investigation Geotechnical investigation Results of geotechnical investigations for the construction of bridges, subways, houses, etc. including the information on drilling of about 3 000 boreholes and foundation pits, including the test results Water source investigation Results of hydrogeological drilling of about 160 boreholes and analytical results of water quality Oil & gas exploration Results of drilling of four boreholes and 2D seismic exploration Geophysical prospecting Comprehensive research results of gravity, magnetic and electrical prospecting and seismic exploration Table 3. Map Layer Contents Summary by Categories
Category Element Contents of element Contents to be expressed Remote sensing Remote sensing Remote sensing images, topographic shadow Changes in vegetation, ecology, buildings, water systems, etc. Geographical element Transportation Railways, expressways, national and provincial highways Distribution of transport routes Administrative division Borders and development layout & planning of prefecture-level cities, counties, towns and administrative districts Borders and development layout & planning of various administrative districts Water systems Water systems and lakes Rivers, lakes Thematic layer Geological resources Cultural relics, location of mineral water, geological relics, high-quality water sources, sandy-gravel thickness contour, geothermal heat pump-based zones and potential assessment of groundwater-source heat pumps Spatial distribution of various geological resources Geological problems Groundwater pollution, geological disasters, faults, contour of mudstone bearing gypsum salt, Chengdu clay, soft soil and gas-bearing strata Spatial distribution of various geological problems Geological recommendations Geological suitability for the development and utilization of underground spaces at the depths of 0−30 m, 30−60 m, 60−100 m and 100−200 m Geological suitability for the development and utilization of underground spaces Profile Structures Fractures, folds and anticlines Tectonic patterns Subways Surface features, underground projects, monitoring points, interchange stations, subway routes and geological recommendations for subway construction Spatial distribution of subways, geological recommendations for subway operation and distribution of monitoring points Table 4. Contents of Main Attributes of Each Element
Category Element Contents of element Contents of main attributes of the element Remote sensing Remote sensing Remote sensing images, topographic shadow OID, Value, Count Geographical element Transportation Railways, national and provincial highways, expressways Fid, shape*, PYNAME, NAME, MAPID, ID, KIND, SNODE_ID, ENODE_ID, FUNCCLASS, LENGTH, ADMINCODEL, SPEEDCLASS, VEHCL_TYPE, SPDLMTE2S, SPDSECS2e, SPDSRCE2S Administrative division Borders and development layout & planning of prefecture-level cities, counties, towns and administrative districts Fid, shape*, NAME, PYNAME, MAPID, KIND, ZIPCODE, ADMINCODE, DISPLAY_X, DISPLAY_Y, ADDRESS, FID_county border, AREA, PERIMETER, BOUNT_, BOUNT_ID, GBCODE, ADCODE99, SH2, DI2, X2, CENTRIOD_Y, CENTROID_X, LCFLAG724, Shape_Length, zone Water systems Water systems and lakes Fid, shape*, MAPID, ID, length, CODE, GB, HYDC, TN, NAME, KIND, ADMINCODE, AOICODE, DISPCLASS, XZQMC, KZMJ, JSMJ, ZXMC Thematic layer Geological resources Cultural relics, location of mineral water, geological relics, high-quality water sources, sandy-gravel thickness contour, geothermal heat pump-based zones, potential assessment of groundwater-source heat pumps Fid, shape*, age, geology, name, category; water yield, borehole depth (m), mineral water name, burial depth, landform-based zone, suitability-based zone, potential Geological problems Groundwater pollution, geological disasters, faults, contour of mudstone bearing gypsum salt, Chengdu clay, soft soil and gas-bearing strata Fid, shape*, ID, unified No., sample No., longitude, latitude, position, category, integrated assessment, remarks; type of potential risk spots, scale level; fault nature, occurrence strike, burial depth of roof; code, geological name, marking Geological recommendations Geological suitability for the development and utilization of underground spaces at the depth of 0−30 m / 30−60 m/ 60−100 m / 100−200 m Fid, shape*, suitability Profile Structures Fractures, folds and anticlines Fid, shape*, ID, ornamental pattern, filling symbol, element, notes Subways Surface features, underground projects, monitoring points, interchange stations, subway routes and geological recommendations for subway construction Fid, shape*, ID, DXF primitive name, DXF map layer name, elevation, notes -
[1] Andersen TR, Poulsen SE, Thomsen P, Havas K. 2017. Geological characterization in urban areas based on geophysical mapping: A case study from Horsens, Denmark[J]. Journal of Applied Geophysics, 150: 338−349.
[2] Chen XS. 2018. Research on Combined Construction Technology for Cross-Subway Tunnels in Underground Spaces[J]. Engineering, 4(1): 103−111. doi: 10.1016/j.eng.2017.08.001
[3] Chen ZL, Chen JY, Liu H, Zhang ZF. 2018. Present status and development trends of underground space in Chinese cities: Evaluation and analysis[J]. Tunnelling and Underground Space Technology, 71: 253−270. doi: 10.1016/j.tust.2017.08.027
[4] Darroch N, Beecroft M, Nelson J D. 2018. Going underground: An exploration of the interfaces between underground urban transport infrastructure and its environment[J]. Tunnelling and Underground Space Technology, 81: 450−462. doi: 10.1016/j.tust.2018.08.027
[5] Zacharias J, He J. 2018. Hong Kong’s urban planning experiment in enhancing pedestrian movement from underground space to the surface[J]. Tunnelling and Underground Space Technology, 82: 1−8. doi: 10.1016/j.tust.2018.07.025
[6] Zhou D, Li X,Wang Q,Wang R,Wang TD, Gu Q, Xin YX. 2019. GIS-based urban underground space resources evaluation toward three-dimensional land planning: A case study in Nantong, China[J]. Tunnelling and Underground Space Technology, 84: 1−10. doi: 10.1016/j.tust.2018.10.017
[7] 郭朝斌, 王志辉, 刘凯, 李采. 2019. 特殊地下空间应用与研究现状[J]. 中国地质, 46(3): 482−492. http://d.old.wanfangdata.com.cn/Periodical/zgdizhi201903006
[8] 郝爱兵, 吴爱民, 马震, 柳富田, 夏雨波, 谢海澜, 林良俊, 王涛, 白耀楠, 张竞, 孟庆华. 2018. 雄安新区地上地下工程建设适宜性一体化评价[J]. 地球学报, 39(5): 4−13. http://d.old.wanfangdata.com.cn/Periodical/dqxb201805001
[9] 何静, 何晗晗, 郑桂森, 刘予, 周圆心, 肖景泽, 王纯君. 2019. 北京五环城区浅部沉积层的三维地质结构建模[J]. 中国地质, 46(2): 244−254. http://d.old.wanfangdata.com.cn/Periodical/zgdizhi201902004
[10] 胡志平, 彭建兵, 张飞, 王瑞, 陈南南. 2019. 浅谈城市地下空间开发中的关键科学问题与创新思路[J]. 地学前缘, 26(3): 76−84. http://d.old.wanfangdata.com.cn/Periodical/dxqy201903010
[11] 黄荣开, 邹景贵, 王阳生, 等. 1977. 四川1∶20万成都幅区域水文地质普查报告[R]. 成都: 四川省地质局水文工程地质大队.
[12] 黄强兵, 彭建兵, 王飞永, 刘妮娜. 2019. 特殊地质城市地下空间开发利用面临的问题与挑战[J]. 地学前缘, 26(3): 85−94. http://d.old.wanfangdata.com.cn/Periodical/dxqy201903011
[13] 江思义, 王启耀, 李春玲, 黄栋声, 李海良. 2019. 基于专家−层次分析法的地下空间适宜性评价[J]. 地下空间与工程学报, 15(5): 1290−1299. http://d.old.wanfangdata.com.cn/Periodical/dxkj201905003
[14] 蒋旭, 王婷婷, 穆静. 2018. 地下空间开发利用适宜性与资源量的应用研究[J]. 地下空间与工程学报, 14(5): 1145−1153. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dxkj201805001
[15] 李家康, 李更生, 王坤太, 等. 1977. 四川1∶20万简阳幅区域水文地质普查报告[R]. 成都: 四川省地质局水文地质工程地质大队.
[16] 李晓昭, 王睿, 顾倩, 周丹坤, 辛韫潇. 2019. 城市地下空间开发的战略需求[J]. 地学前缘, 26(3): 32−38. http://d.old.wanfangdata.com.cn/Periodical/dxqy201903005
[17] 李永健, 黄昆, 谢封春, 等. 2002. 四川省地下水资源分布图、开发利用状况图及环境图[R]. 成都: 四川省国土资源厅.
[18] 林良俊, 李亚民, 葛伟亚, 胡秋韵, 李晓昭, 李云, 孟晖, 张礼中, 杨建锋. 2017. 中国城市地质调查总体构想与关键理论技术[J]. 中国地质, 44(6): 1086−1101. http://d.old.wanfangdata.com.cn/Periodical/zgdizhi201706006
[19] 刘俊贤, 王友成, 王晓冬, 等. 1990. 成都市水文地质工程地质环境地质综合勘察报告[R]. 成都: 四川省地质矿产局成都水文地质工程地质队.
[20] 刘应平, 杨志荣, 肖秀芳, 等. 2002. 成都盆地多目标地球化学调查报告[R]. 成都: 四川省地质调查院.
[21] 刘云从, 曾云庆, 敬文深, 等.1978. 四川1∶20万灌县幅区域水文地质普查报告[R]. 成都: 四川省地质局水文工程地质大队.
[22] 柳昆, 彭建, 彭芳乐. 2011. 地下空间资源开发利用适宜性评价模型[J]. 地下空间与工程学报, 7(2): 219−231. http://d.old.wanfangdata.com.cn/Periodical/dxkj201102003
[23] 彭建兵, 黄伟亮, 王飞永,刘阳. 2019. 中国城市地下空间地质结构分类与地质调查方法[J]. 地学前缘, 26(3): 9−21. http://d.old.wanfangdata.com.cn/Periodical/dxqy201903003
[24] 孙利萍, 李晓昭, 周丹坤, 王睿, 刘超. 2018. 地下空间开发与社会经济指标的相关性研究[J]. 地下空间与工程学报, 14(4): 4−13,25. http://d.old.wanfangdata.com.cn/Periodical/dxkj201804001
[25] 汪天寿, 王成锋, 唐晓玲, 等. 2005. 四川省成都市城市环境地质调查评价报告[R]. 成都: 四川省地质调查院.
[26] 王婉丽, 王贵玲, 朱喜, 刘志明. 2017. 中国省会城市浅层地热能开发利用条件及潜力评价[J]. 中国地质, 44(6): 1062−1073. http://d.old.wanfangdata.com.cn/Periodical/zgdizhi201706003
[27] 王成善, 周成虎, 彭建兵, 樊杰, 朱合华, 李晓昭, 程光华, 戴春森, 徐能雄 . 2019. 论新时代我国城市地下空间高质量开发和可持续利用[J]. 地学前缘, 26(3): 1−8. http://d.old.wanfangdata.com.cn/Periodical/dxqy201903002
[28] 吴炳华, 张水军, 徐鹏雷, 马勤威. 2017. 宁波市地下空间开发地质环境适宜性评价[J]. 地下空间与工程学报, 13(S1): 16−21. http://d.old.wanfangdata.com.cn/Periodical/dxkj2017z1003
[29] 徐启彬, 刘文翱, 曹顺禄, 等. 1977. 四川1∶20万邛崃幅区域水文地质普查报告[R]. 成都: 四川省地质局水文工程地质大队.
[30] 杨明, 郭娣, 庞练, 等. 2013. 成都市浅层地温能调查评价成果报告[R]. 成都: 四川省地质工程勘察院.
[31] 杨文采, 田钢, 夏江海, 杨波. 2019. 华南丘陵地区城市地下空间开发利用前景[J]. 中国地质, 46(3): 447−454. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi201903003
[32] 张晶晶, 马传明, 匡恒, 周爱国, 夏友. 2016. 郑州市地下空间开发地质环境适宜性变权评价[J]. 水文地质工程地质, 43(2): 118−125. http://d.old.wanfangdata.com.cn/Periodical/swdzgcdz201602018
[33] 张璐, 章广成, 吴江鹏. 2014. 某城市地下空间开发利用适宜性评价[J]. 桂林理工大学学报, 34(3): 488−494. doi: 10.3969/j.issn.1674-9057.2014.03.013
[34] 张平, 肖宇. 2014. 历史文物地下空间资源开发适宜性评价方法[J]. 解放军理工大学学报(自然科学版), 15(3): 203−208. http://d.old.wanfangdata.com.cn/Periodical/jfjlgdxxb201403001
[35] 周圆心, 郑桂森, 何静, 李超, 刘予, 何晗晗, 肖景泽. 2019. 北京平原区地下空间建设地质安全监测问题探讨[J]. 中国地质, 46(3): 455−467. http://d.old.wanfangdata.com.cn/Periodical/zgdizhi201903004
[36] 朱兵, 王全伟, 梁斌, 等. 2013. 四川1∶25万成都市幅区域地质调查报告[R]. 成都: 四川省地质调查院.
[1] Andersen TR, Poulsen SE, Thomsen P, Havas K. 2017. Geological characterization in urban areas based on geophysical mapping: A case study from Horsens, Denmark[J]. Journal of Applied Geophysics, 150: 338−349.
[2] Chen XS. 2018. Research on Combined Construction Technology for Cross-Subway Tunnels in Underground Spaces[J]. Engineering, 4(1): 103−111. doi: 10.1016/j.eng.2017.08.001
[3] Chen ZL, Chen JY, Liu H, Zhang ZF. 2018. Present status and development trends of underground space in Chinese cities: Evaluation and analysis[J]. Tunnelling and Underground Space Technology, 71: 253−270 doi: 10.1016/j.tust.2017.08.027
[4] Darroch N, Beecroft M, Nelson JD. 2018. Going underground: An exploration of the interfaces between underground urban transport infrastructure and its environment[J]. Tunnelling and Underground Space Technology, 81: 450−462. doi: 10.1016/j.tust.2018.08.027
[5] Guo Zhaobin, Wang Zhihui, Liu Kai, Li Cai. 2019. The application and research progress of special underground space[J]. Geology in China, 46(3): 482−492 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/zgdizhi201903006
[6] Hao Aibing, Wu Aimin, Ma zhen, Liu Futian, Xia Yubo, Xie Hailan, Lin Liangjun, Wang Tao, Bai Yaonan, Zhang Jing, Meng Qinghua. 2018. A Study of Engineering Construction Suitability Integrated Evaluation of Surface-underground Space in Xiong’an New Area[J]. Acta Geoscientica Sinica, 39(5): 4−13 (in Chinese with English abstract).
[7] Huang Rongkai, Zou Jinggui, Wang Yangsheng, et al. 1977. 1∶200 000 regional hydrogeological survey of Chengdu, Sichuan Province[R]. Chengdu: Team of Hydrogeology and Engineering Geology of Sichuan Geological Bureau (in Chinese).
[8] Hu Zhiping, Peng Jianbing, Zhang Fei, Wang Rui, Chen Nannan. 2019. The critical issues and creative concepts in the development of urban un-derground space[J]. Earth Science Frontiers, 26(3): 76−84 (in Chinese with English abstract).
[9] He Jing, He Hanhan, Zheng Guisen, Liu Yu, Zhou Yuanxin, Xiao Jingze, Wang Chunjun. 2019. 3D geological modelling of superficial deposits in Beijing City[J]. Geology in China, 46(2): 244−254 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/zgdizhi201902004
[10] Huang Qiangbing, Peng Jianbing, Wang Feiyong, Liu Nina. 2019. Issues and challenges in the development of urban undergroundspace in adverse geological environment[J]. Earth Science Frontiers, 26(3): 85−94 (in Chinese with English abstract).
[11] Jiang Xu, Wang Tingting, Mu Jing. 2018. Research on the Application of Suitability and Resources in Underground Space Development[J]. Chinese Journal of Underground Space and Engineering, 14(5): 1145−1153 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dxkj201805001
[12] Jiang Siyi, Wang Qiyao, Li Chunling, Huang Dongsheng, Li Hailiang. 2019. Evaluation Suitability for the Underground Space Using Expert-analytic Hierarchy Process[J]. Chinese Journal of Underground Space and Engineering, 15(5): 1290−1299 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dxkj201905003
[13] Li Jiakang, Li Gengsheng, Wang Kuntai, et al. 1977. 1∶200 000 regional hydrogeological survey of Jianyang, Sichuan Province[R]. Chengdu: Team of Hydrogeology and Engineering Geology of Sichuan Geological Bureau (in Chinese).
[14] Li Xiaozhao, Wang Rui, Gu Qian, Zhou Dankun, Xin Yunxiao. 2019. Prediction of strategic demand of urban underground space development[J]. Earth Science Frontiers, 26(3): 32−38 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dxqy201903005
[15] Li Yongjian, Huang Kun, Xie Fengchun, et al. 2002. Groundwater resources distribution map, development and utilization status map, and environmental map of Sichuan Province[R]. Chengdu: Sichuan Land and Resources Department (in Chinese).
[16] Lin Liangjun, Li Yamin, Ge Weiya, Hu Qiuyun, Li Xiaozhao, Li Yun, Meng Hui, Zhang Lizhong, Yang Jianfeng. 2017. General ideas for urban geological survey in China and key theory and techniques[J]. Geology in China, 44(6): 1086−1101 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi201706006
[17] Liu Junxian, Wang Youcheng, Wang Xiaodong, et al. 1990. Hydrogeology、engineering and environmental geology comprehensive report of Chengdu[R]. Chengdu: Team of Hydrogeology and Engineering Geology of Sichuan Geological Bureau (in Chinese).
[18] Liu Kun, Peng Jian, Peng Fangle. 2011. Evaluation Model for the Suitability of Underground Space Resources Exploitation and Utilization[J]. Chinese Journal of Underground Space and Engineering, 7(2): 219−231 (in Chinese with English abstract).
[19] Liu Yingping, Yang Zhirong, Xiao Xiufang, et al. 2002. Multi-purpose geochemical survey of Chengdu Basin[R]. Chengdu: Sichuan Institute of Geological Survey (in Chinese).
[20] Liu Yuncong, Zeng Yunqing, Jing Wenshen, et al. 1978. 1∶200 000 regional hydrogeological survey of Guanxian,Sichuan Province[R]. Chengdu: Team of Hydrogeology and Engineering Geology of Sichuan Geological Bureau (in Chinese).
[21] Peng Jianbing, Huang Weiliang, Wang Feiyong, Liu Yang. 2019. Geological structural classification of and geological survey method for urban underground space in China[J]. Earth Science Frontiers, 26(3): 9−21 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dxqy201903003
[22] Sun Liping, Li Xiaozhao, Zhou Dankun, Wang Rui, Liu Chao. 2018. Study on the Correlation between Underground Space Development and Socio-economic Factors[J]. Chinese Journal of Underground Space and Engineering, 14(4): 4−13, 25 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dxkj201804001
[23] Wang Tianshou, Wang Chengfeng, Tang Xiaoling, et al. 2005. Urban environmental geological survey and assessment of Chengdu, Sichuan Province[R]. Chengdu: Sichuan Institute of Geological Survey (in Chinese).
[24] Wang Wanli, Wang Guiling, Zhu Xi, Liu Zhiming. 2017. Characteristics and potential of shallow geothermal resources in provincial capital cities of China[J]. Geology in China, 44(6): 1062−1073 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi201706003
[25] Wang Chengshan, Zhou Chenghu, Peng Jianbing, Fan Jie, Zhu Hehua, Li Xiaozhao, Cheng Guanghua, Dai Chunsen, Xu Nengxiong. 2019. A discussion on high-quality development and sustainable utili-zation of China's urban underground space in the new era[J]. Earth Science Frontiers, 26(3): 1−8 (in Chinese with English abstract).
[26] Wu Binghua, Zhang Shuijun, Xu Penglei, Ma Qinwei. 2017. Geological Environment Suitability Assessment of Underground Space Development in Ningbo City[J]. Chinese Journal of Underground Space and Engineering, 13(S1): 16−21 (in Chinese with English abstract).
[27] Xu Qibin, Liu Wenao, Cao Shunlu, et al. 1977. 1∶200 000 regional hydrogeological survey of Qionglai, Sichuan Province[R]. Chengdu: Team of Hydrogeology and Engineering Geology of Sichuan Geological Bureau (in Chinese).
[28] Yang Min, Guo Ti, Pang Lian, et al. 2013. Shallow geothermal energy survey and assessment in Chengdu[R]. Chengdu: Sichuan Institute of Engineering Exploration (in Chinese).
[29] Yang Wencai, Tian Gang, Xia Jianghai, Yang Bo. 2019. The prospect of exploitation and utilization of urban underground space in hilly areas of South China[J]. Geology in China, 46(3): 447−454 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/zgdizhi201903003
[30] Zacharias J, He J. 2018. Hong Kong’s urban planning experiment in enhancing pedestrian movement from underground space to the surface[J]. Tunnelling and Underground Space Technology, 82: 1−8. doi: 10.1016/j.tust.2018.07.025
[31] Zhang Jingjing, Ma Chuanming, Kuang Heng, Zhou Aiguo, Xia You. 2016. Geo-environmental suitability assessment with variable weight for underground space exploitation in Zhengzhou[J]. , 43(2): 118−125 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/swdzgcdz201602018
[32] Zhang Lu, Zhang Guangcheng, Wu Jiangpeng. 2014. Evaluation on the suitability of underground space exploitation and utilization in a city[J]. Journal of Guilin University of Technology, 34(3): 488−494 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=glgxy201403013
[33] Zhang Ping, Xiao Yu. 2014. Suitability evaluation method for historic relic underground space resource development[J]. Journal of PLA University of Science and Technology (Natural Science Edition), 15(3): 203−208 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jfjlgdxxb201403001
[34] Zhou D, Li X, Wang Q, Wang R, Wang TD, Gu Q, Xin YX. 2019. GIS-based urban underground space resources evaluation toward three-dimensional land planning: A case study in Nantong, China[J]. Tunnelling and Underground Space Technology, 84: 1−10. doi: 10.1016/j.tust.2018.10.017
[35] Zhou Yuanxin, Zheng Guisen, He Jing, Li Chao, Liu Yu, He Hanhan, Xiao Jingze. 2019. Research on geological safety monitoring of urban underground space resource utilization in Beijing[J]. Geology in China, 46(3): 455−467 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi201903004
[36] Zhu Bing, Wang Quanwei, Liang Bin, et al. 2013. 1∶250 000 regional geological survey of Chengdu, Sichuan Province[R]. Chengdu: Sichuan Institute of Geological Survey (in Chinese).