中国地质调查局 中国地质科学院主办
科学出版社出版

四川盆地海相碳酸盐岩天然气富集规律

洪海涛, 田兴旺, 孙奕婷, 马奎, 李庚, 王云龙, 杨岱林, 彭瀚霖, 罗冰, 周刚, 薛玖火, 叶茂, 山述娇. 2020. 四川盆地海相碳酸盐岩天然气富集规律[J]. 中国地质, 47(1): 99-110. doi: 10.12029/gc20200108
引用本文: 洪海涛, 田兴旺, 孙奕婷, 马奎, 李庚, 王云龙, 杨岱林, 彭瀚霖, 罗冰, 周刚, 薛玖火, 叶茂, 山述娇. 2020. 四川盆地海相碳酸盐岩天然气富集规律[J]. 中国地质, 47(1): 99-110. doi: 10.12029/gc20200108
HONG Haitao, TIAN Xingwang, SUN Yiting, MA Kui, LI Geng, WANG Yunlong, YANG Dailin, PENG Hanlin, LUO Bing, ZHOU Gang, XUE Jiuhuo, YE Mao, SHAN Shujiao. 2020. Hydrocarbon enrichment regularity of marine carbonate in Sichuan Basin[J]. Geology in China, 47(1): 99-110. doi: 10.12029/gc20200108
Citation: HONG Haitao, TIAN Xingwang, SUN Yiting, MA Kui, LI Geng, WANG Yunlong, YANG Dailin, PENG Hanlin, LUO Bing, ZHOU Gang, XUE Jiuhuo, YE Mao, SHAN Shujiao. 2020. Hydrocarbon enrichment regularity of marine carbonate in Sichuan Basin[J]. Geology in China, 47(1): 99-110. doi: 10.12029/gc20200108

四川盆地海相碳酸盐岩天然气富集规律

  • 基金项目:
    国家重大专项(2016ZX05004-005)及中国石油西南油气田分公司科技处项目(20170301-08)联合资助
详细信息
    作者简介: 洪海涛, 男, 1971年生, 高级工程师, 从事四川盆地油气地质勘探研究工作; E-mail:xhht@petrochina.com.cn
    通讯作者: 田兴旺, 男, 1988年生, 工程师, 从事四川盆地油气地质勘探研究工作; E-mail:tianxinwang@petrochina.com.cn
  • 中图分类号: TE122.23

Hydrocarbon enrichment regularity of marine carbonate in Sichuan Basin

  • Fund Project: Supported by Major national projects (No. 2016ZX05004-005); PetroChina Southwest Oil and Gas Field Branch Science and Technology Branch Project (No. 20170301-08)
More Information
    Author Bio: HONG Haitao, male, born in 1971, senior engineer, engages in petroleum geological exploration and research work in Sichuan Basin; E-mail:xhht@petrochina.com.cn .
    Corresponding author: TIAN Xingwang, male, born in 1988, engineer, engages in petroleum geological exploration and research work in Sichuan Basin; E-mail: tianxinwang@petrochina.com.cn
  • 四川盆地作为中国六大气区之一,为中国天然气快速发展作出了突出贡献。其海相克拉通沉积厚度达4000~7000 m,天然气富集层系以海相碳酸盐岩为主。为了指导该盆地海相碳酸盐岩下一步天然气勘探的方向和目标,本文结合前人研究成果和多年来的勘探经验,从控制油气成藏的关键地质要素出发,系统总结了四川盆地海相碳酸盐岩天然气富集规律,认为:“源控性”——烃源岩在空间上的互补性分布总体控制了天然气的纵横向展布,纵向上距离烃源岩较近的储集层含气性普遍较好,平面上油气藏围绕优质烃源岩发育区(生气或油中心)呈环带状分布;“相控性”——有利的沉积相带对储层发育、天然气富集控制作用明显,即“相控储、储控藏”;岩溶作用改善了碳酸盐岩气藏储集层的储渗条件;古隆起继承性的发展控制了油气的早期运聚成藏;现今构造对天然气藏再调整、再分配的重要控制作用。综合应用天然气富集规律认识,四川盆地获得多个重大突破和发现,提交探明储量超万亿m3,极大地促进了中国天然气的快速发展。

  • 世界大洋底不但蕴藏着丰富的石油、天然气、天然气水合物等能源矿产,还蕴藏着富含镍、钴、铜、锰、金、银、稀有金属和稀土等重要的战略金属矿产的多金属结核、富钴结壳、多金属硫化物、深海稀土泥等固体矿产资源。随着世界经济的发展,陆地矿产资源消耗速度加快,海洋矿产资源勘查开发日益受到世界各国的重视。伴随技术进步,以及地缘政治等因素,21世纪以来海洋矿产资源的勘查开发已经成为世界矿产资源调查开发的新热点。

    从工业价值和科学研究着眼,人们目前普遍关注的大洋金属矿产资源主要有4大类:一是遍布各大洋洋底的多金属结核或称铁锰结核;二是固着在洋底海山坚硬岩石表面的富钴结壳;三是与洋底火山口有关的多金属硫化物;四是2011年发现的新类型:深海稀土。

    多金属结核,或称铁锰结核,是由铁的氢氧化物和锰的氧化物组成的结核状矿物集合体。波纹状、条带状、钟状的多金属结核矿田,一般由一系列结核构成,结核产于底积物表面,有一半或一半以上没入浅表层沉积物中[1],见有全部或部分埋藏的多金属结核层。结核为具有中心核部的同心带状结构。结核形态和大小多变,通常为1~12 cm,多产在水深4 000~6 500 m的深海底的浅表层沉积物中[2]图1)。分布丰度为5~20 kg/m2或更多[1]。多金属结核的成分非常稳定。锰、镍、铜、钴是主要有用组分,钼、钒、铂族金属、铋、稀土是伴生组分[3]

    图 1.  全球大洋多金属结核、富钴结壳、多金属硫化物分布[2]
    CCZ-克拉里昂-克里帕顿断裂带,CIB-中印度洋盆地,PB-秘鲁盆地,PCZ-原生结壳带,PYB-彭林盆地。
    Figure 1.  Global distribution of the three primary classes of metal-rich deep-ocean mineral deposits: polymetallic nodules, Cobalt-rich crusts, polymetallic sulfides[2]

    多金属结核中经济意义最大的金属是镍和钴,其次是铜和锰。最著名的富含镍和铜的多金属结核区位于东赤道太平洋的克拉里昂—克里帕顿断裂带(CCZ),海底的结核密度可达75 kg/m2(湿重)[4-5]。据估算,结核总量达210亿t,含有2.8亿t镍(是陆地镍总储量的3.5倍)、2.2亿t铜、4 000万t钴(是陆地钴总储量的5.5倍)。克拉里昂—克里帕顿带面积与欧洲的陆地面积大致相当,但它只是多金属结核有远景的海底区域的一小部分。整个有多金属结核远景海底面积超过5 100万km2,比亚洲陆地面积还要大[5]

    多金属结核在南美的秘鲁盆地和中印度洋盆地也有重要产出。在紧靠南太平洋科克群岛的彭林盆地是最有远景的富钴多金属结核区(图1[2]

    富钴结壳是富含金属的一种层状沉积物,它是通过水合氧化锰或水合氧化铁胶体沉积到大洋深部任何固结的底质上形成的,通常出现在水深400~7 000 m的海岭、海山(海下活火山和死火山)和海台等无沉积物的地区[4-5],往往形成于基岩(玄武岩、灰岩、硅质产物、细粒岩)出露的海底地段。富钴结壳的壳层厚度从薄膜到25 cm[6],以多层盖层的形式覆盖在坚硬的基岩露头上。海山是形成富钴结壳矿产最有利的环境。根据卫星得到的重力资料预测,全球有几千座海山(图1)。最大的海山群出现在中太平洋,这里平顶海山平均表面积约为11 000 km2,相当于牙买加的陆地面积,是富钴结壳最多的海区[7]

    富钴结壳分布丰度为70~80 kg/m2或更多。锰、钴、镍、铜是主要有用组分,钼、铂族金属、稀土(首先是铈)、铋、钛、碲为伴生组分[1]。钴是富钴结壳中最有经济意义的金属元素,含量最高可达到2%(重量),在“原生结壳带”(PCZ)的富钴结壳钴的平均含量为0.66%(重量),据估算仅该带钴的总资源量就达5 000万t[8]图2)。相比较,陆地上钴的总储量才710万t[9],“中非钴带”的钴矿床的钴含量,通常也就0.1%~0.5%(重量)[10]。“原生结壳带”的富钴结壳还富含碲,最高含量可达200×10−6。据估算该带的富钴结壳含碲45万t。相当于陆地上碲的总储量3.1万t的15倍[9]

    图 2.  富钴结壳的金属品位、全球资源分布和估算的金属吨位以及陆地上的储量[11]
    (A) 各个大洋富钴结壳的金属平均品位 (柱子的颜色参见B中的大洋颜色),每个彩色柱上面的数字表示平均品位依据的样品数。除了北冰洋外,稀土元素和钇 (REY) 都未标出样品数,因为其各个元素分析的样品数是不同的;(B) 至今查明的最广布的富钴结壳矿床的大致分布。PCZ为“原生结壳带”;(C) 在PCZ地区估算的富钴结壳的金属吨位。为了比较,列出了陆地上的总储量。PGM为铂族金属,REO为稀土氧化物。
    Figure 2.  Metal grade, global resource distribution and estimated metal tonnages for Cobalt-rich crusts and land-based reserves[11]

    多金属硫化物与洋底的火山有关,广泛出现在洋底年轻的火山活动区。形成于世界大洋的大洋中脊轴部带,或者形成于沿大洋边缘的过渡带,即转换断层的弧后构造:裂谷、内海盆地边缘、破火山口,多金属硫化物产出水深在800~900 m至4 200 m之间[1]。主要有用组分为铜、锌、金和银,有时还有铅,伴生组分为硒、碲、砷、铟。与多金属结核及富钴结壳不同的是,多金属硫化物是三维地质产物,产于海底玄武岩中,或者已产生强烈蚀变的构造成因的基性—超基性岩体中。矿体可能向深部持续延伸数十米[1]

    迄今为止在全球大洋已发现了大约380个硫化物点或高湿热液喷口(图1、图3),其中3/4的热液还在活动,只有1/4是不活动的[11]。据估算,全球洋底大约有1 300多个热液喷口,尚有1 000余个还有待发现[12]

    图 3.  活动的 (红色) 和不活动的 (黄色)海底块状硫化物点的全球分布[11]
    白色圆点表示该点没有详细的活动信息 (N=378),封闭区域为专属经济区。
    Figure 3.  Global distribution of active (red) and inactive (yellow) seafloor massive sulfide sites[11]
    Sites where no detailed information on activity is given by white dots (N = 378). Exclusive economic zones are indicated as enclosed areas.

    不同构造环境下形成的多金属硫化物的金属含量变化很大(表1[11]。从表1中可以看出,无沉积物的大洋中脊和含超基性岩的大洋中脊,以及洋内后弧、过渡后弧和火山弧环境下的海底块状硫化物铜和锌的含量很高。某些海底块状硫化物,特别是洋内后弧和火山弧及含超基岩的大洋中脊系统中的海底块状硫化物富含金和银。有些产地镓、锗、碲、硒、铟等稀有元素的含量很高。

    表 1.  不同构造环境中多金属块状硫化物的金属平均含量
    Table 1.  The mean metal content of seafloor massive sulfide occurrences with respect to their tectonic settings
    构造环境有化学分析数据的矿床数铜/%锌/%铅/%铁/%金/10−6银/10−6
    无沉积物的大洋中脊604.28.20.226.01.292
    含超基性岩的大洋中脊1213.27.1<0.124.76.666
    有沉积物的大洋中脊40.93.10.432.20.465
    洋内弧362.617.30.714.94.2188
    过渡弧136.617.41.58.812.9321
    陆内弧62.714.08.05.83.52 091
    火山弧173.98.91.811.010.0204
     | Show Table
    DownLoad: CSV

    对多金属硫化物全球资源潜力的评价不同学者的看法不一。Cathles指出[13],洋底是一个巨大的火山多金属硫化物分布区,所含的金属资源是陆地上已知的火山多金属硫化物总储量的600倍[11]。而Hannington等[14]则认为,在大洋扩张中心狭窄的新火山带,硫化物的数量估计只有6亿t[11]。二者差别如此之大,说明对多金属硫化物矿床的规模、构造、分布、成分及保存状况认识得还很不够。多金属硫化物的资源潜力迄今依然是不明确的,需要更好地认识洋底热液活动和不活动系统的分布和产出,改进全球资源量的估算。

    2011年6月,以日本东京大学加藤泰浩教授为首的研究小组,对过去在太平洋海域实施的国际“深海钻探计划”的78个站位2 000多个沉积物岩心样品进行分析,发现在太平洋4 000 m深的深海底广泛分布着含有高浓度稀土元素的稀土泥[15-16],主要分布在东南太平洋和中北太平洋(图4[17]。其中,东南太平洋深海泥中富钇稀土含量为880~1 628×10−6,平均1 054×10−6,中北太平洋深海泥中富钇稀含量451~1 002×10−6,平均625×10−6。据估算,太平洋深海稀土资源总量为目前陆上稀土资源总量的800倍[15-19]

    图 4.  深海沉积物稀土矿点在国际海底的分布 [19]
    Figure 4.  Distribution of rare earth deposits in deep sea sediments on the international seabed [19]

    2013—2015年,日本在其专属经济区以南鸟礁为中心面积为43万km2的海底进行了深海稀土调查。利用活塞取样器共采集了70个样品。在南鸟礁拓洋第5海山的东部海域,发现了含稀土海底沉积物(稀土沉积物)的高品位分布区。其稀土品位(50 cm区间的平均品位)最高可达5 366×10−6,平均品位1 221×10−6。根据样品分析及声学数据解释结果,按现阶段估算的稀土远景资源量约为77万t(稀土氧化物总量,湿重)[20-21]。开展了采泥、扬泥试验,进行了可采经济性评价,并提出了冶炼方案。稀土赋存于水深为5 000~6 000 m的深海沉积物中,80%的稀土富集在沉积物中的粗粒磷灰石中。富集区中重稀土含量为45.8%,且重稀土中钇占65.2%。采泥试验表明稀土沉积物具有黏土含量高、黏度大的特征。经济性评价表明,稀土价格要维持在历史最高价(2011年年均最高价)20年才具经济性[20]

    国际海洋法公约授权联合国国际海底管理局管理国际海域的海底矿产,发放矿产勘探和开采合同。截至2018年3月,国际海底管理局已经签订和发放了29个在国际海底的矿产勘探合同[22-24],涉及20个国家(图5)。从2001年勘查开始以来,年度合同数量以年均约8.7%的速度递增。勘探区面积从2001年的52.5万km2,增加到2019年的132.4万km2以上。尤其是2011年以来,勘探合同和勘探国家迅速增长。合同数年均递增16.4%,勘探区面积年均增速为10.1%。前10年均为多金属结核合同。从2011年开始签订多金属硫化物勘探合同。从2014年开始签订富钴结壳合同[25-30]

    图 5.  2001—2018年国际海底管理局批准的29个国际海底的矿产勘探合同 [23]
    Figure 5.  29 International Seabed Mineral Exploration Contracts approved by the International Seabed Authority from 2001 to 2018[23]

    在诸种合同中,以多金属结核的勘探合同最多,为17个,最大面积达7.5万km2,合计勘探面积123.902万km2,占批准总勘探面积的93.6%。东北太平洋面积约700万km2的克拉里昂—克里帕顿区是多金属结核最有远景和最接近开发的地区。截至2018年3月已有德国、中国、日本、韩国、法国、俄罗斯、英国、比利时等18个《联合国海洋法》缔约国与国际海底管理局签订了17份克拉里昂—克里帕顿地区多金属结核勘探合同(图6[31]。印度在印度洋与国际海底管理局签订了1份多金属结核勘探合同。

    图 6.  东北赤道太平洋克拉里昂—克里帕顿断裂带勘探合同[31]
    每个颜色方块代表各个缔约国目前在进行多金属结核勘探的地区。括号中表示的是相关发起的国家。带有白色斜线的方框表示有特殊环境意义的地区。
    Figure 6.  Exploration contracts of the Clarion–Clipperton Fracture Zone in the northeast Equatorial Pacific Ocean[31]

    多金属硫化物也是重点勘探对象。2011—2018年,中国、俄罗斯、韩国、法国、德国和印度7国,一共签订了7份多金属硫化物的勘探合同。其中大西洋中部3份,印度洋中部4份,它们都位于缓慢到中速扩张的大洋中脊上,每个勘探区面积1万km2[23, 30]

    富钴结壳的勘探合同数量较少。2014—2018年间,总计只有5份。日本、中国、俄罗斯、巴西和韩国5国各1份。每个勘探区面积3 000 km2[23, 30]

    尽管目前还没有一个大洋金属矿产的开发合同,但是一些国家正在积极做开发前的准备,包括开采和金属提取的技术研发和环境影响评估,则是不争的事实[31]

    目前,开发的前期准备工作多在沿海国家和岛国的专属经济区内进行,因为在这里实施开发项目,不需要什么协定,也无须履行面对国际海底机构的义务。

    (1)多金属结核。1999—2008年,俄罗斯就在波罗的海芬兰湾的俄罗斯海域对多金属结核进行了普查评价工作。并于2000年进行了首次大吨位多金属结核的提升实验,2004年开始研制多金属结核开采工艺。并对开采和提升作业对生态环境的影响进行了评估。对所获得的多金属结核在化学试验厂和铁合金厂进行了加工处理和金属提取试验[32]

    根据普查评价工作及25 000多个海洋台站调查资料处理和分析结果,按照国家储量委员会的规定,俄罗斯已将库尔加利、科波尔、维赫列夫和朗多等4个矿床的多金属结核储量列入了评价储量(表2[32]

    表 2.  芬兰湾海域大陆架多金属结核矿床的矿山—地质特征
    Table 2.  Mining-geological characteristics of polymetallic nodule deposits on the continental shelf of the Gulf of Finland
    矿床名称维赫列夫科波尔库尔加利朗多
    2009年前的状态“Петротранс”股份有限公司采矿用地未发证后备资源
    地质研究程度做过评价
    储量级别C2C1+ C2C2C1+ C2
    湿多金属结核储量(万t)51.8719.18194.88189.24
    锰储量(t)43 83012 083159 802147 607
    在采矿区面积(km250.230.641.3
    湿多金属结核产出密度(kg/m224.9424.963.132.08
    锰的平均含量(%)16.8912.5916.4115.64
    平均深度(m)25.225.056.835.8
     | Show Table
    DownLoad: CSV

    2016年6月,中国在南海进行了首次深海多金属结核和富钴结壳采掘与输运关键技术及装备深海扬矿泵管系统海上试验。海试管道布放水深304 m,管道总长638 m,输送矿浆体积流量500 m3/h,结核输送量50 t/h,一举突破了我国深海采矿系统研究多年来尚未解决的关键技术[33]

    2018年5月1日—6月18日,我国首次自主研发完成了500 m级水深海底多金属结核集矿系统试验。海试中,“鲲龙500”海底集矿车共下水11次,其中70 m浅海试验下水6次,500 m海试下水5次,海试中最大作业水深514 m,多金属结核采集能力10 t/h,单次行驶最长距离2 881 m,水下定位精度达0.72 m,实现了自主行驶模式下按预定路径进行海底采集作业的能力[34]

    (2)富钴结壳。美国在夏威夷群岛和约翰逊群岛(在EIS项目框架内)开始开采富钴结壳,计划在20年内每年开采100万t富钴结壳[32, 35]

    (3)多金属硫化物。鹦鹉螺矿业公司的Solwara1多金属硫化物项目位于巴布亚新几内亚俾斯麦海,距海岸约50 km,水深1 600 m。经过全面钻探,取得250万t储量,铜品位8%左右、金约0.6 g/t。已经获得了环境许可证,并签订了海底采矿租约,成为第一个计划进行商业性开采的深海矿山[2, 36-38]

    据Mining.com网站报道,近10年来,鹦鹉螺矿业公司虽然全力推进巴布亚新几内亚Solwara1铜金银矿项目开发,曾被认为是首个海底多金属矿山。但因遭遇到无数次社区反对,最终面临法律诉讼,公众向政府投诉,加之环境担忧以及去年公司唯一的生产支撑船丢失,使投资者失去信心,2019年3月,鹦鹉螺矿业公司从多伦多股票交易所退市[39]

    但从长远看,更多海底项目将涌现,国际海底管理局将允许在公海开采矿产。

    2017年8月中旬至9月下旬,日本石油天然气金属矿物资源机构(JOGMEC)在冲绳近海对海底约1 600 m深处的多金属热液硫化物矿床进行了开采实验(图7),共采出16.4 t 矿石,日本经济产业省称,在冲绳近海的专属经济区内,过去3年内发现了6处矿床,今后继续发现新矿床的可能性很高,如果能发现足够的蕴藏量,日本有可能摆脱目前矿物依赖进口的现状而成为资源生产国。日本经济产业省计划力争在2020年前后实现商用化开采[40]

    图 7.  2017年日本多金属硫化物试采示意图[40]
    Figure 7.  Pilot production of seafloor massive sulfides (SMS) in Japan in 2017[40]

    (4)深海稀土。2013—2015年,日本石油天然气金属矿物资源开发机构(JOGMEC)在其专属经济区南鸟礁周边海域进行稀土资源评价的同时,还进行了可采性经济评价,测算结果表明,在资源具有充分保障的基础上,只有稀土价格保持在2011年前的历史最高价长达20年,才具备经济上的可采性。并提出了初步开采方案[20]

    尽管上述几个实例都是在沿岸国家管辖权范围之内,但是不难看出,大洋金属矿产的开发已经提上了议事日程。

    海洋地质调查和矿产勘查与陆地上的有很大的不同,其难度比陆地上大得多。目前深海地质调查和矿产勘查已有一系列比较成熟的技术,包括船载带状扫描声呐测深系统、地球物理调查装备、携带系列传感器、遥控水下潜水器(ROV)和水下自动机器人(AUV)等(图8)。当务之急是研发新的设备和技术方法,以查明海底地质构造和可靠地评价矿产资源,尤其是海底高分辨率地质填图、精确资源评价的海底钻探等先进方法的开发应用[41]

    图 8.  深海勘探和采矿设备[42]
    (A) 英国海洋调查船RRS Discovery及设备,包括用于海洋环境调查和监测的水下自动运载器;(B) 英国地质调查局的遥控海底岩石钻机(RD2),以获取大西洋中脊海底块状硫化物的钻探岩心;(C) 英国工程公司SMD为加拿大鹦鹉螺矿业公司制造的深海采矿设备。
    Figure 8.  Deep-ocean exploration and mining equipment[42]

    深海采矿的技术准备需要考虑从勘探和资源评价直到开采的全过程,还要考虑矿石运输、环境监测、矿石处理和金属回收。图9展示了目前设想的一个完整的深海采矿系统,包括船对船的矿石转运,以及5 000 m水深处的各种设备,然而这一切还需要进行日后的现场测试[43]

    图 9.  深海多金属结核采矿系统设想[44]
    Figure 9.  Concept for a deep-ocean ferromanganese nodule mining operation[44]

    深海采矿目前还未正式开始,迄今为止尚未涉及开采对环境的重大影响,但是人们对此存在重大的担忧,海洋法公约为此对环境影响给予了重点关注,表3列出了海洋法公约与深海采矿环境有关的一些条款。今后环境方面面临的最大挑战是,采矿时如何制订区域环境规划和如何有效地管理区域环境规划的落实[31 ]

    表 3.  《联合国海洋法公约》中与深海采矿环境问题有关的一些条款[31]
    Table 3.  Some articles of the United Nations Convention on the Law of the Sea related to environmental issues in deep sea mining [31]
      ·第Ⅺ部分(条款145):防止/减少/控制污染和其他灾害,以及对海洋环境生态平衡的干扰;保护和维护海区自然资源及防止损害海洋环境中的动植物。
      ·第Ⅺ部分(条款147(1)和(3)):矿产活动时要合理关注海区和海洋环境中的其他活动,反之亦然。
      ·附件Ⅲ条款17——宣告国际海底管理局必须管理海洋环境:(1)、(b)(xii)和2(f)
      ·附件Ⅲ条款14(2):海洋环境资料无专有权
      ·协议履行:序言;款1(g)、(h)、(i)、(k)
    第Ⅻ部分(海洋环境保护和维护):
      ·条款192:“国家有责任保护和维护海洋环境”
      ·条款194(5):需要为保护和维护稀少和脆弱的生态系统及枯竭、受威协和受损害的物种和其他海洋生命采取措施
      ·条款204和206:需要对环境影响进行评价和监测
      ·条款209:尤其对海区要有海洋环境保护要求;包括为首国家
      ·条款215:海区海洋环境保护规章的实施(参见第Ⅺ部分条款153(5))
    第XIII部分(海洋科学调查):
      ·条款240(d):海洋科学调查服从于第Ⅻ部分(海洋环境保护)规则(参见条款87(1)):公海自由权,包括海洋科学调查;它们进行是不受限的;必须履行所有“公海”自由权,海区活动应予关注(条款87(2))
      ·条款256:国际海底管理局、缔约国和其他有能力的国际组织都可参与海区海洋科学调查(参见条款87(2)和第Ⅺ部分条款143)
      ·条款242和243:鼓励国际海底管理局、缔约国和承包商在海洋科学调查上全面开展国际合作,尤其是在海洋环境及相关调查上(参见条款143海区的海洋科学调查)。这对开发和完成“渐增的”环境影响管理系统是必不可少的
     | Show Table
    DownLoad: CSV

    2019年7月3日,国际绿色和平组织发布报告警告说,深海采矿业活动可能导致部分物种灭绝,海洋可能面临严重且不可逆转的损害。该组织呼吁各国政府在未来12个月内商定一项强有力的“全球海洋条约”,将海洋环境保护作为海洋治理的核心,各国应制定更严格的环保措施,以免海洋遭受深海采矿带来的不可逆转的伤害[45]

    《联合国海洋法公约》是世界的“海洋宪法”,经过近10年的谈判,1994年11月16日正式生效,到2018年3月已有168个成员(167个国家+欧盟)签约[32]。“公约”由320个条款和9个附件组成。国际海底管理局代表《联合国海洋法公约》管理深海采矿,《联合国海洋法公约》的所有缔约国都是国际海底管理局的成员,国际海底管理局拥有唯一的授权,为全人类的利益管理海底矿产;有发放海底矿产勘探和开采合同的特权。所有的国家都必须遵守《联合国海洋法公约》和国际海底管理局的规章。根据海洋法公约条款287(1)(a),设立了海洋法国际法庭。国际海底管理局面临一个最大的规章挑战,就是建立一个切实可行的、为公众所接受的矿产开发规章框架,这个规章框架要体现出,国家管辖权之外的深海矿产是人类的共同遗产,不应为少数技术发达国家所垄断,而应为所有国家(包括内陆国家和极不发达国家)共同分享。如何应对此类挑战,可能比应对技术挑战和环境挑战更为困难[44]

    致谢:感谢自然资源部信息中心项仁杰研究员,中国地质调查局青岛海洋地质研究所何起祥研究员、许东禹研究员、黄威高工提出宝贵意见!

  • 图 1  四川盆地寒武系麦地坪组+筇竹寺组等厚图和筇竹寺组生气强度图

    Figure 1. 

    图 2  四川盆地三叠系飞仙关组沉积相图

    Figure 2. 

    图 3  四川盆地二叠系茅口组二段沉积相图

    Figure 3. 

    图 4  四川盆地二叠系沉积前古地质图

    Figure 4. 

    图 5  四川盆地乐山—龙女寺古隆起高石梯—磨溪天然气藏演化和构造演化图

    Figure 5. 

    图 6  四川盆地上三叠统沉积前古地质图

    Figure 6. 

    表 1  四川盆地碳酸盐岩表生岩溶作用期次及对储层的影响分析

    Table 1.  The analysis table of supergene karstification period and its influence on reservoir in Sichuan Basin

    下载: 导出CSV

    表 2  四川盆地气藏类型统计(截至2015年)

    Table 2.  Statistical table of gas reservoir types in Sichuan Basin

    下载: 导出CSV
  • Dai Jinxing, Chen Jianfa, Zhong Ningning. 2003. Large Gas Fields in China and Their Gas Sources[M]. Beijing:Science Press, 83-163(in Chinese).

    Du Jinhu, Wang Zecheng, Zou Caineng, Xu Chunchun, Shen Ping, Zhang Baomin, Jiang Hua, Huang Shipeng. 2016. Discovery of intra-cratonic rift in the Upper Yangtze and its control effect on the formation of Anyuc giant gas field[J]. Acta Pctrolci Sinica, 37(1):1-16(in Chinese with English abstract). doi: 10.1038/aps.2015.144

    Du Jinhu, Zou Caineng, Xu Chunchun, He Haiqing, Shen Ping, Yang Yueming, Li Yalin, Wei Guoqi, Wang Zecheng, Yang Yu. 2014.Theoretical and technical innovations in strategic discovery of a giant gas field in Cambrian Longwangmiao Formation of central Sichuan paleo-uplift, Sichuan Basin[J]. Petroleum Exploration and Development, 41(3):267-277 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syktykf201403003

    He Youbin, Feng Zengzhao. 1996. Origin of Fine-to Coarse-grained Dolostones of Lower Permian in Sichuan Basin and its Peripheral Regions[J]. Journal of Jianghan Petroleum Institute, 18(4):5-20(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-JHSX604.002.htm

    Hong Haitao, Wang Yigang, Yang Tianquan, Wen Yingchu, Xia Maolong. 2008. Sedimentary facies of changxing formation and distribution of organic reef gas reservoirs in northern sichuan basin[J]. Natural Gas Industry, 28(1):38-41(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=trqgy200801009

    Hong Haitao, Xie Jirong, Wu Guoping, Liu Xin, Xia Maolong. 2011.Potential of gas exploration in the Sinian reservoirs, Sichuan Basin[J]. Natural Gas Industry, 31(11):37-41 (in Chinese with English abstract).

    Jiang Zhibin, Wang Xingzhi, Zeng Deming, Lu Tiemei, Wang Baoquan, Zhang Jinyou. 2009. Constructive diagenesis and porosity evolution in the Lower Permian Qixia Formation of Northwest Sichuan[J]. Geology in China, 36(1):101-109(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi200901008

    Lei Bianjun, Qiang Zitong, Wen Yingchu. 1994. Dolomitization of the upper permian organic reefs in eastern Sichuan and its adjacent areas[J]. Geological Review, 11(6):158-165(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/OA000003084

    Lei Huaiyan, Zhu Lianfang. 1992. Origin of the dolostones of Sinian Dengying Formation in Sichuan Basin[J]. Acta Sedimentologica Sinica, (2):69-78 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-GDLX201405014.htm

    Liu Shugen, Huang Wenming, Zhang Changjun, Zhao Xiafei, Dai Sulan, Zhang Zhijing, Qin Chuan. 2008. Research status of dolomite genesis and its problems in Sichuan Basin[J]. Lithologic Reservoirs, 20(2):6-15 (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yxyqc200802002

    Luo Bing, Luo Wenjun, Wang Wenzhi, Wang Zhihong, Shan Shujiao. 2015. Formation mechanism of the Sinian natural gas reservoir in the Leshan-Longnvsi Paleo-uplift, Sichuan Basin[J]. Natural gas Geoscience, 26(3):444-455. (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=trqdqkx201503006

    Luo Bing, Yang Yuoming, Luo Wenjun, Wen Long, Wang Wenzhi, Chen Kang. 2015. Controlling factors and distribution of reservoir development in Dengying Formation of palco-uplift in central Sichuan Basin[J]. Acta Petrolei Sinica, 36(4):416-426(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-SYXB201504003.htm

    Luo Ping, Su Liping, Luo Zhong, Cui Jinggang, Yan Jihong. 2006.Application of laser micro-sampling technique to analysis of C and O isotopes of oolitic dolomites in Feixianguan Formation, Northeast Sichuan[J]. Geochimica, 35(3):325-330(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqhx200603014

    Qiang Zitong. 1998. Carbonate Reservoir Geology[M]. China Dongying:University of Petroleum Press(in Chinese).

    Wang Shifeng, Xiang Fang. 1999. The origin of the dolostones from the Sinian Dengying Formation in the Ziyang district, Sichuan[J]. Sedimentary Facies and Palaeogeography, 19(3):21-29(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yxgdl199903003

    Wang Yigang, Hong Haitao, Xia Maolong, Fan Yi, Wen Yingchu. 2008. Exploration of reef-bank gas reservoirs surrounding permian and triassic troughs in Sichuan basin[J]. Natural Gas Industry, 28(1):22-27 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=trqgy200801006

    Wang Yigang, Wen Yingchu, Hong Haitao, Xia Maolong, Song Shujun. 2006. Dalong formation found in kaijiang-liangping ocenic trough in the sichuan basin[J]. Natural Gas Industry, 26(9):32-36 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/NSTLQK/10.1097-IAE.0b013e3181bd2f94/

    Wang Yigang, Wen Yingchu, Hong Haitao, Xia Maolong, Zhan Jing, Song Shujun, Liu Huayi. 2006. Petroleum geological characteristics of deep water deposits in Upper Permian-Lower Triassic trough in Sichuan basin and adjacent areas[J]. Oil & Gas Geology, 27(5):702-714(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syytrqdz200605017

    Wang Yigang, Wen Yingchu, Hong Haitao, Xiao Maolong, He Tingting, Song Shujun. 2007. Diagenesis of Triassic Feixianguan Formation in Sichuan Basin, Southern China[J]. Acta Sedimentologica Sinica, 25(6):831-839(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CJXB200706003.htm

    Wang Yigang, Wen Yingchu, Hong Haitao, Xia Maolong, Fan Yi, Wen Long, Kong Lingxia, Wu Chuanhong. 2009. Carbonate slope facies sedimentary characteristics of the Late Permian to Early Triassic in northern Sichuan Basin[J]. Journal of Palaeogeography, 11(2):143-156(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gdlxb200902003

    Wei Guoqi, Yang Wei, Du Jinhu, Xu Chunchun, Zou Caineng, Xie Wuren, Wu Saijun, Zeng Fuying. 2015. Tectonic features of Gaoshiti-Moxi paleo-uplift and its controls on the formation of a giant gas field, Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 42(3):257-265(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syktykf201503001

    Xu Chunchun, Shen Ping, Yang Yueming, Luo Bing, Huang Jianzhang, Jiang Xingfu, Xie Jirong, Cen Yongjing. 2014. Accumulation conditions and enrichment patterns of natural gas in the Lower Cambrian Longwangmiao Fm reservoirs of the Leshan-Longnusi paleohigh, Sichuan Basin[J]. Natural Gas Industry, 34(3):1-7(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-TRQG201403002.htm

    Yang Guang, Li Guohui, Li Nan, Chen Shuangling, Wang Hua, Xu Liang. 2016. Hydrocarbon accumulation characteristics and enrichment laws of multi-layered reservoirs in the Sichuan Basin[J]. Natural Gas Industry. 36(11):1-11(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=trqgy201611001

    Yang Yueming, Wen Long, Luo Bing, Song Jiarong, Chen Xiao, Wang Xiaojuan, Hong Haitao, Zhou Gang, He Qinglin, Zhang Xiaoli, Zhong Jiayi, Liu Ran, Shan Shujiao.2016.Sedimentary tectonic evolution and reservoir-forming conditions of the Da zhou-Kai jiang paleo-uplift, Sichuan Basin[J]. Natural Gas Industry, 36(8):1-10(in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-TRQG201608002.htm

    Yang Yueming, Wen Long, Luo Bing, Wang Wenzhi, Shan Shujiao. 2016. Hydrocarbon accumulation of Sinian natural gas reservoirs, Leshan-Longnüsi paleohigh, Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 43(2):179-189(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syktykf201602003

    Zeng Wei, Huang Xianping, Yang Yu, Wang Xingzhi. 2007. The origin and distribution of dolostone in Feixianguan Formation in Lower Triassic Series, northeast Sichuan[J]. Journal of Southwest Petroleum University, 29(1):19-22(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xnsyxyxb200701007

    戴金星, 陈践发, 钟宁宁. 2003.中国大气田及其气源[M].北京:科学出版社, 83-163.

    杜金虎, 汪泽成, 邹才能, 徐春春, 沈平, 张宝民, 姜华, 黄士鹏. 2016.上扬子克拉通内裂陷的发现及对安岳特大型气田形成的控制作用[J].石油学报, 37(1):1-16. http://d.old.wanfangdata.com.cn/Periodical/syxb201601001

    杜金虎, 邹才能, 徐春春, 何海清, 沈平, 杨跃明, 李亚林, 魏国齐, 汪泽成, 杨雨. 2014.川中古隆起龙工庙组特大型气田战略发现与理论技术创新[J].石油勘探与开发, 41(3):267-277.

    何幼斌, 冯增昭. 1996.四川盆地及其周缘中二叠统细-粗晶白云岩成因探讨[J].江汉石油学院学报, 18(4):5-20.

    洪海涛, 王一刚, 杨天泉, 文应初, 夏茂龙. 2008.川北地区长兴组沉积相和生物礁气藏分布规律[J].天然气工业, 28(1):38-41. doi: 10.3787/j.issn.1000-0976.2008.01.009

    洪海涛, 谢继容, 吴国平, 刘鑫, 范毅, 夏茂龙. 2011.四川盆地震旦系天然气勘探潜力分析[J].天然气工业, 31(11):37-41. doi: 10.3787/j.issn.1000-0976.2011.11.010

    蒋志斌, 王兴志, 曾德铭, 鲁铁梅, 王保全, 张金友. 2009.川西北中二叠统栖霞组有利成岩作用与孔隙演化[J].中国地质, 36(1):101-109. http://geochina.cgs.gov.cn/geochina/ch/reader/view_abstract.aspx?file_no=20090108&flag=1

    雷卞军, 强子同, 文应初. 1994.川东及邻区上二叠统生物礁的白云岩化[J].地质论评, 11(6):158-165. http://d.old.wanfangdata.com.cn/Periodical/OA000003084

    雷怀彦, 朱莲芳. 1992.四川盆地震旦系白云岩成因研究[J].沉积学报, (2):69-78. http://d.old.wanfangdata.com.cn/Periodical/gdlxb201405013

    刘树根, 黄文明, 张长俊, 赵霞飞, 戴苏兰, 张志敬, 秦川. 2008.四川盆地白云岩成因的研究现状及存在问题[J].岩性天然气藏, 20(2):6-15. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yxyqc200802002

    罗冰, 罗文军, 王文之, 王志宏, 山述娇. 2015.四川盆地乐山-龙女寺古隆起震旦系气藏形成机制[J].天然气地球科学, 26 (3):444-455. http://www.cnki.com.cn/Article/CJFDTotal-TDKX201503007.htm

    罗冰, 杨跃明, 罗文军, 文龙, 王文之, 陈康. 2015.川中古隆起灯影组储层发育控制因素及展布[J].石油学报, 36(4):416-426. http://d.old.wanfangdata.com.cn/Periodical/syxb201504003

    罗平, 苏立萍, 罗忠, 崔京钢, 闫继红. 2006.激光显微取样技术在川东北飞仙关组鲕粒白云岩碳氧同位素特征研究中的应用[J].地球化学, 35(3):325-330. doi: 10.3321/j.issn:0379-1726.2006.03.014

    强子同. 1998.碳酸盐岩储层地质学[M].东营:石油大学出版社.

    王士峰, 向芳. 1999.资阳地区震旦系灯影组白云岩成因研究[J].岩相古地理, 19(3):21-29. doi: 10.3969/j.issn.1009-3850.1999.03.003

    王一刚, 洪海涛, 夏茂龙, 范毅, 文应初. 2008.四川盆地二叠、三叠系环海槽礁、滩富气带勘探[J].天然气工业, 28(1):22-27. doi: 10.3787/j.issn.1000-0976.2008.01.006

    王一刚, 文应初, 洪海涛, 夏茂龙, 范毅, 文龙, 孔令霞, 武川红. 2009.四川盆地北部晚二叠世-早三叠世碳酸盐岩斜坡相带沉积特征[J].古地理学报, 11(2):143-156. http://d.old.wanfangdata.com.cn/Periodical/gdlxb200902003

    王一刚, 文应初, 洪海涛, 夏茂龙, 何颋婷, 宋蜀筠. 2007.四川盆地三叠系飞仙关组气藏储层成岩作用研究[J].沉积学报, 25(6):831-839. doi: 10.3969/j.issn.1000-0550.2007.06.003

    王一刚, 文应初, 洪海涛, 夏茂龙, 宋蜀筠. 2006.四川盆地开江-梁平海槽内发现大隆组[J].天然气工业, 26(9):32-36. doi: 10.3321/j.issn:1000-0976.2006.09.010

    王一刚, 文应初, 洪海涛, 夏茂龙, 张静, 宋蜀筠, 刘划一. 2006.四川盆地及邻区上二叠统-下三叠统海槽的深水沉积特征[J].石油与天然气地质, 27(5):702-714. doi: 10.3321/j.issn:0253-9985.2006.05.017

    魏国齐, 杨威, 杜金虎, 徐春春, 邹才能, 谢武仁, 武赛军, 曾富英. 2015.四川盆地高石梯-磨溪古隆起构造特征及对特大型气田形成的控制作用[J].石油勘探与开发, 42(3):257-265. doi: 10.11698/PED.2015.03.01

    徐春春, 沈平, 杨跃明, 罗冰, 黄建章, 江兴福, 谢继容, 岑永静. 2014.乐山-龙女寺古降起震旦系-下寒武统龙王庙组天然气成藏条件与富集规律[J].天然气工业, 34(3):1-7. doi: 10.3787/j.issn.1000-0976.2014.03.001

    杨光, 李国辉, 李楠, 陈双玲, 汪华, 徐亮. 2016.四川盆地多层系天然气成藏特征与富集规律[J].天然气工业, 36(11):1-11. doi: 10.3787/j.issn.1000-0976.2016.11.001

    杨跃明, 文龙, 罗冰, 宋家荣, 陈骁, 王小娟, 洪海涛, 周刚, 何青林, 张晓丽, 钟佳倚, 刘冉, 山述娇. 2016.四川盆地达州-开江古隆起沉积构造演化及天然气成藏条件分析[J].天然气工业, 36(8):1-10. http://www.cnki.com.cn/Article/CJFDTotal-TRQG201608002.htm

    杨跃明, 文龙, 罗冰, 王文之, 山述娇. 2016.四川盆地乐山-龙女寺古隆起震旦系天然气成藏特征[J].石油勘探与开发, 43(2):179-189. http://www.cnki.com.cn/Article/CJFDTotal-SKYK201602004.htm

    曾伟, 黄先平, 杨雨, 王兴志. 2007.川东北下三叠统飞仙关组白云岩成因及分布[J].西南石油大学学报, 29(1):19-22. doi: 10.3863/j.issn.1674-5086.2007.01.007

  • 加载中

(6)

(2)

计量
  • 文章访问数:  3005
  • PDF下载数:  412
  • 施引文献:  0
出版历程
收稿日期:  2018-04-28
修回日期:  2019-03-29
刊出日期:  2020-02-25

目录

  • 表 1.  不同构造环境中多金属块状硫化物的金属平均含量
    Table 1.  The mean metal content of seafloor massive sulfide occurrences with respect to their tectonic settings
    构造环境有化学分析数据的矿床数铜/%锌/%铅/%铁/%金/10−6银/10−6
    无沉积物的大洋中脊604.28.20.226.01.292
    含超基性岩的大洋中脊1213.27.1<0.124.76.666
    有沉积物的大洋中脊40.93.10.432.20.465
    洋内弧362.617.30.714.94.2188
    过渡弧136.617.41.58.812.9321
    陆内弧62.714.08.05.83.52 091
    火山弧173.98.91.811.010.0204
     | Show Table
    DownLoad: CSV
  • 表 2.  芬兰湾海域大陆架多金属结核矿床的矿山—地质特征
    Table 2.  Mining-geological characteristics of polymetallic nodule deposits on the continental shelf of the Gulf of Finland
    矿床名称维赫列夫科波尔库尔加利朗多
    2009年前的状态“Петротранс”股份有限公司采矿用地未发证后备资源
    地质研究程度做过评价
    储量级别C2C1+ C2C2C1+ C2
    湿多金属结核储量(万t)51.8719.18194.88189.24
    锰储量(t)43 83012 083159 802147 607
    在采矿区面积(km250.230.641.3
    湿多金属结核产出密度(kg/m224.9424.963.132.08
    锰的平均含量(%)16.8912.5916.4115.64
    平均深度(m)25.225.056.835.8
     | Show Table
    DownLoad: CSV
  • 表 3.  《联合国海洋法公约》中与深海采矿环境问题有关的一些条款[31]
    Table 3.  Some articles of the United Nations Convention on the Law of the Sea related to environmental issues in deep sea mining [31]
      ·第Ⅺ部分(条款145):防止/减少/控制污染和其他灾害,以及对海洋环境生态平衡的干扰;保护和维护海区自然资源及防止损害海洋环境中的动植物。
      ·第Ⅺ部分(条款147(1)和(3)):矿产活动时要合理关注海区和海洋环境中的其他活动,反之亦然。
      ·附件Ⅲ条款17——宣告国际海底管理局必须管理海洋环境:(1)、(b)(xii)和2(f)
      ·附件Ⅲ条款14(2):海洋环境资料无专有权
      ·协议履行:序言;款1(g)、(h)、(i)、(k)
    第Ⅻ部分(海洋环境保护和维护):
      ·条款192:“国家有责任保护和维护海洋环境”
      ·条款194(5):需要为保护和维护稀少和脆弱的生态系统及枯竭、受威协和受损害的物种和其他海洋生命采取措施
      ·条款204和206:需要对环境影响进行评价和监测
      ·条款209:尤其对海区要有海洋环境保护要求;包括为首国家
      ·条款215:海区海洋环境保护规章的实施(参见第Ⅺ部分条款153(5))
    第XIII部分(海洋科学调查):
      ·条款240(d):海洋科学调查服从于第Ⅻ部分(海洋环境保护)规则(参见条款87(1)):公海自由权,包括海洋科学调查;它们进行是不受限的;必须履行所有“公海”自由权,海区活动应予关注(条款87(2))
      ·条款256:国际海底管理局、缔约国和其他有能力的国际组织都可参与海区海洋科学调查(参见条款87(2)和第Ⅺ部分条款143)
      ·条款242和243:鼓励国际海底管理局、缔约国和承包商在海洋科学调查上全面开展国际合作,尤其是在海洋环境及相关调查上(参见条款143海区的海洋科学调查)。这对开发和完成“渐增的”环境影响管理系统是必不可少的
     | Show Table
    DownLoad: CSV