Lithofacies geochemistry characteristics of alkali volcanic rocks and prospecting prediction in Tupiza copper deposit, Bolivia
-
摘要:
在沉积型铜矿床中,蚀变火山岩具有特殊的成岩成矿意义。采用构造岩相学填图、火山岩岩相类型划分和电子探针分析等综合方法,对玻利维亚Tupiza铜矿进行研究,结果表明在玻利维亚Tupiza铜矿区内,发育中深成相、次火山侵入相(次火山颈相)、火山溢流相、火山碎屑流相、沉火山岩相等。岩石组合类型为辉绿岩-辉绿玢岩、辉长岩-辉长玢岩、碱性玄武岩、钾质粗面玄武岩、橄榄玄武粗面安山岩和安粗岩。在区域上,碱性玄武质岩浆侵位具多期多阶段性,在Tupiza铜矿区内,采用矿物温度-压力计估算,镁普通角闪石形成温度630.97~748.43℃,压力55~251 MPa,推测成岩深度为2.04~9.27 km,揭示经历多阶段减压增温(减压熔融)、减压降温的成岩演化过程,在岩浆减压侵位过程中具有高温高氧化成岩环境。绿泥石形成温度为112~305℃,lgf(O2)为-45.03~-56.68,lgf(S2)为-4.46~-18.07,属中—低温还原成岩成矿环境,代表铜(银)主成矿期。次火山热液蚀变成岩成矿作用形成了Tupiza铜(银)矿床,蚀变火山岩是铜矿床的成矿物质供给系统,铜(银)矿体富集于蚀变火山岩相体与构造叠加部位,在NNE与NW向构造交汇部位尤为富集。在上白垩统阿诺依菲雅组第三岩性段蚀变火山岩层之下的第二岩性段顶部黄铁矿化砂砾岩中,验证钻孔揭露了铜(钴)矿化体,是深部寻找隐伏沉积岩型铜(钴)矿体找矿标志。在蚀变火山岩和外围砂砾岩中具有明显的铜铅锌矿化和异常。本文认为,在Tupiza铜矿床内,次火山热液成矿系统中心分布在蚀变次火山颈相中,富集铜(银)矿体;周边脉状-网脉状断裂-裂隙-蚀变带为铜铅锌成矿系统的过渡相带;而以赋存在上白垩统Aroifilla组第二岩性段中砂砾岩型铜(钴)矿体和Cu-Pb-Zn异常,为铜(钴)铅锌成矿系统的外缘相带。在深部围绕蚀变次火山岩相体具有寻找铜(银)、铜(钴)和铜铅锌矿体的潜力。
Abstract:In sediment-hosted copper deposits, altered volcanic rocks have special significance for diagenesis and mineralization. Based on the methods of tectonic lithofacies mapping, volcanic lithofacies classification, and electron microprobe analysis (EPMA), the authors studied lithofacies types of volcanic rocks, their geochemical characteristics, physical-chemical conditions of magmatic evolution and their relationship with copper (silver) enrichment. The following results show that mesogenetic intrusive facies, subvolcanic intrusive facies (sub-volcanic neck facies), volcanic overflow facies, pyroclastic facies and sink volcanic rocks are developed in the Tupiza copper deposit. The assemblage of rock types is diabase, gabbro, alkaline basalt, potash-trachybasalt, olivine basalt trachyandesite, and latite. In this area, alkaline basaltic magmatic emplacement has multiple stages and phases. In the Tupiza copper mining area, mineral geothermometer-geobarometer was used to do estimation. When the formation temperature and pressure of hornblende respectively are 630.97-748.43℃ and 55-251 MPa, the depth of diagenetic formation is estimated to be 2.04-9.27 km, revealing that the diagenesis evolution process under decreasing pressure-increasing temperature (decompression melting) and decreasing pressure-decreasing temperature had a high-temperature and high-oxidation diagenetic environment during magmatic decompression and emplacement, suggesting a multi-stage emplacement. Chlorite formation temperature is 112-305℃, lgf(O2)=-45.03—-56.68, lgf(S2)=-4.46—-18.07, suggesting a low temperature reduced diagenesis mineralization environment representing the main copper (silver) ore formation period. The Tupiza copper (silver) deposit was formed by the subvolcanic hydrothermal alteration diagenetic mineralization. Altered volcanic rock is a metallogenic material supply system for copper deposits. Copper (silver) orebody is concentrated in altered volcanic lithosphere and structural superposition, particularly concentrated in the intersection of NNE and NW-trending structures. In the pyrite glutenite at the top of the second lithologic section below the third lithologic alteration volcanic rock in the Upper Cretaceous Aroifilla Formation, the verifying drilling revealed a copper (cobalt) mineralized body, which was the sign of deep prospecting for hidden sedimentary rock type copper (cobalt) orebodies. In this paper, it is believed that, in the Tupiza copper deposit, the central phase of the sub-volcanic hydrothermal metallogenic system is distributed in the altered secondary volcanic neck phases, enriching the copper (silver) orebody. Peripheral veinlet vein-fractured-alteration zone is the transitional facies zone of the copper-lead-zinc metallogenic system, while the glutenite-type copper (cobalt) ore and Cu-Pb-Zn anomaly in the second lithologic zone of the Aroifilla Formation is the outer fringe facies zone of the copper (cobalt) lead-zinc metallogenic system. It has the prospecting potential for copper (silver), copper (cobalt) and copper-lead-zinc orebodies in the deep surrounding altered subvolcanic facies.
-
图 4 玻利维亚Tupiza铜矿火山岩TAS分类图(据Le Maitre et al., 2005)
Figure 4.
图 5 玻利维亚Tupiza铜矿火山岩SiO2-K2O图解(实线据Peccerillo et al., 1976;虚线据Middlemost,1985)
Figure 5.
图 6 稀土元素球粒陨石标准化分布型式图(据Sun et al., 1989)
Figure 6.
图 7 微量元素球粒陨石标准化蛛网图(据Sun et al., 1989)
Figure 7.
图 9 绿泥石分类图解(Deer et al., 1962)
Figure 9.
表 1 玻利维亚Tupiza铜矿火山岩主量元素组成及其特征参数(%)
Table 1. Main elements (%) and their parameters of volcanic rocks in Tupiza copper deposit, Bolivia
表 2 玻利维亚Tupiza铜矿火山岩稀土元素(10-6)及其特征参数
Table 2. Rare earth elements (10-6) and their parameters of volcanic rocks in Tupiza copper deposit, Bolivia
表 3 玻利维亚Tupiza铜矿火山岩微量元素组成(10-6)
Table 3. Trace elements(10-6) of volcanic rocks in Tupiza copper deposit, Bolivia
表 4 玻利维亚Tupiza铜矿火山岩中角闪石电子探针分析数据(%)
Table 4. The EPMA data (%) of amphibole of volcanic rocks in the Tupiza Copper deposit, Bolivia
表 5 玻利维亚Tupiza铜矿火山岩中绿泥石电子探针分析数据(%)
Table 5. The EPMA data (%) of chlorites of volcanic rocks in Tupiza Copper deposit, Bolivia
-
Anders E, Greresse N. 1989. Abundances of the elements:Meteoritic and solar[J]. Geochimical et Cosmochimica Acta, 53:197-214. doi: 10.1016/0016-7037(89)90286-X
Anderson J L, Barth A P, Wooden J L, Mazdab F. 2008. Thermometers and thermobarometers in granitic systems[J]. Reviews in Mineralogy and Geochemistry, 69:121-142. doi: 10.2138/rmg.2008.69.4
Anderson J L, Smith D R. 1995.The effect of temperature and oxygen fugacity on Al-in-hornblende barometry[J]. American Mineralogist, 80:549-559. doi: 10.2138/am-1995-5-614
Anderson J L. 1996. Status of Thermobarometry in Granitic Batholiths[J]. Geological Society of America Special Papers, 315:125-138. http://d.old.wanfangdata.com.cn/NSTLQK/10.1017-S0263593300006544/
Benavides J, Kyser T K, Clark A H, Oates C J, Zamora R, Tarnovschi R, Castillo B. 2007. The Mantoverde iron oxide-copper-gold district, Ⅲ region, Chile:The role of regionally derived, nonmagmatic fluids in chalcopyrite mineralization[J]. Economic Geology, 102(3):415-440. doi: 10.2113/gsecongeo.102.3.415
Blundy J D, Holland T J B. 1990. Calcic amphibole equilibria and a new amphibole-plagioclase geothermometer[J]. Contributions to Mineralogy and Petrology, 104:208-224. doi: 10.1007/BF00306444
Deer W A, Howie R A, Iussman J. 1962. Rock-forming Minerals:Sheet Silicates[M]. London:Longman, 1-270.
Du Yulong, Fang Weixuan. 2017. Discussion on metallogenic belt and strategic selection direction in the Bolivian section of Andes[C]//Proceedings of the 8th National Conference on Mineralization Theory and Prospecting Methods. Acta Mineralogica Sinica, 37(S): 876-877.
Fang Weixuan. 2017a. Mesozoic-Cenozoic basin-mountain-original mosaic structure area and the continental dynamic metallogenic system in Taxi[C]//Proceedings of the China Earth Science Joint Academic Annual Conference, 104.
Fang Weixuan, Jia Runxing, Wang Lei. 2017b. Types of basin fluids, mechanism of discolored alterations and metal mneralizations of Glutenite-type Cu-Pb-Zu-U deposits in intercontinental redbed basin of the western Tarim basin[J]. Journal of Earth Sciences and Environment, 39(5):585-619 (in Chinese with English abstract).
Fang Weixuan, Liu Yulong, Zhang Shoulin, Guo Maohua. 2017. Three types of continental geodyhnamics and metallogenic models for IOCG (Iron-Oxigen Copper Gold Deposit) from the global view[J]. Journal of northwest University (Natural Science Edition), 39(3):404-413 (in Chinese with English abstract).
Fang Weixuan, Wang Lei, Jia Runxing. 2018. Mosaic Tectonics of Mesozoic to Cenozoic Basin-mountain-plateau in the Western Tarim Basin, China:Glutenite-type Cu-Pb-Zn-celesite-U-coal Metallogenic System[J]. Journal of Earth Sciences and Environment, 40(6):663-705. http://d.old.wanfangdata.com.cn/Periodical/xagcxyxb201806001
Fontboté L. 1990. Stratabound Ore Deposits in the Andes: A review and a Classification According to their Geotectonic Setting[M]//Fonbote L, Amstutz G C, Cardozo M(ed.). Stratabound ore Deposits in the Andes. Berlin: Special Publication No.8 of the Society for Geology Applied to Mineral Deposits: 79-110.
Foster M D. 1960. Interpretation of the Composition of Trioctahedral Micas[R]. New York: US Government Printing Office, 354B: 1-49.
Frey F A, Roden M F. 1987. The mantle source for the Hawaiian islands: Constrains from the lavas and ultramafic inclusions[C]//Menzies M A, Hawkes Worth C J (ed.). Mantle Metasomatism.Academic Press, 423-464.
Friedrich Lucassen, Gerhard Franz, Rolf L, Romer, Frank Schultz, Peter Dulski, Klaus Wemmeret. 2007. Pre-Cenozoic intra-plate magmatism along the Central Andes (17-34°S):Composition of the mantle at an active margin[J]. Science Direct, 99:312-338. http://adsabs.harvard.edu/abs/2007Litho..99..312L
Green D H. 1971. Composition of basaltic magmas as indicators of conditions of origin:Application to oceanic volcanism[J]. Philosophical Transactions of the Royal Society of London, 268:707-725. doi: 10.1098/rsta.1971.0022
Holland T J B, Blundy J D. 1994. Non-ideal interactions in calcic amphiboles and their bearing on amphibole-plagioclase thermometry[J]. Contributions to Mineralogy and Petrology, 116:433-447. doi: 10.1007/BF00310910
Johnson M C, Rutherford M J. 1989. Experimental calibration of an aluminum-in-hornblende geobarometer with application to Long Valley caldera (California) volcanic rocks[J].Geology, 17:837-841. doi: 10.1130/0091-7613(1989)017<0837:ECOTAI>2.3.CO;2
Klohn E, Holmgren C, Ruge H. 1990. El Soldado, a Stratabound Copper Deposit Associated with Alkaline Volcanism in the Central Chilean Coastal Range[C]//Fonbote L, Amstutz G C, Cardozo M (eds.). Stratabound ore Deposits in the Andes. Berlin: Special Publication No.8 of the Society for Geology Applied to Mineral Deposits: 435-448.
Le Maitre R W. 2005. A Classification of Igneous Rocks and Glossary of Terms (2nd Edition)[C]. England: Cambridge University Press, 1-256.
Leake B E, Woolley A R, Aros C E S. 1997. Nomenclature of amphiboles:Report of the subcommittee on amphiboles of the international mineralogical association commission on new minerals and mineral names[J]. Canadian Mineralogist, 35(1):219-246. http://cn.bing.com/academic/profile?id=d41b75b3e103541444f7cc7ed8316df9&encoded=0&v=paper_preview&mkt=zh-cn
Li Janxu, Zheng Houyi, Gao Haiou. 2011. Geological characteristics and ore marks for prospecting of Los Quilos copper deposit in Chile[J]. Contributions to Geology and Mineral Resources Research, 26(1):85-89, 118 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzzklc201101015
Li Zeqin, Wang Jiangzhen, Liu Jiajun, Li Chaoyang, Du Andao, Liu Ping, Ye Lin. 2003. Re-Os dating of molybdenite from Lala FeOxide-Cu-Au-Mo-REE deposit, southwest China:Implaications for ore genesis[J]. Contributions to Geology and Mineral Resources Research, 8(1):39-42 (in Chinese with English abstract).
Lin Wenwei, Pang Lijun. 1994. The estimation of Fe3+ and Fe2+ contents in amphibole and biotite from EMPA data[J]. Journal of Changchun University of Earth Sciences, 24(2):155-162(in Chinese with English abstract). https://www.researchgate.net/publication/255200343_Fe3_and_Fe2_partitioning_among_silicates_in_metapelites_A_synchrotron_micro-XANES_study
Ma Jing, Zeng Pusheng, Gou Ruitao Wang Jujie, Dai Yanjuan. 2015.Genesis and metallogenesis of alkaline complexes in China mainland[J]. Geology and Exploration, 51(3):466-477(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dzykt201503007
McBride S L, Robertson R C R, Clark A M, Farrar E. 1983. Magmatic and metallogenetic episodes in the northern tin belt, Cordillera oriental, Bolivia[J]. Geologische Rundschau, 72:685-713. doi: 10.1007/BF01822089
Meng Ziyue, Zhu Feilin, Zhang Kailiang. 2016. The key to research the magmatic rocks:Hornblende-plagioclase geothermobarometer[J]. Guangdong Trace Elements Science, 23(1):38-41(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-GWYS201601007.htm
Middlemost E A K. 1985. Magmas and Magmatic Rocks[M]. London:Longman Press, 1-266.
Peccerillo R, Taylor S R. 1976. Geochemistry of eocene calc-alkaline volcanic rocks from the Kastamonu area, northern Turkey[J]. Contrib. Mineral. Petrol., 58:63-81. doi: 10.1007/BF00384745
Ramiro S S. 2000. Compendio de Geologia de Bolivia[J]. Revista Tecnia de Yacimientos Petroliferos Fiscales Bolivia, 18(1/2):1-127.
Rauselicolom J A, Wiewiora A, Matesanz E. 1991. Relationship between composition and d001 for chlorite[J]. Am. Mineral., 76(7):1373-1379.
Richard H, Sillitoe. 2003. Iron oxide-copper-gold deposits:An Andean view[J]. Mineralium Deposita, 38:787-812. doi: 10.1007/s00126-003-0379-7
Sato T. 1984. Manto type copper deposits in Chile:A review[J]. Bull.Geol. Surv. Jpn., 35(11):565-582. http://d.old.wanfangdata.com.cn/NSTLQK/10.1080-00206819709465257/
Schmidt M W.1992. Amphibole composition in tonalite as a function of pressure:An experimental calibration of the Al-in-hornblende barometer[J]. Contributions to Mineralogy and Petrology, 110:304-310. doi: 10.1007/BF00310745
Sillitoe R H. 1992. Gold and copper metallogeny of the central Andes:Past, present and future exploration objectives[J]. Economic Geology, 87:2205-2216. http://cn.bing.com/academic/profile?id=6979dbca06f9834afc0762c58c330dc3&encoded=0&v=paper_preview&mkt=zh-cn
Sun S S, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalt: Implications for mantle composition and processes[C]//Saunders A D, Norry M J, (eds.). Magmatism in the Ocean Basins. London: Geological Society Special Publications, 42: 313-345.
Tawackoli S, Jacobshagen V, Wemmer K, Andriessen P M. 1996. The Eastern Cordillera of southern Bolivia: A key region to the Andean back-Arc uplift and deformation history[C]. Saint-Malo, France: Extended Abstracts, Ⅲ International Symposium on Andean Geodynamics, 505-508.
Viramonte J G, Kay S M, Becchio R, Escaloya M, Novitski I. 1999.Cretaceous rift related magmatism in central-western South America[J]. Journal of South American Earth Sciences, 12:109-121. doi: 10.1016/S0895-9811(99)00009-7
Walshe J L. 1986. A six-component chlorite:Solid solution model and the condition of chlorite formation in hydrothermal and geothermal systems[J]. Economic Geology, 81:681-705. doi: 10.2113/gsecongeo.81.3.681
Wang F D, Zhu X Q, Wang Z G. 2011. Madouzi-Type (nodular)sedimentary copper deposit associated with the Emeishan basalt[J]. Sci. China Earth Sci., 54:1880-1891. doi: 10.1007/s11430-011-4331-x
Wang Juli, Guo Jian, Liu Zhonkui, Zhang Yunfeng, Zhang Rong, Wang Weitao, Feng Juanping, Jing Jifeng, Li Ling jun. 2006.Sedimentary copper deposit in Emeishan basalts northeastern Yunnan province[J]. Mineral Deposits, (6):663-671. (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kcdz200606003
Wang Liben. 2001. Amphibole nomenclature-IMA-CNMMN[J]. Acta Petrologica et Mineralogica, 20(1):84-100 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ021353451/
Williams P J. 1999. Fe-oxide-Cu-Au Deposits of the Olympic Dam/Ernest Henry-type[M]. New Developments in the Understanding of Some Major ore Types and Environments, with Implications for Exploration.In:Proc Prospectors and Developers Association of Canada Short Course, Toronto, 2-43.
Wilson M. 1989. Igneous Petrogenesis[M]. London:Unwin Hyman Press, 1-466.
Wilson N, Zentilli M, Reynolds P H, Boric R. 2003a. Age of mineralization by basinal fluids at the El Soldado manto-type copper deposit, Chile:40Ar/39Ar geochronology of K-feldspar[J]. Chem. Geol., 197 (1/4):161-176. doi: 10.1016/S0009-2541(02)00350-9
Wilson, N S F, Zentilli M, Spiro B. 2003b. A sulfur, carbon, oxygen, and strontiumisotope study of the volcanic-hosted El Soldado Manto-Type copper deposit, Chile:The essential role of bacteria and petroleum[J]. Econ. Geol., 98 (1):163-174. doi: 10.2113/gsecongeo.98.1.163
Xu Zhiqin, Zhao Zhonbao, Peng Miao, Ma Xuxuan, Li Huaqi, Zhao Junmeng. 2016. Review of "orogenic plateau"[J]. Acta Petrologica Sinica, 32(12):3557-3571 (in Chinese with English abstract). http://www.researchgate.net/publication/313309924_Review_of_orogenic_plateau
Zhu Bingquan, Chang Xiangyang, Hu Yaoguo, Zhang Zhengwei. 2002.Discovery of Yanhe copper deposit in the Yunnan-Guizhou border area and a new train of thought for copper prospecting in the large igneous province of Emeishan flood basalts[J]. Advances in Earth Science, 17(6):912-917 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkxjz200206017
杜玉龙, 方维萱. 2017.安第斯玻利维亚段金属成矿带及战略选区方向探讨[C]//第八届全国成矿理论与找矿方法学术讨论会会议论文集.矿物学报, 37(增刊): 876-877.
方维萱, 贾润幸, 王磊. 2017.塔西陆内红层盆地中盆地流体类型、砂砾岩型铜铅锌-铀矿床的大规模褪色化围岩蚀变与金属成矿[J].地球科学与环境学报, 39(5):585-619. doi: 10.3969/j.issn.1672-6561.2017.05.001
方维萱, 柳玉龙, 张守林, 郭茂华. 2009.全球铁氧化物铜金型(IOCG)矿床的3类大陆动力学背景与成矿模式[J].西北大学学报(自然科学版), 39(3):404-413. http://d.old.wanfangdata.com.cn/Periodical/xbdxxb200903008
方维萱, 王磊, 贾润幸. 2018.塔西地区中-新生代盆-山-原镶嵌构造区:砂砾岩型铜铅锌-天青石-铀-煤成矿系统[J].地球科学与环境学报, 40(6):663-705. doi: 10.3969/j.issn.1672-6561.2018.06.001
李建旭, 郑厚义, 高海鸥. 2011.智利劳斯奎洛斯(Los Quilos)铜矿床地质特征及找矿标志[J].地质找矿论丛, 26(1):85-89, 118. http://d.old.wanfangdata.com.cn/Periodical/dzzklc201101015
李泽琴, 王奖臻, 刘家军, 李朝阳, 杜安道, 刘玉平, 叶琳. 2003.拉拉铁氧化物-铜-金-钼-稀土矿床Re-Os同位素年龄及其地质意义[J].地质找矿论丛, 18(1):39-42. doi: 10.3969/j.issn.1001-1412.2003.01.007
林文蔚, 彭丽君. 1994.由电子探针分析数据估算角闪石、黑云母中的Fe3+, Fe2+[J].长春地质学院学报, 24(2):155-162. http://www.cnki.com.cn/Article/CJFDTotal-CCDZ402.004.htm
麻菁, 曾普胜, 苟瑞涛, 王聚杰, 代艳娟. 2015.中国碱性杂岩的成因及其成矿作用[J].地质与勘探, 51(3):466-477. http://d.old.wanfangdata.com.cn/Periodical/dzykt201503007
孟子岳, 朱飞霖, 张凯亮. 2016.研究岩浆岩的金钥匙:角闪石-斜长石矿物温压计[J].广东微量元素科学, 23(1):38-41. http://d.old.wanfangdata.com.cn/Periodical/gdwlyskx201601007
王富东, 朱笑青, 王中刚. 2011.与峨眉山玄武岩有关的沉积型铜矿——"马豆子式"铜矿的成因研究[J].中国科学:地球科学, 41(12):1851-1861. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cd201112013
王居里, 郭健, 刘忠奎, 张云峰, 张蓉, 王伟涛, 冯士信, 冯娟萍, 井继峰, 李领军. 2006.滇东北峨眉山玄武岩区的沉积型铜矿床[J].矿床地质, (6):663-671. doi: 10.3969/j.issn.0258-7106.2006.06.003
王立本. 2001.角闪石命名法——国际矿物学协会新矿物及矿物命名委员会角闪石专业委员会的报告[R].岩石矿物学杂志, 20(1): 84-100.
许志琴, 赵中宝, 彭淼, 马绪宣, 李化启, 赵俊猛. 2016.论"造山的高原"[J].岩石学报, 32(12):3557-3571. http://www.cnki.com.cn/Article/CJFDTotal-YSXB201612001.htm
朱炳泉, 常向阳, 胡耀国, 张正伟. 2002.滇-黔边界鲁甸沿河铜矿床的发现与峨眉山大火成岩省找矿新思路[J].地球科学进展, 17(6):912-917. doi: 10.3321/j.issn:1001-8166.2002.06.017