中国地质调查局 中国地质科学院主办
科学出版社出版

张家口朱家洼钼矿床成矿流体特征及对成因指示

李随民, 李继超, 李樋, 全素桃, 胡志强, 李玉红, 王京, 陈树清. 2020. 张家口朱家洼钼矿床成矿流体特征及对成因指示[J]. 中国地质, 47(2): 426-439. doi: 10.12029/gc20200211
引用本文: 李随民, 李继超, 李樋, 全素桃, 胡志强, 李玉红, 王京, 陈树清. 2020. 张家口朱家洼钼矿床成矿流体特征及对成因指示[J]. 中国地质, 47(2): 426-439. doi: 10.12029/gc20200211
LI Suimin, LI Jichao, LI Tong, QUAN Sutao, HU Zhiqiang, LI Yuhong, WANG Jing, CHEN Shuqing. 2020. Characteristics and genetic indication significance of fluid inclusions in the Zhujiawa molybdenum deposit[J]. Geology in China, 47(2): 426-439. doi: 10.12029/gc20200211
Citation: LI Suimin, LI Jichao, LI Tong, QUAN Sutao, HU Zhiqiang, LI Yuhong, WANG Jing, CHEN Shuqing. 2020. Characteristics and genetic indication significance of fluid inclusions in the Zhujiawa molybdenum deposit[J]. Geology in China, 47(2): 426-439. doi: 10.12029/gc20200211

张家口朱家洼钼矿床成矿流体特征及对成因指示

  • 基金项目:
    河北省国土资源厅项目(2013045650)和河北省地矿局项目(454-0601-YBN-QEXZ)联合资助
详细信息
    作者简介: 李随民, 男, 1971年生, 博士, 教授, 主要从事矿床学方面的教学和研究工作; E-mail:smli71@163.com
  • 中图分类号: P618.65

Characteristics and genetic indication significance of fluid inclusions in the Zhujiawa molybdenum deposit

  • Fund Project: Supported by Department of Land and Resources of Hebei Province (No. 2013045650) and Bureau of Geology and Mineral Exploration of Hebei Province (No. 454-0601-YBN-QEXZ)
More Information
    Author Bio: LI Suimin, male, born in 1971, professor, mainly engages in the study of geochemistry of deposits; E−mail:smli71@163.com .
  • 张家口朱家洼钼矿床是近年来华北地台北缘中段继内蒙古曹四夭特大型钼矿床之后发现的又一个规模可达大型的钼矿床。钼矿床主要呈半隐伏—隐伏状围绕分布于骆驼山岩体周边。本次对矿区2个钻孔中采集的11件富含辉钼矿的石英矿物,进行了包裹体岩相学、显微测温、包裹体气、液相成分及氢氧分析。结果显示:该矿床流体包裹体可分为4种类型:富液相包裹体、富气相包裹体、含子晶包裹体和富CO2三相包裹体。其中,富CO2三相包裹体分布较少,其余3种类型包裹体常见。含子矿物的包裹体均一温度、盐度分别在400℃和45% NaCl eqv左右;富液相包裹体均一温度平均值为277.43℃,盐度20% NaCl eqv左右;富气包裹体和富CO2包裹体均一温度分别为380℃和30℃;盐度较低,分别为6% NaCl eqv和2.04% NaCl eqv左右。气液相成分分析显示流体体系成分以H2O、Cl-、F-、Na+、K+离子为主,Ca2+,SO42-含量较低,特征离子比值暗示流体来源于岩浆流体。成矿流体总体上属于H2O-NaCl体系。氢氧同位素组成显示,成矿流体主要来源于岩浆水。沸腾作用是辉钼矿沉淀的主要机制。

  • 加载中
  • 图 1  区域地质简图

    Figure 1. 

    图 2  矿床地质简图

    Figure 2. 

    图 3  朱家洼矿区2号勘探线剖面图(据河北省地矿局第三地质队资料改编)

    Figure 3. 

    图 4  朱家洼钼矿床典型矿石组构特征

    Figure 4. 

    图 5  朱家洼钼矿床流体包裹体显微照片

    Figure 5. 

    图 6  朱家洼钼矿床流体包裹体均一温度、盐度直方图

    Figure 6. 

    图 7  朱家洼钼矿床δ18OH2O-δD体系图(底图据Taylor, 1974)

    Figure 7. 

    图 8  朱家洼钼矿床流体包裹体盐度-均一温度关系图(NaCl饱和曲线据Bodnar, 1983)

    Figure 8. 

    表 1  朱家洼钼矿床石英流体包裹体气相成分

    Table 1.  Gas components of the fluid inclusions in quartz from the Zhujiawa Mo deposit

    下载: 导出CSV

    表 2  朱家洼钼矿床石英流体包裹体液相成分

    Table 2.  Aqueous components of the fluid inclusions in quartz from the Zhujiawa Mo deposit

    下载: 导出CSV

    表 3  朱家洼钼矿床石英单矿物中氢、氧稳定同位素分析结果

    Table 3.  δD-δ18O isotopic compositions of fluid inclusions in quartz from the Zhujiawa Mo deposit

    下载: 导出CSV
  • Beane R E, Bodnar R J. 1995. Hydrothermal fluids and hydrothermal alteration in porphyry copper deposits[C]//Pierce F W and Bohm J G(eds.). Porphyry Ccopper Deposits of the American Cordillera.Arizona Geological Society Digest 20, Tucson, AZ: 83-93.

    Bernard A, Symonds R. B, Rose W I. 1990. Volatile transport and deposition of Mo, W and Re in high temperature agmatic fluids[J]. Applied Geochemistry, 5:317-326. doi: 10.1016/0883-2927(90)90007-R

    Bodnar R J. 1983. A method of calculating fluid inclusion volumes based on vapor bubble diameters and PVTX properties of inclusion fluids[J]. Econ. Geol., 78:535-542. doi: 10.2113/gsecongeo.78.3.535

    Bodnar R J. 1993. Reviced equation and table for determining the freezing point depression of H2O-NaCl solutions[J]. Geochimica et Cosmochimica Acta, 57:683-684. doi: 10.1016/0016-7037(93)90378-A

    Chen Yanjing, Li Nuo. 2009. Nature of ore fluids of intracontinental intrusion related hypothermal deposits and its difference from those in island arcs[J]. Acta Petrologica Sinica, 25 (10):2477-2508 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200910016

    Chen Y J, Ni P, Fan H R, Pirajno F, Lai Y, Su W C, Zhang H. 2007.Diagnostic fluid inclusions of different types hydrothermal gold deposit[J]. Acta Petrologica Sinica, 23(9):2085-2108 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YSXB200709009.htm

    Clayton R N, O'Neil J R, Mayeda T K. 1972. Oxygen isotope exchange between quartz and water[J]. Journal of Geophysical Research, 77:3057-3067. doi: 10.1029/JB077i017p03057

    Collins P L F. 1979. Gas hydrates in CO2-bearing fluid inclusions and the use of freezing data for estimation of salinity[J]. Econ.Geol., 74:1435-1444. doi: 10.2113/gsecongeo.74.6.1435

    Cox S F, Knackstedt M A, Braun J. 2001. Principles of structural control on permeability and fluid hydrothermal system[J]. SEG Reviews, 14:1-24.

    Fan H R, Xie Y H, Zhai M G, Jin C W. 2003. A three stage fluid flow model for Xiaoqinling lode gold metallogenesis in the He'nan and Shaanxi Provinces, central China[J].Acta Petrologica Sinica, 19(2):260-266(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200302007

    Hagemann S G, Luders V. 2003. P-T-X conditions of hydrothermal fluid and precipitation mechanism of stibnite-gold mineralization at the Wiluna lode-gold deposits, Western Australia:Conventional and infrared microthermometric constraints[J]. Mineralium Deposita, 38:936-952. doi: 10.1007/s00126-003-0351-6

    Hall D L, Sterner S M, Bodnar R J.988. Freezing point depression of NaCl-KCl-H2O solutions[J]. Econ.Geol., 83:197-202. doi: 10.2113/gsecongeo.83.1.197

    Heinrich C A. 2007. Fluid-fluid interactions in magmatic-hydrothermal ore formation[J]. Reviews in Mineralogy and Geochemistry, 65 (1):363-387. doi: 10.2138/rmg.2007.65.11

    Klemm L M, Pettlke T, Heinrich C A, Campos E. 2007. Hydrothermal evolution of the E1 Teniente deposit, Chile:Porphyry Cu-Mo ore deposition from low-salinity magmatic fluids[J]. Economic Geology, 102(6):1021-1045. doi: 10.2113/gsecongeo.102.6.1021

    Landtwing M R, Pettke T, Halter W E, Heinrich C A, Redmond P B, Einaudi M T, Kunze K. 2005. Copper deposition during quartz dissolution by cooling magmatic-hydrothermal fluids:The Bingham porphyry[J]. Earth and Planetary Science Letters, 235(1/2):229-243. http://www.sciencedirect.com/science/article/pii/S0012821X05002153

    Lei G W, Yang X S. 2012. Important Non-ferrous Metal Ore Deposit in Inner Mongolia[M]. Beijing:Science Press, 1-378.

    Li Hengyou. 2012. Analysis on geological characteristics and prospecting indicators of Dasuji molybdenum ore, Inner Mongolia[J]. Mineral Exploration, 3(3):310-318 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ytgcj201203009

    Li N, Chen Y J, Ni Z Y, Hu H Z. 2009. Characteirsites of ore-forming fluids of the Yuchiling Porphyry Mo depoist, Songxian county, Henan Province, and its geological significance[J]. Acta Petrologica Sinica, 25(10):2509-2522 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200910017.htm

    Li Xiangzi, Ban Yihong, Quan Zhixin, Weng Jichang, Wang Weidong. 2012. Discuss on the molybdenum deposit geochemical characteristics and metallogenic model in Xinghe County, Inner Mongolia[J]. Geological Survey and Research, 35(1):39-46 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-QHWJ201201006.htm

    Liu Jun, Wu Guang, Wang Feng, Luo Dafeng, Hu Yanqing, Li Tiegang. 2013. Fluid inclusions and stable isotope characteristics of the Chalukou porphyry Mo deposit in Heilongjiang Province[J]. Geology in China. 40(4):1231-1251 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi201304021

    Liu Yonghui, Ma Run, Chen Zhiyong, Gan Yunyan, He Fei, Li Xiangzi, Quan Zhixin, Zhao Qingxu, A Muguleng. 2014.Geological characteristics and prospecting indicator of Caosiyao Mo deposit, Inner Mongolia[J]. Global Geology, 33(2):426-432 (in Chinese with English abstract).

    Lu H Z, Fan H R, Ni P, Ou G X, Shen K, Zhang W H. 2004. Fluid Inclusion[M]. Beijing:Science Press, 1-450(in Chinese).

    Lu H Z. 2000. High temperature, salinity and high concentrated ore metal magmatic fluids:An example from Grasberg Cu-Au porphyry deposit[J]. Acta Petrologica Sinica, 26 (4):465-472 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98200004001

    Men Lanjing, Zhang Xinwen, Sun Jinggui, Zhao Junkang, Wang Haojun, Liu Chengxian. 2018. Metallogenic mechanism of the Xiaoxinancha Au-rich Cu deposit in Yanbian area, Jilin Province:Constrains from fluid inclusions and isotope geochemistry[J]. Geology in China, 45(3):544-563(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-DIZI201803010.htm

    Miao Guang, Dong Guochen, Chen Zhou, Zhao Hongrui, Ren Long, Quan Rui, Xuyiming, Liu Xinyao. 2016. Origin of the granite porphyry and their geological significances in the Chaijiagou molybdenum deposit, northern Hebei[J].China Mining Magazine, 25(Suppl.):306-313 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgky2016z1076

    Nie Fengjun, Li Xiangzi, Li Chao, Zhao Yunan, Liu Yifei. 2013. Re-Os isotopic age dating of the molybdenite separated from the Caosiyao giant molybdenum deposit, Xinghe County, Inner Mongolia, and its geological significances[J]. Geological Review, 59(1):175-181(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzlp201301019

    Nie Fengjun, Liu Yifei, Zhao Yu'an, Cao Yi. 2012. Discovery of Dasuji and Caosiyao large-size Mo deposits in central Inner Mongolia and its geological significances[J]. Mineral Deposits, 31(4):930-940(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCDZ201204021.htm

    Roedder E, Bodnar R J. 1980.Geologic pressure determinations from fluid inclusion studies[J]. Annual Review of Earth and Planetary Sciences, 8:263-301. doi: 10.1146/annurev.ea.08.050180.001403

    Rui Z Y, Huang C K, Qi G M, Xu J, Zhang H T. 1984. Porphyry Copper (Molybdenum) Deposits of China[M]. Beijing:Geological Publishing House, 1-350(in Chinese).

    Selby D, Nesbitt B E, Muehlenbachs K, Prochaska W. 2000.Hydrothermal alteration and fluid chemistry of the Endako porphyry molybdenum deposit, British Columbia[J]. Econ. Geol., 95:183-202. doi: 10.2113/gsecongeo.95.1.183

    Shao Jielian. 1990. Prospecting Mineralogy of Gold Deposit[M]. Beijing:China University of Geosciences Press.

    Shepherd T J, Rakin A, Alderton D H M.1985. A practical Guide to Fluid Inclusion Studies[M]. New York:Blackie Pub. House, 1-239.

    Shepherd T J, Rankin A H, Alderton D H. 1985. A Practical Guide to Fluid Inclusion Studies[M]. Blackie:Chapman & Hall, 1-239.

    Shmulovich K, Bruce Y, Galina G. 1995. Fluids in the Crust:Equilibrium and Transport Properties[M]. Netherlands:Springer.

    Song Ruixian, Wei Minghui, He Yuqing, Chen Shuqing. 2013.Geology and Mineral Resources of Zhangjiakou Area[M]. Beijing:Geological Publishing House(in Chinese).

    Sun Jinlong, Ren Yunsheng, Yang Yushan, Wang Qiang, Li Jianbo, Zhang Jinjiang, Nie Weidong, Wang Aichen, Qu Wenjun. 2016.Re-Os isotopic dating of molybdenite from Taipingcun Mo deposit in eastern Hebei and its geological significance[J].Global Geology, 35(3):738-751 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sjdz201603014

    Ulrich T, Mavrogenes J. 2008. An experimental study of the solubility of molybdenum in H2O and KCl-H2O solutions from 500° C to 800° C, and 150 to 300 MPa[J]. Geochimica et Cosmochimica Acta, 72:2316-2330. doi: 10.1016/j.gca.2008.02.014

    Wang Guorui, Wu Guang, Wu Hao, Liu Jun, Li Xiangzi, Xu Liquan, Zhang Tong, Quan Zhixin. 2014. Fluid inclusion and hydrogen-oxygen isotope study of Caosiyao superlarge porphyry molybdenum deposit in Xinghe County, Central Inner Mongolia.[J]. Mineral Deposits, 336(6):1213-1232 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kcdz201406005

    Wood S A, Crerar D A, Borcsik M P. 1987. Solubility of the assemblage pyrite-pyrrhotite-magnetite-sphalerite-galena-gold-stibnite-bismuthinite-argen-tite-molybdenite in H2O-NaCl-CO2 solutions from 200 degrees to 350 degrees C degrees[J]. Econ.Geol., 82:1864-1887. doi: 10.2113/gsecongeo.82.7.1864

    Wu G, Chen Y C, Li Z Y, Liu J, Yang X S, Qiao C J. 2014.Geochronology and fluid inclusion study of the Yinjiagou porphyry-skarn Mo-Cu-pyrite deposit in the East Qinling orogenic belt, China[J]. Journal of Asian Earth Sciences, 79:585-607. doi: 10.1016/j.jseaes.2013.08.032

    Wu Guang, Chen Yuchuan, Li Zongyan, Liu Jun, Yang Xinshen, Qiao Cuijie. 2013. Fluid inclusion and isotopic characteristics of the Yinjiagou pyrite-polymetallic deposit, Western Henan Province, China[J]. Acta Geologica Sinica, 87(3):353-374 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb201303006

    Xiao Rongge, Zhang Zongheng, Chen Huiquan, Zhang Hancheng. 2001. Types of Geological Fluids and Ore-Forming Fluid[J]. Earth Science Frontiers, 8(4):245-251 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/OA000005294

    Xiao Rongge, Yuan Zhenlei, Liu Jingdang, Fei Hongcai, Ge Zhenhua, Zhang Mingyan. 2004. The formation and evolution of regional ore-forming fluid[J]. Geoscience Frontiers, 1(2):461-469(in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical/dxqy200402016

    Xin Cunlin, Xu Mingru, An Guobao, Hu Juying, Yang Tao, Dong Kai. 2019. Deposit geology, fluid inclusion characteristics and ore genesis of the Matoushan Cu-Au deposit in Southwest Sichuan Province[J]. Geology in China, 46(6):1556-1572(in Chinese with English abstract).

    Xu J H, Xie Y L, Zhang J H, Jin Y, Liu Y T. 2006. Sub-volcanic epithermal mineralization of Jiulongwan silver-polymetal deposit, eastern Daqingshan, Inner Mongolia, China:Evidence from fluid inclusions[J]. Acta Petrologica Sinica, 22 (6):1745-1743 (in Chinese with English abstract). http://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGKD200605002131.htm

    Zhang D H. 1997. Some new advances in ore-forming fluid geochemistry on boiling and mixing of fluids during the process of hydrothermal deposits[J]. Advances in Earth Sciences, 12(6):546-552 (in Chinese with English abstract).

    Zhang Jiyuan. 2019. Genesis analysis of Chaijiagou molybdenum deposit in Pingquan city, Hebei Province[J]. Southern Metals, 230:10-12 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/nfgt201905003

    Zhang Wenbin, Cai Minghai, Li Qiang, Xue Yanping, Liu Xiang, Zheng Hao. 2017. Fluid inclusion sudy and genesis of the Youmapo W-Mo deposit in Guangxi Province[J]. Northwestern Geology, 50(2):178-190(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XBDI201702020.htm

    Zhang Y G, Frantz J D.1987. Determination of homogenization temperatures and densities of supercritical fluids in the system NaCl-KCl-CaCl2-H2O using synthetic fluid inclusions[J]. Chemical Geology, 64:335-350. doi: 10.1016/0009-2541(87)90012-X

    Zhang Tong, Chen Zhiyong, Xu Liquan, Chen Zhenghui. 2009. The Re-Os isotopic dating of molybdenite from the Dasuji Molybdenum Deposit in Zhuozi County of Inner Mongolia and its geological significance[J]. Rock and Mineral Analysis, 28(3):279-282(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YKCS200903025.htm

    Zhang Wenbin, Cai Minghai, Li Qiang, Xue Yanping, Liu Xiang, Zheng Hao. 2017. Fluid Inclusion Study and genesis of the Youmapo W-Mo deposit in Guangxi Province[J]. Northwestern Geology, 50(2):178-190. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xbdz201702019

    Zhu Y F, Zeng Y S, Jiang N. 2001. Geochemistry of the ore-forming fluids in gold deposits from the Taihang Mountains, northern China[J]. International Geology Review, 43:457-473. doi: 10.1080/00206810109465026

    陈衍景, 李诺. 2009.大陆内部浆控高温热液矿床成矿流体性质及其与岛弧区同类矿床的差异[J].岩石学报, 25(10):2477-2508. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200910016

    陈衍景, 倪培, 范宏瑞, Pirajno F, 赖勇, 苏文超, 张辉. 2007.不同类型热液金矿系统的流体包裹体特征[J].岩石学报, 23(9):2085-2108. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200709009

    范宏瑞, 谢奕汉, 翟明国, 金成伟. 2003.豫陕小秦岭脉状金矿床三期流体运移成矿作用[J].岩石学报, 19(2):260-266. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200302007

    雷国伟, 杨旭生. 2012.内蒙古有色金属重要矿床[M].北京:科学出版社, 1-378.

    李恒友. 2012.内蒙古大苏计钼矿地质特征及找矿标志[J].矿产勘查.3(3):310-318. http://d.old.wanfangdata.com.cn/Periodical/ytgcj201203009

    李诺, 陈衍景, 倪智勇, 胡海珠. 2009.河南省嵩县鱼池岭斑岩钼矿床成矿流体特征及其地质意义[J].岩石学报, 25 (10):2509-2522. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200910017

    李香资, 班宜红, 权知心, 翁纪昌, 王卫东. 2012.内蒙古兴和县曹四夭钼矿床地球化学特征及成矿模型探讨[J].地质调查与研究, 35(1):39-46. http://d.old.wanfangdata.com.cn/Periodical/qhwjyjjz201201007

    刘斌, 段光贤. 1987. NaCl-H2O溶液包裹体的密度式和等容式及其应用[J].矿物学报, 7(4):345-352.

    刘斌. 2001.中高盐度NaCl-H2O包裹体的密度式和等容式及其应用[J].地质论评, 47(6):617-622. http://med.wanfangdata.com.cn/Paper/Detail/PeriodicalPaper_wjyx200604019

    刘军, 武广, 王峰, 罗大峰, 胡妍青, 李铁刚. 2013.黑龙江省岔路口斑岩钼矿床流体包裹体和稳定同位素特征[J].中国地质, 40(4):1231-1251. http://geochina.cgs.gov.cn/geochina/ch/reader/view_abstract.aspx?file_no=20130421&flag=1

    刘永慧, 马润, 陈志勇, 甘云燕, 贺斐, 李香资, 权知心, 赵清旭, 阿木古冷. 2014.内蒙古曹四夭钼矿床地质特征及找矿标志[J].世界地质, 33(2):426-432. http://d.old.wanfangdata.com.cn/Periodical/sjdz201402019

    卢焕章, 范宏瑞, 倪培, 欧光习, 沈昆, 张文淮. 2004.流体包裹体[M].北京:科学出版社, 1-450.

    卢焕章. 2000.高盐度、高温和高成矿金属的岩浆成矿流体——以格拉斯伯格Cu-Au矿为例[J].岩石学报, 16(4):465-472. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200004001

    门兰静, 张馨文, 孙景贵, 赵俊康, 王好均, 刘城先. 2018.延边地区小西南岔富金铜矿床的成矿机理:矿物流体包裹体和同位素的制约[J].中国地质, 45(3):544-563. http://geochina.cgs.gov.cn/geochina/ch/reader/view_abstract.aspx?file_no=20180309&flag=1

    缪广, 董国臣, 陈卓, 赵红瑞, 任龙, 权瑞, 徐一鸣, 刘昕曜. 2016.冀北柴家沟钼矿花岗斑岩岩石成因研究及意义[J].中国矿业, 25(增刊1):306-313. http://d.old.wanfangdata.com.cn/Periodical/zgky2016z1076

    聂凤军, 李香资, 李超, 赵宇安, 刘翼飞. 2013.内蒙古兴和县曹四夭特大型钼矿床辉钼矿Re-Os同位素年龄及地质意义[J].地质论评, 59(1):175-181. http://d.old.wanfangdata.com.cn/Periodical/dzlp201301019

    聂凤军, 刘翼飞, 赵宇安, 曹毅. 2012.内蒙古大苏计和曹四夭大型钼矿床的发现及意义[J].矿床地质, 31(4):930-941. http://d.old.wanfangdata.com.cn/Periodical/kcdz201204020

    芮宗瑶, 黄崇轲, 齐国明, 徐钰, 张洪涛. 1984.中国斑岩铜(钼)矿床[M].北京:地质出版社, 1-350.

    邵洁莲. 1990.金矿找矿矿物学[M].北京:中国地质大学出版社.

    宋瑞先, 魏明辉, 何宇青, 陈树清. 2013.张家口地质矿产[M].北京:地质出版社, 1-554.

    孙金龙, 任云生, 杨玉山, 王强, 刘剑波, 张金江, 聂卫东, 王爱臣, 屈文俊. 2016.冀东太平村钼矿床辉钼矿Re-Os同位素测年及其地质意义[J].世界地质, 35(3):738-751.

    王国瑞, 武广, 吴昊, 刘军, 李香资, 许立权, 张彤, 权知心. 2014.内蒙古兴和县曹四夭超大型斑岩钼矿床流体包裹体和氢-氧同位素研究[J].矿床地质, 33(6):1213-1232. http://d.old.wanfangdata.com.cn/Periodical/kcdz201406005

    武广, 陈毓川, 李宗彦, 刘军, 杨鑫生, 乔翠杰. 2013.豫西银家沟硫铁多金属矿床流体包裹体和同位素特征[J].地质学报, 87(3):353-374. http://d.old.wanfangdata.com.cn/Periodical/dizhixb201303006

    肖荣阁, 原振雷, 刘敬党, 费红彩, 葛振华, 张明燕. 2004.区域成矿流体的形成与演化[J].地学前缘, 11(2):461-469. http://d.old.wanfangdata.com.cn/Periodical/dxqy200402016

    肖荣阁, 张宗恒, 陈卉泉, 张汉城. 2001.地质流体自然类型与成矿流体类型[J].地学前缘, 8(4):245-251. http://d.old.wanfangdata.com.cn/Periodical/dxqy200104002

    辛存林, 徐明儒, 安国堡, 胡菊英, 杨涛, 董凯. 2019.川西南马头山铜金矿床地质和流体包裹体特征及成因[J].中国地质, 46(6):1556-1572. http://geochina.cgs.gov.cn/geochina/ch/reader/view_abstract.aspx?file_no=20190620&flag=1

    徐九华, 谢玉玲, 张巨华, 金岩, 刘玉堂. 2006.大青山东段九龙湾银-多金属矿床的次生火山热液成因——流体包裹体证据[J].岩石学报, 22(6):1745-1743. http://d.wanfangdata.com.cn/Periodical/ysxb98200606030

    张德会. 1997.流体的沸腾和混合在热液成矿中的意义[J].地球科学进展, 12(6):546-552. http://d.old.wanfangdata.com.cn/NSTLQK/10.1109-MCG.2010.44/

    张骥远. 2019.河北省平泉市柴家沟钼矿矿床成因分析[J].南方金属, 230:10-12. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=nfgt201905003

    张彤, 陈志勇, 许立权, 陈郑辉. 2009.内蒙古卓资县大苏计钼矿辉钼矿铼-锇同位素定年及其地质意义[J].岩矿测试, 28(3):279-282. http://d.old.wanfangdata.com.cn/Periodical/ykcs200903017

    张文兵, 蔡明海, 李强, 薛彦萍, 刘翔, 郑浩. 2017.广西油麻坡钨钼矿床流体包裹体与成因探讨[J].西北地质, 50(2):178-190. http://d.old.wanfangdata.com.cn/Periodical/xbdz201702019

    张文兵, 蔡明海, 李强, 薛彦萍, 刘翔, 郑浩. 2017.广西油麻坡钨钼矿床流体包裹体与成因探讨[J].西北地质, 50(2):178-190. http://d.old.wanfangdata.com.cn/Periodical/xbdz201702019

  • 加载中

(8)

(3)

计量
  • 文章访问数:  2214
  • PDF下载数:  752
  • 施引文献:  0
出版历程
收稿日期:  2018-06-22
修回日期:  2018-09-17
刊出日期:  2020-04-25

目录