中国地质调查局 中国地质科学院主办
科学出版社出版

微量元素和Pb同位素对西藏雅鲁藏布构造带日喀则蛇绿岩形成环境的制约

佘宇伟, 朱祥坤, 何源, 马健雄, 李世珍, 孙剑, 高兆富, 史富强, 唐超. 2020. 微量元素和Pb同位素对西藏雅鲁藏布构造带日喀则蛇绿岩形成环境的制约[J]. 中国地质, 47(3): 664-677. doi: 10.12029/gc20200308
引用本文: 佘宇伟, 朱祥坤, 何源, 马健雄, 李世珍, 孙剑, 高兆富, 史富强, 唐超. 2020. 微量元素和Pb同位素对西藏雅鲁藏布构造带日喀则蛇绿岩形成环境的制约[J]. 中国地质, 47(3): 664-677. doi: 10.12029/gc20200308
SHE Yuwei, ZHU Xiangkun, HE Yuan, MA Jianxiong, LI Shizhen, SUN Jian, GAO Zhaofu, SHI Fuqiang, TANG Chao. 2020. Trace elements and Pb isotope of the mafic rocks from the Xigaze ophiolite of Yarlung Zangbo suture zone, southern Tibet: Constraints on the tectonic setting[J]. Geology in China, 47(3): 664-677. doi: 10.12029/gc20200308
Citation: SHE Yuwei, ZHU Xiangkun, HE Yuan, MA Jianxiong, LI Shizhen, SUN Jian, GAO Zhaofu, SHI Fuqiang, TANG Chao. 2020. Trace elements and Pb isotope of the mafic rocks from the Xigaze ophiolite of Yarlung Zangbo suture zone, southern Tibet: Constraints on the tectonic setting[J]. Geology in China, 47(3): 664-677. doi: 10.12029/gc20200308

微量元素和Pb同位素对西藏雅鲁藏布构造带日喀则蛇绿岩形成环境的制约

  • 基金项目:
    中国地质调查局项目(121201102000150069)和国家自然科学基金项目(41603022)联合资助
详细信息
    作者简介: 佘宇伟, 男, 1983年生, 博士后, 矿物学、岩石学、矿床学专业; E-mail:sheyuwei@cags.ac.cn
    通讯作者: 朱祥坤, 男, 1961年生, 研究员, 地球化学专业; E-mail:xiangkun@cags.ac.cn
  • 中图分类号: P588.12+5;P595

Trace elements and Pb isotope of the mafic rocks from the Xigaze ophiolite of Yarlung Zangbo suture zone, southern Tibet: Constraints on the tectonic setting

  • Fund Project: Supported by China Geological Survey Program (No. 121201102000150069) and National Natural Science Foundation of China (No. 41603022)
More Information
    Author Bio: SHE Yuwei, male, born in 1983, postdoctor researcher, majors in minerlogy, petrogoly and mineral deposit geology; E-mail:sheyuwei@cags.ac.cn .
    Corresponding author: ZHU Xiangkun, male, born in 1961, senior researcher, majors in geochemistry; E-mail:xiangkun@cags.ac.cn
  • 西藏南部雅鲁藏布构造带分布有一系列蛇绿岩体。人们对这些蛇绿岩体的形成环境仍然存在较大的争议。雅鲁藏布构造带中段日喀则蛇绿岩路曲和大竹曲岩体镁铁质岩石的微量元素和Pb同位素特征指示其母岩浆起源于亏损地幔源区。这些镁铁质岩石的La/Sm和Sm/Yb比值显示其岩浆产生于尖晶石二辉橄榄岩地幔经过大约10%部分熔融作用。综合岩相学和全岩主量元素特征暗示这些镁铁质岩石形成于无水玄武质岩浆。而且这些镁铁质岩石的微量元素和REE元素配分模式均非常相似于N-MORB,除了弱Nb-Ta负异常。这些特征表明路曲和大竹曲岩体形成于大洋中脊环境。此外,路曲和大竹曲镁铁质岩石的Pb同位素结果指示其地幔源区与印度洋MORB地幔域具有相似的地球化学特征。这些镁铁质岩石N-MORB标准化微量元素模式显示弱Nb-Ta负异常可能是由于其地幔源区交代了古老的俯冲带物质。

  • 加载中
  • 图 1  雅鲁藏布构造带及蛇绿岩简图

    Figure 1. 

    图 2  日喀则蛇绿岩野外照片

    Figure 2. 

    图 3  日喀则蛇绿岩镁铁质岩石显微照片

    Figure 3. 

    图 4  日喀则蛇绿岩路曲和大竹曲镁铁质岩石全岩TAS图解

    Figure 4. 

    图 5  日喀则蛇绿岩路曲和大竹曲岩石球粒陨石标准化REE配分模式(a,c)及N-MORB标准化微量元素配分模式(b,d)

    Figure 5. 

    图 6  全岩Pb同位素比值图解

    Figure 6. 

    图 7  全岩La/Sm-Sm/Yb图解(据Aldanmaz et al., 2000

    Figure 7. 

    图 8  微量元素构造环境判别图

    Figure 8. 

    表 1  日喀则蛇绿岩路曲和大竹曲岩体镁铁质岩石全岩主量元素(%)和微量元素(10-6)成分

    Table 1.  The compositions of whole-rock major (%) and trace (10-6) elements of the mafic rocks from the Luqu and Dazhuqu massifs of the Xigaze ophiolite

    下载: 导出CSV

    表 2  日喀则蛇绿岩路曲和大竹曲镁铁质岩石Pb同位素成分

    Table 2.  The compositions of Pb isotope of mafic rocks from the Luqu and Dazhuqu massifs of the Xigaze ophiolite

    下载: 导出CSV
  • Aigner-Torres M, Blundy J, Ulmer P, Pettke T. 2007. Laser Ablation ICPMS study of trace element partitioning between plagioclase and basaltic melts:an experimental approach[J]. Contributions to Mineralogy and Petrology, 153:647-667. doi: 10.1007/s00410-006-0168-2

    Aldanmaz E, Pearce J A, Thirlwall M F, Mitchell J G. 2000.Petrogenetic evolution of Late Cenozoic, post-collision volcanism in western Anatolia, Turkey[J]. Journal of Volcanology and Geothermal Research, 102:67-95. doi: 10.1016/S0377-0273(00)00182-7

    Allegre C O, Courtillot V, Tapponnier P, Hirn A, Mattauer M, Coulon C, Jaeger J, Achache J, Schärer U, Marcoux J. 1984. Structure and evolution of the Himalaya-Tibet orogenic belt[J]. Nature, 307:17-22. doi: 10.1038/307017a0

    An W, Hu X, Garzanti E, Boudagherfadel M K, Wang J, Sun G. 2014.Xigaze forearc basin revisited (South Tibet):Provenance changes and origin of the Xigaze Ophiolite[J]. Geological Society of America Bulletin, 126:1595-1613. doi: 10.1130/B31020.1

    Bao P, Su L, Wang J, Zhai Q. 2013. Study on the Tectonic Setting for the Ophiolites in Xigaze, Tibet[J]. Acta Geologica Sinica (English Edition), 87:395-425. doi: 10.1111/1755-6724.12058

    Bédard É, Hébert R, Guilmette C, Lesage G, Wang C, Dostal J. 2009.Petrology and geochemistry of the Saga and Sangsang ophiolitic massifs, Yarlung Zangbo Suture Zone, Southern Tibet:evidence for an arc-back-arc origin[J]. Lithos, 113:48-67. doi: 10.1016/j.lithos.2009.01.011

    Ben Othman D, White W M, Patchett J. 1989. The geochemistry of marine sediments, island arc magma genesis, and crust-mantle recycling[J]. Earth and Planetary Science Letters, 94:1-21. doi: 10.1016/0012-821X(89)90079-4

    Bezard R, Hébert R, Wang C, Dostal J, Dai J, Zhong H, 2011.Petrology and geochemistry of the Xiugugabu ophiolitic massif, western Yarlung Zangbo suture zone, Tibet[J]. Lithos, 125:347-367. doi: 10.1016/j.lithos.2011.02.019

    Botcharnikov R E, Almeev R R, Koepke J, Holtz F. 2008. Phase Relations and Liquid Lines of Descent in Hydrous Ferrobasalt——Implications for the Skaergaard Intrusion and Columbia River Flood Basalts[J]. Journal of Petrology, 49:1687-1727. doi: 10.1093/petrology/egn043

    Castillo P. 1988. The Dupal anomaly as a trace of the upwelling lower mantle[J]. Nature, 336:667-670. doi: 10.1038/336667a0

    Chen Genwen, Xia Bin, Zhong Zhihong, Wang Guoqiang, Wang He, Zhao Taiping, Wang Jingcao, Zhang Li, Qi Liang, Li Sunrong. 2003. Geochemical characteristics and geological significance of boninites in the Deji ophiolite, Tibet[J]. Acta Mineralogica Sinica, 23:91-96 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kwxb200301015

    Chen Genwen, Liu Rui, Xia Bin, Deng Tao. 2015. Geochemistry of the Jiding ophiolite in SW Tibet and its tectonic implications[J]. Acta Petrologica Sinica, 31:2495-2507 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201509003

    Dai J, Wang C, Li Y. 2012. Relicts of the Early Cretaceous seamounts in the central-western Yarlung Zangbo Suture Zone, southern Tibet[J]. Journal of Asian Earth Sciences, 53:25-37. doi: 10.1016/j.jseaes.2011.12.024

    Dai J, Wang C, Polat A, Santosh M, Li Y, Ge Y. 2013. Rapid forearc spreading between 130 and 120 Ma:Evidence from geochronology and geochemistry of the Xigaze ophiolite, southern Tibet[J]. Lithos, 172:1-16. http://cn.bing.com/academic/profile?id=0587653d22278626f39b9b98641a2f54&encoded=0&v=paper_preview&mkt=zh-cn

    Dilek Y, Furnes H. 2011. Ophiolite genesis and global tectonics:Geochemical and tectonic fingerprinting of ancient oceanic lithosphere[J]. Geological Society of America Bulletin, 123:387-411. doi: 10.1130/B30446.1

    Dubois-Côté V, Hébert R, Dupuis C, Wang C, Li Y, Dostal J. 2005.Petrological and geochemical evidence for the origin of the Yarlung Zangbo ophiolites, southern Tibet[J]. Chemical Geology, 214:265-286. doi: 10.1016/j.chemgeo.2004.10.004

    Gansser A. 1980. The significance of the Himalayan suture zone[J]. Tectonophysics 62:37-40. doi: 10.1016/0040-1951(80)90134-1

    Girardeau J, Mercier J C. 1988. Petrology and texture of the ultramafic rocks of the Xigaze ophiolite (Tibet):constraints for mantle structure beneath slow-spreading ridges[J]. Tectonophysics, 147:33-58. doi: 10.1016/0040-1951(88)90146-1

    Godard M, Bosch D, Einaudi F. 2006. A MORB source for low-Ti magmatism in the Semail ophiolite[J]. Chemical Geology, 234:58-78. doi: 10.1016/j.chemgeo.2006.04.005

    Hart S R. 1984. A large-scale isotope anomaly in the Southern Hemisphere mantle[J]. Nature, 309:753-757. doi: 10.1038/309753a0

    Hauri E H, Wagner T P, Grove T L. 1994. Experimental and natural partitioning of Th, U, Pb and other trace elements between garnet, clinopyroxene and basaltic melts[J]. Chemical Geology, 117:149-166. doi: 10.1016/0009-2541(94)90126-0

    He Xuexian, Tang Suohan, Zhu Xiangkun, Wang Jinghui. 2007.Precise measurement of Nd isotopic ratios by means of multicollector magnetic sector inductively coupled plasma mass spectrometry[J]. Acta Geoscientica Sinica, 28:405-410 (in Chinese with English abstract).

    Hébert R, Bezard R, Guilmette C, Dostal J, Wang C, Liu Z. 2012. The Indus-Yarlung Zangbo ophiolites from Nanga Parbat to Namche Barwa syntaxes, southern Tibet:first synthesis of petrology, geochemistry, and geochronology with incidences on geodynamic reconstructions of Neo-Tethys[J]. Gondwana Research, 22:377-397. doi: 10.1016/j.gr.2011.10.013

    Klein E, Langmuir C, Zindler A, Staudigel H, Hamelin B. 1988.Isotope evidence of a mantle convection boundary at the Australian-Antarctic Discordance[J]. Nature, 333:623-629. doi: 10.1038/333623a0

    Le Roex A P L, Dick H J B, Fisher R L. 1989. Petrology and Geochemistry of MORB from 25°E to 46°E along the Southwest Indian Ridge:Evidence for Contrasting Styles of Mantle Enrichment[J]. Journal of Petrology, 30:947-986. doi: 10.1093/petrology/30.4.947

    Li Wenxia, Zhao Zhidan, Zhu Dicheng, Dong Guocheng, Zhou Su, Mo Xuanxue, DePaolo D J, Dilek Y. 2012. Geochemical discrimination of tectonic environments of the Yalung Zangpo ophiolite in southern Tibet[J]. Acta Petrologica Sinica, 28:1663-1673 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201205026

    Liu C Z, Zhang C, Yang L Y, Zhang L L, Ji W Q, Wu F Y. 2014.Formation of gabbronorites in the Purang ophiolite (SW Tibet)through melting of hydrothermally altered mantle along a detachment fault[J]. Lithos, 205:127-141. doi: 10.1016/j.lithos.2014.06.019

    Liu F, Yang J S, Dilek Y, Xu Z Q, Xu X Z, Liang F H, Chen S Y, Lian D Y. 2015. Geochronology and geochemistry of basaltic lavas in the Dongbo and Purang ophiolites of the Yarlung-Zangbo Suture zone:Plume-influenced continental margin-type oceanic lithosphere in southern Tibet[J]. Gondwana Research, 27:701-718. doi: 10.1016/j.gr.2014.08.002

    Liu Fei, Yang Jingsui, Chen Songyong, Li Zhaoli, Lian Dongyang, Zhou Wenda, Zhang Lan. 2013. Geochemistry and Sr-Nd-Pb isotopic composition of mafic rocks in the western part of Yarlung Zangbo suture zone:Evidence for intra-oceanic supra-subduction within the Neo-Tethys[J]. Geology in China, 40:742-755 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=38d487a1fc7c5f0e8363c1ad38536769&encoded=0&v=paper_preview&mkt=zh-cn

    Liu Liangzhi, Lu Lichun, Jiang Hong, Li Longfeng, Wang Longlong, Li Bin, Wang Peng, Tao Qinghua. 2018. Gravity and magnetic field characteristics and geological interpretation in Luobusha area, Tibet[J]. Geological Survey and Research, 41:204-212 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/qhwjyjjz201803007

    Liu T, Wu F Y, Zhang L L, Zhai Q G, Liu C Z, Ji W B, Zhang C, Xu Y. 2016. Zircon U-Pb geochronological constraints on rapid exhumation of the mantle peridotite of the Xigaze ophiolite, southern Tibet[J]. Chemical Geology, 443:67-86. doi: 10.1016/j.chemgeo.2016.09.015

    Liu Zhao, Li Yuan, Xiong Fahui, Wu Di, Liu Fei. 2011. Petrology and geochronology of MOR gabbro in the Purang ophiolite of western Tibet, China[J]. Acta Petrologica Sinica, 27:3269-3279 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201111009

    Mahoney J J, Frei R, Tejada M, Mo X, Leat P, Nägler T. 1998. Tracing the Indian Ocean mantle domain through time:isotopic results from old West Indian, East Tethyan, and South Pacific seafloor[J]. Journal of Petrology, 39:1285-1306. doi: 10.1093/petroj/39.7.1285

    Miyashiro A. 1973. The Troodos ophiolitic complex was probably formed in an island arc[J]. Earth and Planetary Science Letters, 19:218-224. doi: 10.1016/0012-821X(73)90118-0

    Moores E M, Kellogg L H. 2000. Tethyan ophiolites, mantle convection, and tectonic "historical contingency":A resolution of the "ophiolite conundrum"[J]. Special Paper of the Geological Society of America, 349:3-12. http://cn.bing.com/academic/profile?id=ccf3d5a06b23c4cdd6a8f910ee4b9216&encoded=0&v=paper_preview&mkt=zh-cn

    Nicolas A, Girardeau J, Marcoux J, Dupre B, Wang X, Cheng Y, Zhen H, Xiao X. 1981. The Xigaze ophiolite (Tibet):a peculiar oceanic lithosphere[J]. Nature, 294:414-417. doi: 10.1038/294414a0

    Niu Xiaolu, Zhao Zhidan, Mo Xuanxue, DePaolo D J, Dong Guocheng, Zhang Shuangquan, Zhu Dicheng, Guo Tieying. 2006.Elemental and Sr-Nd-Pb isotopic geochemistry for basic rocks from Decun-Angren ophiolites in Xigaze area, Tibet:implications for the characteristics of the Tethyan upper mantle domain[J]. Acta Petrologica Sinica, 22:2875-2888 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=65347d10d294947577f65960c2e9051d&encoded=0&v=paper_preview&mkt=zh-cn

    Pearce J A, Lippard S, Roberts S, 1984. Characteristics and tectonic significance of supra-subduction zone ophiolites[J]. Geological Society London Special Publications, 16:77-94. doi: 10.1144/GSL.SP.1984.016.01.06

    Pearce J A. 2008. Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust[J]. Lithos, 100:14-48. doi: 10.1016/j.lithos.2007.06.016

    Pearce J A. 2014. Immobile Element Fingerprinting of Ophiolites[J]. Elements, 10:101-108. doi: 10.2113/gselements.10.2.101

    Purdy G M, Detrick R S. 1986. Crustal structure of the Mid-Atlantic Ridge at 23° N from seismic refraction studies[J]. Journal of Geophysical Research, 91:3739-3762 doi: 10.1029/JB091iB03p03739

    Rampone E, Hofmann A W. (2012). A global overview of isotopic heterogeneities in the oceanic mantle[J]. Lithos, 148:247-261. doi: 10.1016/j.lithos.2012.06.018

    Rehkamper M, Hofmann A W. 1997. Recycled ocean crust and sediment in Indian Ocean MORB[J]. Earth and Planetary Science Letters, 147:93-106. doi: 10.1016/S0012-821X(97)00009-5

    Sisson T W, Grove T L. 1993. Experimental investigations of the role of H2O in calc-alkaline differentiation and subduction zone magmatism[J]. Contribution to Mineralogy and Petrology, 113:143-166. doi: 10.1007/BF00283225

    Storey M, Saunders A D, Tarney J, Gibson I L, Norry M J, Thirlwall M F, Leat P, Thompson R N, Menzies M A. 1989. Contamination of Indian Ocean asthenosphere by the Kerguelen Heard mantle plume[J]. Nature, 338:574-576. doi: 10.1038/338574a0

    Sun S S, McDonough W. 1989. Chemical and isotopic systematics of oceanic basalts:implications for mantle composition and processes[J]. Geological Society, London, Special Publications, 42:313-345. doi: 10.1144/GSL.SP.1989.042.01.19

    Wang Xibin, Bao Peisheng, Deng Wanming, Wang Fangguo. 1987.Xizang (Tibet) Ophiolites[M]. Beijing:Geological Publishing House, (in Chinese).

    Wei Dongliang, Xia Bin, Zhou Guoqing, Wang Ran. 2004.Lithochemical characteristics and origin of the Zedang ophiolite lava in Xizang (Tibet), China[J]. Geotectonica et Metallogenia, 28:270-278 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ddgzyckx200403007

    Wu Fuyuan, Liu Chuanzhou, Zhang Liangliang, Zhang Chang, Wang Jiangang, Ji Weiqiang, Liu Xiaochi. 2014. Yarlung Zangbo ophiolite:a critical updated view[J]. Acta Petrologica Sinica, 30:293-325 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201402001

    Xiong Fahui, Yang Jingsui, Liang Fenghua, Ba Dengzhu, Zhang Jian, Xu Xiangzhen, Li Yuan, Liu Zhao. 2011. Zircon U-Pb ages of the Dongbo ophiolite in the western Yarlung Zangbo suture zone and their geological significance[J]. Acta Petrologica Sinica, 27:3223-3238 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201111006

    Xu Deming, Huang Guicheng, Lei Yijun. 2007. Origin of the Xiugugabu ophiolite massif, SW Tibet:evidence from petrology and geochemistry[J]. Geotectonica et Metallogenia, 31:490-501. http://cn.bing.com/academic/profile?id=4a4462c0f600bd3e0f1e236b5145107a&encoded=0&v=paper_preview&mkt=zh-cn

    Xu J F, Castillo P R. 2004. Geochemical and Nd-Pb isotopic characteristics of the Tethyan asthenosphere:implications for the origin of the Indian Ocean mantle domain[J]. Tectonophysics, 393:9-27. doi: 10.1016/j.tecto.2004.07.028

    Yin A, Harrison T M, 2000. Geologic Evolution of the HimalayanTibetan orogen. Annual Review of Earth and Planetary Sciences, 28:211-280. doi: 10.1146/annurev.earth.28.1.211

    Zhang C, Liu C Z, Wu F Y, Ji W Q, Liu T, Xu Y. 2017. Ultrarefractory mantle domains in the Luqu ophiolite (Tibet):Petrology and tectonic setting[J]. Lithos, 286-287:252-263. doi: 10.1016/j.lithos.2017.05.021

    Zhang C, Liu C Z, Wu F Y, Zhang L L, Ji W Q. 2016. Geochemistry and geochronology of mafic rocks from the Luobusa ophiolite, South Tibet[J]. Lithos, 245:93-108. doi: 10.1016/j.lithos.2015.06.031

    Zhang L L, Liu C Z, Wu F Y, Zhang C, Ji W Q, Wang J G. 2016. SrNd-Hf isotopes of the intrusive rocks in the Cretaceous Xigaze ophiolite, southern Tibet:constraints on its formation setting[J]. Lithos, 258-259:133-148. doi: 10.1016/j.lithos.2016.04.026

    Zhang Qi, Zhou Guoqing, Wang Yan. 2003. The distribution of time and space of Chinese ophiolites, and their tectonic settings[J]. Acta Petrologica Sinica, 19:1-8 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200301001

    Zhang S Q, Mahoney J J, MO X X, Ghazi A M, Milani L, Crawford A J, Guo T Y, Zhao Z D, 2005. Evidence for a Widespread Tethyan Upper Mantle with Indian-Ocean-Type Isotopic Characteristics[J]. Journal of Petrology, 46:829-858. doi: 10.1093/petrology/egi002

    Zhong Lifeng, Xia Bin, Cui Xuejun, Zhou Guoqing, Chen Genwen, Wei Dongliang. 2006. Geochemical characteristics and origin of the Luobusha ophiolite crust lavas in Xizang, China[J]. Geotectonica et Metallogenia, 30:231-240 (in Chinese with English abstract).

    陈根文, 刘睿, 夏斌, 邓腾. 2015.西藏吉定蛇绿岩地球化学特征及其构造指示意义[J].岩石学报, 31:2495-2507. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201509003

    陈根文, 夏斌, 钟志洪, 王国强, 王核, 赵太平, 汪劲草, 张莉, 漆亮, 李荪蓉. 2003.西藏得几蛇绿岩体中玻安岩的地球化学特征及其地质意义[J].矿物学报, 23:91-96. doi: 10.3321/j.issn:1000-4734.2003.01.015

    何学贤, 唐索寒, 朱祥坤, 王进辉. 2007.多接收器等离子体质谱(MC-ICPMS)高精度测定Nd同位素方法[J].地球学报, 28:405-410. doi: 10.3321/j.issn:1006-3021.2007.04.012

    李文霞, 赵志丹, 朱弟成, 董国臣, 周肃, 莫宣学, DePaolo, Yildirim, Dilek. 2012.西藏雅鲁藏布蛇绿岩形成构造环境的地球化学鉴别[J].岩石学报, 28:1663-1673. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201205026

    刘飞, 杨经绥, 陈松永, 李兆丽, 连东洋, 周文达, 张岚. 2013.雅鲁藏布江缝合带西段基性岩地球化学和Sr-Nd-Pb同位素特征:新特提斯洋内俯冲的证据[J].中国地质, 40:742-755. doi: 10.3969/j.issn.1000-3657.2013.03.007 http://geochina.cgs.gov.cn/geochina/ch/reader/view_abstract.aspx?file_no=20130307&flag=1

    刘良志, 路利春, 姜鸿, 李陇锋, 王龙龙, 李冰, 王鹏, 陶春华. 2018.西藏罗布莎地区重磁场特征与地址解释[J].地质调查与研究, 41:204-212. doi: 10.3969/j.issn.1672-4135.2018.03.007

    刘钊, 李源, 熊发挥, 吴迪, 刘飞. 2011.西藏西部普兰蛇绿岩中的MOR型辉长岩:岩石学和年代学[J].岩石学报, 27:3269-3279. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201111009

    牛晓露, 赵志丹, 莫宣学, DJ, D., 董国臣, 张双全, 朱弟成, 郭铁鹰, 2006.西藏日喀则地区德村-昂仁蛇绿岩内基性岩的元素与SrNd-Pb同位素地球化学及其揭示的特提斯地幔域特征[J].岩石学报, 22:2875-2888. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200612006

    王希斌, 鲍佩声, 邓万明, 王方国. 1987.西藏蛇绿岩.地质出版社.

    韦栋梁, 夏斌, 周国庆, 王冉. 2004.西藏泽当蛇绿岩壳层火山熔岩的岩石地球化学及成因[J].大地构造与成矿学, 28:270-278. doi: 10.3969/j.issn.1001-1552.2004.03.007

    吴福元, 刘传周, 张亮亮, 张畅, 王建刚, 纪伟强, 刘小驰. 2014.雅鲁藏布蛇绿岩——事实与臆想[J].岩石学报, 30:293-325. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201402001

    熊发挥, 杨经绥, 梁凤华, 巴登珠, 张健, 徐向珍, 李源, 刘钊. 2011.西藏雅鲁藏布江缝合带西段东波蛇绿岩中锆石U-Pb定年及地质意义[J].岩石学报, 27:3223-3238. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201111006

    徐德明, 黄圭成, 雷义均. 2007.西藏西南部休古嘎布蛇绿岩的成因:岩石学和地球化学证据[J].大地构造与成矿学, 31:490-501. doi: 10.3969/j.issn.1001-1552.2007.04.014

    张旗, 周国庆, 王焰. 2003.中国蛇绿岩的分布、时代及其形成环境[J].岩石学报, 19:1-8. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200301001

    钟立峰, 夏斌, 崔学军, 周国庆, 陈根文, 韦栋梁, 2006.藏南罗布莎蛇绿岩壳层熔岩地球化学特征及成因[J].大地构造与成矿学, 30:231-240. doi: 10.3969/j.issn.1001-1552.2006.02.013

  • 加载中

(8)

(2)

计量
  • 文章访问数:  1975
  • PDF下载数:  282
  • 施引文献:  0
出版历程
收稿日期:  2018-07-16
修回日期:  2019-12-15
刊出日期:  2020-06-25

目录