The tectonism-sedimentation constraints on Al-Ga coupling relation of coal-bearing strata and prediction of Ga favorable area
-
摘要:
研究目的 开展有利于铝-镓共生的聚煤盆地类型、部位及层位预测。
研究方法 首先,通过铝-镓元素共生关系和聚煤盆地中煤-铝共生关系,以铝为纽带,探讨煤-铝-镓三者的耦合关系;继而通过不同类型聚煤盆地的聚煤强度差异,结合铝矿时空分布特征,开展有利于铝-镓共生的聚煤盆地类型及层位的讨论;最后,从含煤岩系沉积期构造-沉积作用入手,结合煤中镓测试数据,在鄂尔多斯盆地南缘开展含镓有利区预测。
研究结果 在诸多聚煤盆地类型中,大型稳定克拉通盆地的聚煤强度高,铝(镓)成矿作用也明显强;华北石炭纪—二叠纪煤中镓最优,华南晚二叠世次之,北方早中侏罗世最低;在鄂尔多斯盆地南缘的蒲白矿区煤中镓含量水平相对较高,底部煤层中镓的含量一般超过30 μg/g,其次是铜川矿区各煤层,煤中镓加权平均值为28 μg/g,黄陇侏罗纪煤田各矿区中部分样品镓含量超过30 μg/g,其中顶部的2号煤层附近镓含量相对最高,镓元素主要富集在煤层顶底板及其夹矸中,煤层本身镓含量较低;最终预测了4处找镓有利区。
结论 煤与铝(镓)间具有基本相同的成矿背景和密切相关的成矿条件,决定了含煤岩系中煤-铝-镓共生的内在成生联系和耦合关系,可构成煤-铝-镓同生成矿系列;不同类型、不同时代的聚煤盆地因基底稳定性和成盆机制的差异,既造成了聚煤强度的差异性,又控制了铝-镓富集程度差异性。
Abstract:This paper is the result of mineral exploration engineering.
Objective The type, location and horizon of coal accumulation basin conducive to aluminum-gallium symbiosis were predicted.
Methods The coupling relationship between coal, aluminum and gallium is discussed through the symbiotic relationship of aluminum and coal - aluminum in coal accumulation basin. Then, based on the differences of coal accumulation strength of different types of coal accumulation basins, combined with the temporal and spatial distribution characteristics of aluminum ore, the types and horizon of coal accumulation basins conducive to the co-occurrence of aluminum and gallium are discussed. Based on the tectono-sedimentary process of coal-bearing rock series during the sedimentary period, combined with the gallium test data in coal, the prediction of gallium-bearing favorable areas in the southern margin of Ordos Basin is carried out.
Results Among the basin types, the large stable craton coal accumulation basin has high coal accumulation strength and obviously strong aluminum (gallium) mineralization. Gallium is the best in the Carboniferous-Permian coal in North China, the second in Late Permian in South China, and the lowest in Early and Middle Jurassic in North China. The content of gallium in the coal of Pubai mining area in the southern margin of Ordos Basin is relatively high, and the content of gallium in the bottom coal seam generally exceeds 30 μg /g, followed by the coal seam of Tongchuan mining area, the weighted average of gallium in coal is 28 μg/g, and there are 450 pieces of gallium content over 30 μg/g in various mining areas of Huanglong Jurassic coal field. The No. 2 coal layer at the top has the highest content of gallium, and gallium is mainly enriched in the roof and floor of coal seam and gangue. The content of gallium in coal seam itself is relatively low. Finally, 4 favorable areas for finding gallium are predicted.
Conclusions Coal and aluminum (gallium) have basically the same ore-forming background and closely related ore-forming conditions, which determines the internal genesis and coupling relationship of coal-aluminum-gallium symbiosis in coal-bearing rock series, and can form coal-aluminum-gallium co-forming ore series. Due to the difference of basement stability and basin formation mechanism, the coal accumulation strength of different types and different times not only causes the difference, but also controls the difference of aluminum-gallium enrichment degree.
-
表 1 辽东本溪地区含铝岩系综合地层剖面(据高兰等,2014)
Table 1. Comprehensive stratigraphic profiles of aluminum-bearing rocks in the Benxi area, eastern Liaoning(after Gao Lan et al., 2014)
表 2 中国聚煤盆地分类(据程爱国和林大扬,2001)
Table 2. Classification of coal-accumulating basins in China (after Cheng Aiguo and Lin Dayang, 2001)
表 3 渭北石炭—二叠纪煤田各矿区Ga异常点汇总
Table 3. Summary of Ga anomalies in various mining areas of Carboniferous-Permian coalfield in north of Weihe river
表 4 黄陵矿区煤中Ga异常点汇总
Table 4. Summary of Ga anomalies of coal species in Huangling mining area
-
Anonymous. 2014. Achievements of the Coal under aluminum project west of Cao Kiln [J]. China Mining Engineering, 43(2): 63-64 (in Chinese with English abstract).
Cao Daiyong, Wei Yingchun. 2017. Occurrence Law and Resource Evaluation of Coal Measure Minerals in Ordos Basin [M]. Beijing: Science Press (in Chinese).
Cheng Aiguo, Lin Dayang. 2001. Systematic Analysis of Coal Accumulation in China [M]. Xuzhou: China University of Mining and Technology Press (in Chinese).
Dai Shifeng, Ren Deyi, Li Shengsheng. 2006a. A discovery of extremely-enriched boehmite from coal in the Junger coalfield, the Northeastern Ordos[J]. Acta Geologica Sinica, (2): 294-300, 315-316 (in Chinese with English abstract).
Dai Shifeng, Ren Deyi, Li Shengsheng. 2006b. Discovery of the Junger super-large gallium deposit in Inner Mongolia [J]. Science Bulletin, (2): 177-185 (in Chinese with English abstract).
Du Kai. 2012. Geochemistry of Weathering of Cenozoic Basalt in Eastern China [D]. Nanjing: Nanjing University (in Chinese with English abstract).
Fan Yuchao, Qi Yong'an. 2017. Distribution and controlling factors of gallium in Benxi Formation of Yuzhou Bauxite mining area[J]. Mining Research and Development, 37(4): 103-108 (in Chinese with English abstract).
Gao Lan, Wang Denghong, Xiong Xiaoyun, Qi Shuaijun, Yi Chengwei, Jia Shaohui. 2015. Characteristics and potential analysis of bauxite resources in China [J]. Geology of China, 42(4): 853-863 (in Chinese with English abstract).
Gao Lan, Wang Denghong, Xiong Xiaoyun, Yi Chengwei. 2014. Summary of metallogenic regularities of aluminum deposits in China [J]. Acta Geologica Sinica, 88(12): 2284-2295 (in Chinese with English abstract).
Li Yanheng. 2007. Study on the Relationship between Organic Matter and Uranium Mineralization in Ordos Basin [D]. Handan: Hebei University of Engineering (in Chinese with English abstract).
Li Yuan. 2014. Composition of Clay Mineral in Grassland Soil and its Environmental Significance [D]. Guangzhou: Sun Yat-Sen University (in Chinese with English abstract).
Liu Bangjun, Lin Mingyue, Zhu Guangchen. 2014. Distribution law and enrichment mechanism of Ga in 4# coal seam in Pingshuo mining area in Shanxi province[J]. China Coal, 40(11): 25-29 (in Chinese with English abstract).
Liu Changling. 1987. Genetic types of bauxite in China [J]. Science in China (part B: chemical biology, agronomy, medical geoscience), (5) : 535-544 (in Chinese with English abstract).
Liu Hanbin, Ma Zhibin, Guo Yanxia, Wu Fangqin. 2019. Distribution characteristics and development and utilization prospect of lithium gallium aluminum in Shanxi coal system[J]. Clean Coal Technology, 25(5): 39-46 (in Chinese with English abstract).
Liu Kang. 2016. Study on the Characteristics of the Symbiotic Combination of Coal Measures and Mineral Resources in the Western Margin of Ordos Basin [D]. Beijing: China University of Mining and Technology (Beijing) (in Chinese with English abstract).
Qin Yong, Wang Wenfeng, Cheng Aiguo, Liu Xinhua, Zhao Jianling. 2009. Metallogenic prospects of gallium in coal in the first coal state-planned mining areas [J]. China Coal Geology, 21(1): 17-21, 26 (in Chinese with English abstract).
Ren Deyi, Zhao Fenghua, Dai Shifeng, Zhang Junying, Luo Kunli. 2006. Trace Element Geochemistry of Coal [M]. Beijing: Science Press (in Chinese).
Ren Jishun. 1991. Basic characteristics of lithospheric structure in China [J]. China Regional Geology, (4): 289-293 (in Chinese with English abstract).
Sun Shenglin, Wu Guoqiang, Cao Daiyong, Ning Shuzheng, Qiao Junwei, Zhu Huaxiong, Han Liang, Zhu Shifei, Miao Qi, Zhou Jing, Liu Kang, Li Congcong, Chen Hanyong, Cai Xumei. 2014. Coal measure mineral resources and their development trend [J]. China Coal Geology, 26(11): 1-11 (in Chinese with English abstract).
Sun Y Z, Zhao C, Zhang J, Yang J J, Zhang Y Z, Yuan Y, Xu J, Duan D J. 2009. Concentration of valuable elements of the coals from the Pingshuo mining distrct, ningwucoalfield, northern China[J]. Energy Exploration & Exploitation, 31(5): 727.
Sun Zefei. 2016. Geological Assessment of Feasibility of Co-exploitation of Unconventional Gas in Coal Measures in Linxingblock [D]. Xuzhou: China University of Mining and Technology (in Chinese with English abstract).
Tang Yanjie, Jia Jianye, Liu Jianchao. 2002a. Study on the distribution of gallium in bauxite in western Henan [J]. Mineral Rocks, (1): 15-20 (in Chinese with English abstract).
Tang Yanjie, Liu Jianchao, Jia Jianye. 2002b. Study on occurrence state of galliun in the bauxite deposits of western Henan Province[J]. Journal of Xi 'an Engineering University, (4): 1-5 (in Chinese with English abstract).
Wang Jinxi, Fu Zhiheng, Hu Yafan, Yang Zhen, Ma Jialiang, Sun Yuzhuang. 2021. Geochemical characteristics of REY, Li, Ga trace elements in the No. 9 coal seam of the Daheng mine, Ningwu coalfield, Shanxi Province, China[J]. China Geology, 4: 266-273.
Wang Qingfei, Deng Jun, Liu Xuefei, Zhang Qizuan, Li Zhongming, Kang Wei, Cai Shuhui, Li Ning. 2012. Progress in research on geology and Genesis of Bauxite deposits [J]. Geology and Exploration, 48(3): 430-448 (in Chinese with English abstract).
Wang Wenfeng, QinYong, Liu Xinhua, Zhao Jianling, Wang Junyi, Wu Guodai, Liu Jiongtian. 2011. The distribution occurrence and enrichment genesis of gallium in coal in junger coalfield, Inner Mongolia [J]. Chinese Science: Earth Science, 41(2): 181-196 (in Chinese with English abstract).
Xu Hao. 2017. Structural Control of the Occurrence Law of Coal Measure Mineral Resources in Ordos Basin [D]. Xuzhou: China University of Mining and Technology (in Chinese with English abstract).
Yan Baohua. 2013. Element Characteristics of Miocene Sediments in the Northeast Qaidam Basin and Chemical Weathering in the Source Region [D]. Lanzhou: Lanzhou University (in Chinese with English abstract).
Yang Hequn, Jang Hanbing, Tan Wenjuan, Zhao Guobin, Yang Letian, Li Ying. 2017. Introduction to Important Mineral Resources in Northwest China [M]. Wuhan: China University of Geosciences Press (in Chinese).
Yi Tongsheng, Qin Yong, Wu Yanyan, Li Zhungfu. 2007. Gallium accumulation and geological controls in coal seam and its floor from liangshan formation, Kaili, Eastern Guizhou, China[J]. Journal of China University of Mining & Technology, 36(3): 331-334 (in Chinese with English abstract).
Zhang Fuxin, Wang Lishe. 2009. The formation and material sources of the superlarge Hada Gol Ga-bearing coal deuosit in Jungar Banner, Inner Mongolia[J]. Geology in China, 36(2): 417-423 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-3657.2009.02.015
Zhang Junwei. 2012. Bauxite resource situation and countermeasures in China [J]. Value Engineering, 31(21): 4-6 (in Chinese with English abstract). doi: 10.3969/j.issn.1006-4311.2012.21.002
Zhang Yong, Qin Shenjun, Yang Jingjing, Zhang Jianya. 2014. Progress in geochemistry of gallium in coal [J]. Bulletin of Geological Science and Technology, 33(5): 166-169, 175 (in Chinese with English abstract).
Zhang Yong. 2013. Geochemical Characteristics of Gallium in Coal 2 ~ # in Huangling Mining Area [D]. Handan: Hebei University of Engineering (in Chinese with English abstract).
Zhang Yongqiang, Xue Haijun, Chang Yufei, Hou Dinggen. 2019. Distribution features of gallium from coal-bearing rock series in Hanguzhuang Yanchi exploration area [J]. Coal Science and Technology, 47(3): 195-199 (in Chinese with English abstract).
Zhao C, Qin S, Yang Y. 2009. Concentration of gallium in the Permo-carboniferuos coal of China[J]. Energy Exploration & Exploration, 27(5): 333.
Zhao Cunliang. 2015. Distribution and Enrichment Mechanism of Polymetallic Elements Associated with Coal in Ordos Basin [D]. Beijing: China University of Mining and Technology (Beijing) (in Chinese with English abstract).
Zhao Xiaodong, Li Junmin. 2014. Analyses on distribution characteristics and controlling factors of gallium in bauxite-bearing rock series in the southeastern limb of the Chepan Syncline, Chongqing[J]. Geochemical Bulletin of Mineral Rocks, 33(6): 893-899 (in Chinese with English abstract).
曹代勇, 魏迎春. 2017. 鄂尔多斯盆地煤系矿产赋存规律与资源评价[M]. 北京: 科学出版社.
程爱国, 林大扬. 2001. 中国聚煤作用系统分析[M]. 徐州: 中国矿业大学出版社.
代世峰, 任德贻, 李生盛. 2006a. 鄂尔多斯盆地东北缘准格尔煤田煤中超常富集勃姆石的发现[J]. 地质学报, (2): 294-300, 315-316. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200602026.htm
代世峰, 任德贻, 李生盛. 2006b. 内蒙古准格尔超大型镓矿床的发现[J]. 科学通报, (2): 177-185. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200602011.htm
都凯. 2012. 中国东部新生代玄武岩风化作用地球化学研究[D]. 南京: 南京大学.
樊钰超, 齐永安. 2017. 禹州地区本溪组铝土矿中镓的分布及控制因素[J]. 矿业研究与开发, 37(4): 103-108. https://www.cnki.com.cn/Article/CJFDTOTAL-KYYK201704025.htm
高兰, 王登红, 熊晓云, 齐帅军, 易承伟, 夹少辉. 2015. 中国铝土矿资源特征及潜力分析[J]. 中国地质, 42(4): 853-863. doi: 10.3969/j.issn.1000-3657.2015.04.005 http://geochina.cgs.gov.cn/geochina/article/abstract/20150405?st=search
高兰, 王登红, 熊晓云, 易承伟. 2014. 中国铝矿成矿规律概要[J]. 地质学报, 88(12): 2284-2295. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201412010.htm
李彦恒. 2007. 鄂尔多斯盆地有机质与铀矿化关系研究[D]. 邯郸: 河北工程大学.
李元. 2014. 草原土壤粘土矿物组成及其环境意义[D]. 广州: 中山大学.
刘帮军, 林明月, 褚光琛. 2014. 山西平朔矿区4_#煤中镓的分布规律与富集机理[J]. 中国煤炭, 40(11): 25-29. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGME201411008.htm
刘汉斌, 马志斌, 郭彦霞, 程芳琴. 2019. 山西煤系锂镓铝分布特征和开发利用前景[J]. 洁净煤技术, 25(5): 39-46. https://www.cnki.com.cn/Article/CJFDTOTAL-JJMS201905006.htm
刘亢. 2016. 鄂尔多斯盆地西缘煤系矿产资源共生组合特征研究[D]. 北京: 中国矿业大学(北京).
刘长龄. 1987. 中国铝土矿的成因类型[J]. 中国科学(B辑化学生物学农学医学地学), (5): 535-544. https://www.cnki.com.cn/Article/CJFDTOTAL-JBXK198705012.htm
秦勇, 王文峰, 程爱国, 刘新华, 赵建岭. 2009. 首批煤炭国家规划矿区煤中镓的成矿前景[J]. 中国煤炭地质, 21(1): 17-21, 26. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGMT200901007.htm
任德怡, 赵峰华, 代世峰, 张军营, 雒昆利. 2006. 煤的微量元素地球化学[M]. 北京: 科学出版社.
任纪舜. 1991. 论中国大陆岩石圈构造的基本特征[J]. 中国区域地质, (4): 289-293. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD199104000.htm
孙升林, 吴国强, 曹代勇, 宁树正, 乔军伟, 朱华雄, 韩亮, 朱世飞, 苗琦, 周兢, 刘亢, 李聪聪, 陈寒勇, 蔡旭梅. 2014. 煤系矿产资源及其发展趋势[J]. 中国煤炭地质, 26(11): 1-11. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGMT201411001.htm
孙泽飞. 2016. 临兴区块煤系非常规天然气共采可行性地质评价[D]. 徐州: 中国矿业大学.
汤艳杰, 贾建业, 刘建朝. 2002a. 豫西地区铝土矿中镓的分布规律研究[J]. 矿物岩石, (1): 15-20. https://www.cnki.com.cn/Article/CJFDTOTAL-KWYS200201003.htm
汤艳杰, 刘建朝, 贾建业. 2002b. 豫西铝土矿中镓的赋存状态研究[J]. 西安工程学院学报, (4): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGX200204001.htm
王庆飞, 邓军, 刘学飞, 张起钻, 李中明, 康微, 蔡书慧, 李宁. 2012. 铝土矿地质与成因研究进展[J]. 地质与勘探, 48(3): 430-448. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKT201203003.htm
王文峰, 秦勇, 刘新花, 赵建岭, 王钧漪, 吴国代, 刘炯天. 2011. 内蒙古准格尔煤田煤中镓的分布赋存与富集成因[J]. 中国科学: 地球科学, 41(2): 181-196. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201102006.htm
徐浩. 2017. 鄂尔多斯盆地煤系矿产资源赋存规律的构造控制研究[D]. 徐州: 中国矿业大学.
闫宝华. 2013. 柴达木盆地东北部中新世沉积物元素特征与源区化学风化[D]. 兰州: 兰州大学.
杨合群, 姜寒冰, 谭文娟, 赵国斌, 杨乐田, 李英. 2017. 西北地区重要矿产概论[M]. 武汉: 中国地质大学出版社.
佚名. 2014. 曹窑以西煤下铝项目取得成果[J]. 中国矿山工程, 43(2): 63-64. https://www.cnki.com.cn/Article/CJFDTOTAL-YSKS201402023.htm
易同生, 秦勇, 吴艳艳, 李壮福. 2007. 黔东凯里梁山组煤层及其底板中镓的富集与地质成因[J]. 中国矿业大学学报, 36(3): 331-334. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD200703010.htm
张复新, 王立社. 2009. 内蒙古准格尔黑岱沟超大型煤型镓矿床的形成与物质来源[J]. 中国地质, 36(2): 417-423, 7. http://geochina.cgs.gov.cn/geochina/article/abstract/20090215?st=search
张军伟. 2012. 中国铝土矿资源形势与对策[J]. 价值工程, 31(21): 4-6. https://www.cnki.com.cn/Article/CJFDTOTAL-JZGC201221001.htm
张永强, 薛海军, 常宇飞, 侯丁根. 2019. 铜川矿区韩古庄-演池勘探区含煤岩系中镓分布特征[J]. 煤炭科学技术, 47(3): 195-199. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201903029.htm
张勇, 秦身钧, 杨晶晶, 张健雅. 2014. 煤中镓的地球化学研究进展[J]. 地质科技情报, 33(5): 166-169, 175. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201405024.htm
张勇. 2013. 黄陵矿区2~#煤中镓的地球化学特征[D]. 邯郸: 河北工程大学.
赵存良. 2015. 鄂尔多斯盆地与煤伴生多金属元素的分布规律和富集机理[D]. 北京: 中国矿业大学(北京).
赵晓东, 李军敏. 2014. 重庆车盘向斜南东翼铝土矿含矿岩系中镓的分布特征及控制因素分析[J]. 矿物岩石地球化学通报, 33(6): 893-899. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH201406022.htm