中国地质调查局 中国地质科学院主办
科学出版社出版

河北省张北县新生代玄武岩偏硅酸矿泉水化学特征及成因

何锦, 马雪梅, 邓启军, 李伟, 马学军, 郑一迪, 刘昭. 2023. 河北省张北县新生代玄武岩偏硅酸矿泉水化学特征及成因[J]. 中国地质, 50(6): 1887-1902. doi: 10.12029/gc20201027001
引用本文: 何锦, 马雪梅, 邓启军, 李伟, 马学军, 郑一迪, 刘昭. 2023. 河北省张北县新生代玄武岩偏硅酸矿泉水化学特征及成因[J]. 中国地质, 50(6): 1887-1902. doi: 10.12029/gc20201027001
HE Jin, MA Xuemei, DENG Qijun, LI Wei, MA Xuejun, ZHENG Yidi, LIU Zhao. 2023. Hydrochemical characteristics and formation mechanism of metasilicate mineral water in a Cenozoic basaltic aquifer in Zhangbei county, Hebei Province[J]. Geology in China, 50(6): 1887-1902. doi: 10.12029/gc20201027001
Citation: HE Jin, MA Xuemei, DENG Qijun, LI Wei, MA Xuejun, ZHENG Yidi, LIU Zhao. 2023. Hydrochemical characteristics and formation mechanism of metasilicate mineral water in a Cenozoic basaltic aquifer in Zhangbei county, Hebei Province[J]. Geology in China, 50(6): 1887-1902. doi: 10.12029/gc20201027001

河北省张北县新生代玄武岩偏硅酸矿泉水化学特征及成因

  • 基金项目:
    中国地质调查局项目(DD20160328)资助
详细信息
    作者简介: 何锦, 男, 1980年生, 博士, 正高级工程师, 从事水文地球化学方面研究; E-mail: hejing007105@126.com
  • 中图分类号: P641.5

Hydrochemical characteristics and formation mechanism of metasilicate mineral water in a Cenozoic basaltic aquifer in Zhangbei county, Hebei Province

  • Fund Project: Supported by the project of China Geological Survey "Comprehensive Geological Survey of the Northern Section of Taihang Mountain" (No. DD20160328)
More Information
    Author Bio: HE Jin, male, born in 1980, doctor, senior engineer, engaged in hydrogeochemical research; E-mail: hejing007105@126.com .
  • 研究目的

    河北省坝上地区新生代玄武岩地层蕴含着丰富的偏硅酸矿泉水资源,研究其形成机制及水岩作用对区内水资源合理利用以及发展矿泉水产业具有重要的现实意义。

    研究方法

    通过系统采集研究区地下水、雨水等环境水化学样品,运用数理统计、离子比值分析、同位素分析等方法,对区内新生代玄武岩偏硅酸矿泉水的形成机制进行了分析。

    研究结论

    张北县偏硅酸矿泉水主要分布在县域南部坝头一带的地下水补给区,以低矿化度的HCO3-Ca·Mg型与HCO3-Na·Mg型水为主,地下水中偏硅酸主要来源于玄武岩中钠长石、斜长石、橄榄石等硅酸盐矿物的水解,同时受到溶滤作用和阳离子交换作用的影响;氢氧同位素分析结果显示,当地地下水主要补给来源为当地夏季降水,地下水可视年龄在15~60 a。

    结论

    河北省坝上地区偏硅酸矿泉水的形成与当地特殊玄武岩地质构造以及特定的水文地球化学过程有关。

  • 加载中
  • 图 1  研究区地质图及采样点分布图

    Figure 1. 

    图 2  研究区水文地质剖面图

    Figure 2. 

    图 3  研究区玄武岩(a—裸露区;b—埋藏区)地下水水位动态曲线

    Figure 3. 

    图 4  研究区玄武岩地下水Piper三线图

    Figure 4. 

    图 5  研究区玄武岩地下水化学类型图

    Figure 5. 

    图 6  研究区地下水Gibbs图

    Figure 6. 

    图 7  研究区地下水中Ca2+/Na+与CO3-/Na+、Mg2+/Na+元素比值图

    Figure 7. 

    图 8  研究区地下水r(Mg2++Ca2++Na+)与rCO3-rNa+r(Ca2++Mg2+)离子比值图

    Figure 8. 

    图 9  研究区地下水中不同矿物饱和指数图

    Figure 9. 

    图 10  研究区地下水矿物平衡体系图

    Figure 10. 

    图 11  研究区地下水离子比值相关图

    Figure 11. 

    图 12  研究区地下水δ18O-δ2H关系图

    Figure 12. 

    图 13  研究区大气降水中氚浓度恢复曲线(a)及地下水滞留时间-氚浓度输出曲线(b)

    Figure 13. 

    图 14  研究区地下水中pH、PCO2与偏硅酸浓度随地下水流向变化曲线

    Figure 14. 

    表 1  研究区玄武岩地下水水化学组分统计特征

    Table 1.  Statistics characteristic of hydrochemical analysis data of groundwater in basalts aquifer in study area

    下载: 导出CSV

    表 2  研究区地下水水化学组分相关系数矩阵

    Table 2.  Correlation coefficient of hydrochemical parameters of study area

    下载: 导出CSV
  • Chen Changliang. 2015. Study on the Reserve Regularity and Hydrochemical Characteristics of Geothermal Resources in Changbai Mountain Basalt Region[D]. Changchun: Jilin University, 1-83 (in Chinese with English abstract).

    Chen Ronghe. 2016. Biological Effects of Metasilicate-rich Natural Mineral Water [D]. Fuzhou: Fujian Medical Universit, 1-82 (in Chinese with English abstract).

    Chen Zongyu, Qi Jixiang, Zhang Zhaoji. 2010. The Application of Isotope Hydrogeology Method in the Northern Typical Basins[M]. Beijing: Science Press(in Chinese).

    Duan Naijin, Qi Xiequan. 2014. Distribution characteristics and occurrence condition of mineral water in Jingyu county[J]. Groundwater, 36(6): 47-48(in Chinese with English abstract).

    Fan Qicheng, Du Xingxing, Sui Jianli, Zhao Yongwei. 2010. Genesis of carbonatite from Hannuoba and Yangyuan[J]. Acta Petrologica Sinica, 26(11): 3189-3194(in Chinese with English abstract).

    Gabriela Garcia M, Margarita del V Hidalgo, Miguel A B. 2001. Geochemistry of groundwater in the alluvial plain of Tucuman province Argentina[J]. Journal of Hydrology, 9: 597-610.

    Gaillardet J, Dupre B, Louvat P, Louvat, Allègre C J. 1999. Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers[J]. Chemical Geology, 159: 3-30. doi: 10.1016/S0009-2541(99)00031-5

    Gao Simeng, Wen Yujuan, Zhang Wenqin, Zhang Dazhi, Yang Yuesuo. 2019. Microbial characteristics and eco-health implication of mineral spring water in Wudalianchi, Northeast China[J]. Chinese Journal of Applied Ecology, 30(8): 2865-2874(in Chinese with English abstract).

    Gibbs R J. 1970. Mechanisms controlling world water chemistry[J]. Nature, 170: 1088-1090.

    Guo Qinghai, Wang Yanxin. 2014. Simulation of geochemical progresses affecting groundwater in Quaternary porous aquifers of Taiyuan basin: Typical Cenozonic rift basin[J]. Science Frontiers, 21(4): 83-90(in Chinese with English abstract).

    Li Siliang, Chetelat Benjamin, Yue Fujun, Zhao Zhiqi, Liu Congqiang. 2014. Chemical weathering processes in the Yalong River draining the eastern Tibetan Plateau, China[J]. Journal of Asian Earth Sciences, 88: 74-84. doi: 10.1016/j.jseaes.2014.03.011

    Jia Fuhai, Qin Zhixue, Han Ziye. 1993. Basic characteristics of basalt groundwater in China[J]. Hydrogeology & Engineering Geology, 4: 30-32(in Chinese with English abstract).

    Koh D C, Genereux D P, Koh G W, Ko K S. 2017. Relationship of groundwater geochemistry and flow to volcanic stratigraphy in basaltic aquifers affected by magmatic CO2, Jeju Island, Korea[J]. Chemical Geology, 467: 143-158. doi: 10.1016/j.chemgeo.2017.08.009

    Li Guiling, Wang Guoliang, Li Xuening, Meng Lishan. 2007. Hydrochemical characteristics and formation conditions of the natural mineral water in the Guanzhuang Basin in Jixian, Tianjin[J]. Hydrogeology & Engineering Geology, 4: 57-60 (in Chinese with English abstract).

    Li Wenbao, Li Changyou, Jia Debin, Hao Shiqi, Liu Zhijiao, Li Ruizhen. 2017. Change of stable isotopes in summer precipitation in central inner mongolia[J]. Arid Zone Research, 34(6): 1214-1221(in Chinese with English abstract).

    Pang Junhua, Zhou Xingyang, Pang Xiangduo, He Di. 2008. Distribution and utilization of natural mineral water for drinking in Jingyu county[J]. Jilin Geology, (2): 106-109(in Chinese with English abstract).

    Ruan Wei. 2018. Study on the Genesis of Mineral Water in the Permian Basalt Area of Kunming City[D]. Kunming: Kunming university of Science and Technology, 1-107(in Chinese with English abstract).

    Rao N S, Subrahmanyam A, Kumar S R, Srinivasulu N, Rao G B, Rao P S, Reddy G V. 2012. Geochemistry and quality of groundwater of Gummanampadu sub-basin, Guntur District, Andhra Pradesh, India[J]. Environmental Earth Sciences, 67(5): 1451-1471. doi: 10.1007/s12665-012-1590-6

    Santoni S, Huneau F, Garel E, Vergnaud-Ayraud V, Labasque T, Aquilina L, Jaunat J, Celle-Jeanton H. 2016. Residence time, mineralization processes and groundwater origin within a carbonate coastal aquifer with a thick unsaturated zone[J]. Journal of Hydrology, 540: 50-63 doi: 10.1016/j.jhydrol.2016.06.001

    Schoeller H. 1967. Qualitative evaluation of groundwater resource: Methods and techniques of groundwater investigation and development[J]. Water Research, 33: 44-52.

    Shan Tingting, Xu Shiguang, Fan Zhuguo, Ruan Wei. 2019. Characteristics and formation mechanism of metasilicate mineral water in xishan mountain of Kunming[J]. Journal of Kunming University of Science and Technology (Natural Science Edition), 44(2): 39-47(in Chinese with English abstract).

    Shang Ziqi. 2019. A Study of the Hydrochemical Characteristics and Genesis of the Springs in Basalt in the Leiqiong Region[D]. Beijing: China University of Geosciences (Beijing), 1-72 (in Chinese with English abstract).

    Sheng Zhaoli. 1993. Hydrogeochemistry[M]. Beijing: Geological Publishing House.

    Steve P, Marguerite G, Linda L, Muriel A, Isabelle M, Philippe G. 2015. CO2 geological storage in olivine rich basaltic aquifers: New insights from reactive-percolation experiments[J]. Applied Geochemistry, 52: 174-190. doi: 10.1016/j.apgeochem.2014.11.024

    Sun Houyun, Sun Xiaoming, Wei Xiaofeng, Chen Ziran, Liu Wei, Huang Xingkai, Li Xia, Yin Zhiqiang, Liu Wenbo. 2022. Formation mechanism of metasilicate mineral water in Chengde, Hebei Province: Evidence from rock weathering and water-rock interaction[J]. Geology in China, 49(4): 1088-1113(in Chinese with English abstract).

    Wang Fang. 2018. The Study on Recharge and Characteristic Index of Natural Mineral Water in Emei mountain[D]. Mianyang: Southwest University of Science and Technology, 1-49 (in Chinese with English abstract).

    Wang Lei, Xiao Changlai, Liang Xiujuan, Jiang Wwei, Yan Baizhong, Li Shu, Wang Yuegang. 2013. Experimental study on the influence of formation process Sr2+, SiO2 with CO2 in mineral water: A case study of Jinyu county[J]. Water Saving Irrigation, (10): 41-43(in Chinese with English abstract).

    Wu Bingjun. 1986. Numerical calculation of tritium in atmospheric precipitation in China[J]. Hydrogeology & Engineering Geology, 13(4): 38-41(in Chinese with English abstract).

    Yan Baizong, Xiao Changlai, Liang Xiujuan, Ma Zhe, Wei Runchu, Wu Shili. 2015. Experiment on the characteristic component (H2SiO3) of the mineral water in the basalt in Jingyu county: A case study of Wangdashan spring[J]. Journal of Jilin University(Earth Science Edition), 45(3): 892-898 (in Chinese with English abstract).

    Yin Xiulan, Wang Qingbing, Feng Wei. 2017. Hydro-chemical and isotopic study of the karst spring catchment in Jinan[J]. Acta Geologica Sinica, 91(7): 1651-1660(in Chinese with English abstract).

    Zhang Tao, Cai Wutian, Li Yingzhi, Zhang Zhiyin, Geng Tingting, Bian Chao, Zhao Miao, Cai Yuemei. 2017. Major ionic features and their possible controls in the water of the Niyang River Basin[J]. Environmental Science, 38(11): 4537-4545(in Chinese with English abstract).

    Zhang Yanhong, Ye Sujun, Wu Jichun. 2011. A global model of recovering the annual mean tritium concentration in atmospheric precipitation[J]. Geological Review, 57(3): 409-418(in Chinese with English abstract).

    陈昌亮. 2015. 长白山玄武岩区地热资源赋存规律及其水化学特征研究[D]. 长春: 吉林大学, 1-83.

    陈荣河. 2016. 高偏硅酸天然矿泉水的生物学效应研究[D]. 福州: 福建医科大学, 1-82.

    陈宗宇, 齐继祥, 张兆吉等. 2010. 北方典型盆地同位素水文地质学方法应用[M]. 北京: 科学出版社.

    段乃金, 亓协全. 2014. 靖宇县矿泉水赋存条件及资源分布特征探析[J]. 地下水, 36(6): 47-48.

    樊祺诚, 杜星星, 隋建立, 赵勇伟. 2010. 汉诺坝-阳原火成碳酸岩成因探讨[J]. 岩石学报, 26(11): 3189-3194. https://kns.cnki.net/kcms2/article/abstract?v=vs6GoGUIqCPRnO_5rpgfqp8mCCVNwbIgneX-GAzvKq8orPSG6OyW_Mr760ugGGxTol4zhOhHMYqCGnlCUm49Dstn32cBI2gmintlKKJK2sb-fdFW3Qdb91H9M8dVmFo_6ZglFPfkYHE=&uniplatform=NZKPT&language=CHS

    高思萌, 温玉娟, 张文卿, 张大志, 杨悦锁. 2019. 五大连池矿泉水的微生物特征和生态健康效应[J]. 应用生态学报, 30(8): 2865-2874.

    郭清海, 王焰新. 2014. 典型新生代断陷盆地内孔隙地下水地球化学过程及其模拟: 以山西太原盆地为例[J]. 地学前缘, 21(4): 83-90. doi: 10.13745/j.esf.2014.04.009

    贾福海, 秦志学, 韩子夜. 1993. 我国玄武岩地下水的基本特征[J]. 水文地质工程地质, (4): 30-32. https://kns.cnki.net/kcms2/article/abstract?v=vs6GoGUIqCNpjkxOs_srD801QD7q0jugClGSX8m4ggmz77kuQZWMwwp3zNHEllQUMIHemP9jAY6W2alj7g_sozclp7cXCUqaN_DGRKV6wszFk1TvnvMdva_DdE3bp-CFc7Xf-veMvok=&uniplatform=NZKPT&language=CHS

    李桂玲, 王国良, 李学宁, 孟利山. 2007. 天津蓟县官庄盆地天然矿泉水田水化学特征及形成条件[J]. 水文地质工程地质, (4): 57-60. https://kns.cnki.net/kcms2/article/abstract?v=vs6GoGUIqCPQK3QhOos2vvhaH7QAKbkhveH1x_YBzil_pfDvCI7N9EaJ-aF2h-D4WFKQN7RwH2aDb2hswYq7vf2qyySOQ7-fHpt3d-M27eIYkE9ndIM1-80hiYIs2LHid4kYvfQ2izg=&uniplatform=NZKPT&language=CHS

    李文宝, 李畅游, 贾德彬, 郝世祺, 刘志娇, 李蕊臻. 2017. 内蒙古中部夏季大气降水中同位素变化[J]. 干旱区研究, 34(6): 1214-1221. doi: 10.13866/j.azr.2017.06.02

    庞俊华, 周兴阳, 庞香多, 何迪. 2008. 靖宇县饮用天然矿泉水分布规律及其开发利用[J]. 吉林地质, (2): 106-109. https://kns.cnki.net/kcms2/article/abstract?v=vs6GoGUIqCMTQXR2nX6aLGQa9viBUBnTmlqDGlnQomHN63N7hsO_vfdsuClGMLcH5ixJ1B20LLQWh7vLKgEGTIxNb-Ip4d-HecoH-Nn2i4SPXxtP1FXTnffQQiOVnWzU8BcCRBJs-WU=&uniplatform=NZKPT&language=CHS

    阮巍. 2018. 昆明市二叠系玄武岩地区矿泉水成因研究[D]. 昆明: 昆明理工大学, 1-107.

    单婷婷, 徐世光, 范柱国, 阮巍. 2019. 昆明西山偏硅酸矿泉水特征及形成机理[J]. 昆明理工大学学报(自然科学版), 44(2): 39-47.

    尚子琦. 2019. 雷琼地区玄武岩泉水水化学特征及成因分析[D]. 北京: 中国地质大学(北京), 1-72.

    沈照理. 1993. 水文地球化学基础[M]. 北京: 地质出版社.

    孙厚云, 孙晓明, 卫晓锋, 陈自然, 刘卫, 黄行凯, 李霞, 殷志强, 刘文波. 2022. 河北承德偏硅酸矿泉水成因模式: 岩石风化与水岩作用证据[J]. 中国地质, 49(4): 1088-1113. doi: 10.12029/gc20220405

    王芳. 2018. 峨眉山天然山泉水水源特性指标分析及分布补给规律[D]. 绵阳: 西南科技大学, 1-49.

    王蕾, 肖长来, 梁秀娟, 姜薇, 闫佰忠, 李树, 王悦刚. 2013. CO2对矿泉水中Sr2+、SiO2形成过程的影响实验研究: 以靖宇县为例[J]. 节水灌溉, (10): 41-43.

    吴秉钧. 1986. 我国大气降水中氚的数值推算[J]. 水文地质工程地质, 13(4): 38-41.

    闫佰忠, 肖长来, 梁秀娟, 马喆, 危润初, 吴世利. 2015. 靖宇县玄武岩区矿泉水特征组分H2SiO3成因实验——以王大山泉为例[J]. 吉林大学学报(地球科学版), (3): 892-898. doi: 10.13278/j.cnki.jjuese.201503204

    殷秀兰, 王庆兵, 凤蔚. 2017. 济南岩溶泉域泉群区水化学与环境同位素研究[J]. 地质学报, 91(7): 1651-1660. doi: 10.19762/j.cnki.dizhixuebao.2017.07.016

    张涛, 蔡五田, 李颖智, 张智印, 耿婷婷, 边超, 赵淼, 蔡月梅. 2017. 尼洋河流域水化学特征及其控制因素[J]. 环境科学, 38(11): 4537-4545. doi: 10.13227/j.hjkx.201704051

    章艳红, 叶淑君, 吴吉春. 2011. 全球大气降水中年平均氚浓度的恢复模型[J]. 地质论评, 57(3): 409-418. doi: 10.16509/j.georeview.2011.03.006

  • 加载中

(14)

(2)

计量
  • 文章访问数:  1234
  • PDF下载数:  67
  • 施引文献:  0
出版历程
收稿日期:  2020-10-27
修回日期:  2021-01-06
刊出日期:  2023-12-25

目录