中国地质调查局 中国地质科学院主办
科学出版社出版

1∶500 000二连–东乌旗成矿带西乌旗和白乃庙地区地质图空间数据库

王树庆, 胡晓佳, 杨泽黎, 刘永顺, 刘洋, 王文龙, 郭硕, 何鹏, 滕飞. 2020. 1∶500 000二连–东乌旗成矿带西乌旗和白乃庙地区地质图空间数据库[J]. 中国地质, 47(S1): 21-31. doi: 10.12029/gc2020Z103
引用本文: 王树庆, 胡晓佳, 杨泽黎, 刘永顺, 刘洋, 王文龙, 郭硕, 何鹏, 滕飞. 2020. 1∶500 000二连–东乌旗成矿带西乌旗和白乃庙地区地质图空间数据库[J]. 中国地质, 47(S1): 21-31. doi: 10.12029/gc2020Z103
WANG Shuqing, HU Xiaojia, YANG Zeli, LIU Yongshun, LIU Yang, WANG Wenlong, GUO Shuo, HE Peng, TENG Fei. 2020. 1∶500 000 Geological Map Spatial Database of the Xiwuqi and Bainaimiao Areas in the Erlian– Dongwuqi Metallogenic Belt[J]. Geology in China, 47(S1): 21-31. doi: 10.12029/gc2020Z103
Citation: WANG Shuqing, HU Xiaojia, YANG Zeli, LIU Yongshun, LIU Yang, WANG Wenlong, GUO Shuo, HE Peng, TENG Fei. 2020. 1∶500 000 Geological Map Spatial Database of the Xiwuqi and Bainaimiao Areas in the Erlian– Dongwuqi Metallogenic Belt[J]. Geology in China, 47(S1): 21-31. doi: 10.12029/gc2020Z103

1∶500 000二连–东乌旗成矿带西乌旗和白乃庙地区地质图空间数据库

  • 基金项目: 中国地质调查局地质调查项目“二连–东乌旗成矿带西乌旗和白乃庙地区地质矿产调查”(DD20160041)
详细信息
    作者简介: 王树庆,男,1983年生,高级工程师,主要从事造山带岩浆作用研究;E–mail: 89617984@qq.com

1∶500 000 Geological Map Spatial Database of the Xiwuqi and Bainaimiao Areas in the Erlian– Dongwuqi Metallogenic Belt

  • Fund Project: Geological Survey Project of China Geological Survey named ‘Geological and Mineral Survey of the Xiwuqi and Bainaimiao Areas in the Erlian-Dongwuqi Metallogenic Belt’ (DD20160041)
More Information
    Author Bio: WANG Shuqing, male, born in 1983, senior engineer, mainly engages in research on magmatism in orogenic belt; E–mail: 89617984@qq.com .
  • 1∶500 000二连–东乌旗成矿带西乌旗和白乃庙地区地质图空间数据库的建设依托2016–2018年实施的中国地质调查局地质调查项目“二连–东乌旗成矿带西乌旗和白乃庙地区地质矿产调查”开展。古生代、中生代、古近纪及新近纪地层以组为单位,侵入岩时代以最新获取的777个LA-ICPMS和SHRIMP 锆石U-Pb年龄为依据,按照“岩性+时代”方法表达。地质图空间数据库的数据量为210 MB,包括地层面图元4682个,侵入岩面图元1938个。所有地质图面图元和同位素年龄点均建立了相应的属性。在编图过程中主要取得了如下成果: 结合生物区系和重要构造边界重新划分了古生代地层分区,新建、重新厘定了关键地层单位,完善了古生代地层格架; 重新厘定了区内古生代侵入岩时空分布及性质,早、晚古生代2阶段岩浆作用是对早、晚古生代2期俯冲增生造山作用的响应; 新识别并在图上表达出早古生代萨音敖包、昌图及晚古生代二道井–迪彦庙、乌兰沟等蛇绿混杂岩,较为细致地刻画了早古生代大洋南北双向俯冲形成的增生造山带结构,对晚古生代洋盆的俯冲与封闭进行了限定,重新划分了构造单元。这些成果和资料对兴蒙造山带研究过程中的古生代构造单元划分、晚古生代构造背景等具有较大分歧的科学问题具有限定作用。该空间数据库是目前兴蒙造山带中段资料最齐全、最新的1∶500 000地质图数据库,反映了本区地质调查和科学研究的最新成果。

  • 加载中
  • 图 1  二连–东乌旗成矿带西乌旗和白乃庙地区地质简图(据Miao LC et al.,2008

    图 2  编图建库工作流程图

    Figure 1. 

    Figure 2. 

    表 1  数据库元数据简表

    条目 描述
    数据库名称 1∶500 000二连–东乌旗成矿带西乌旗和白乃庙地区地质图空间数据库
    数据库作者 王树庆,中国地质调查局天津地质调查中心
    胡晓佳,中国地质调查局天津地质调查中心
    杨泽黎,中国地质调查局天津地质调查中心
    数据时间范围 2014—2018年
    地理区域 地理坐标为:东经110°00′~120°00′,北纬41°40′00″~46°40′00″
    数据格式 MapGIS
    数据量 210 MB
    数据服务系统网址 http://dcc.cgs.gov.cn
    基金项目 中国地质调查局地质调查项目“二连–东乌旗成矿带西乌旗和白乃庙地区地质矿产调查”(DD20160041)
    语种 中文
    数据库组成 本地质图空间数据库包括1∶500 000地质图库、地理图、系统库、字库。地质图库由主图、辅图及图饰组成;主图包括地层、侵入岩、脉岩、地质界线、断层、注记、断层性质及同位素年龄等;辅图包括构造单元划分和地层分区;图饰包括图例、图框、编图参数及责任表等
    下载: 导出CSV

    表 2  二连–东乌旗成矿带西乌旗和白乃庙地区地质图空间数据库地图参数

    坐标系类型 投影类型 椭球参数 比例尺分母 坐标单位 参数比例
    投影平面直角 兰伯特等角圆锥投影坐标系 北京54/克拉索夫斯基1940年椭球 500 000 mm 1∶1
    第一标准经纬度 第二标准经纬度 中央子午线经度 投影原点纬度 图框经度范围 图框纬度范围
    42°50′00″ 45°40′00″ 114°00′00″ 41°30′00″ 109°56′00″~
    119°56′00″
    41°33′00″~
    46°53′00″
    下载: 导出CSV

    表 3  编图工作主要进展

    进展 前人观点 具体内容 意义
    重新划分了古生代地层分区 以贺根山蛇绿岩带为界划分为天山兴蒙和华北地层大区 以贺根山、索伦–西拉沐伦蛇绿岩带为界将兴蒙造山带中段的古生代地层划分为洪格尔–东乌旗、锡林浩特和包尔汗图–白乃庙3个地层区 与前人地层分区方案相比,本次除考虑生物区系划分外,结合蛇绿岩等重要构造边界的分区意义,与构造单元划分统一起来
    在洪格尔–东乌旗地层分区新建早泥盆世吉林宝力格组(D1j)、晚泥盆世汗乌拉巴格组(D3h)、早石炭世汗敖包组(C1h) 本次新建 新发现的Monograptus uniformis笔石组合指示吉林宝力格组为早泥盆世早期半深海沉积;含有斜方薄皮木等植物化石的晚泥盆世晚期汗乌拉巴格组为海陆交互相沉积;早石炭世汗敖包组为陆相火山岩建造 进一步完善了东乌旗地区晚古生代地层格架。本区从顶志留世卧都河组以来进入泥盆纪连续的被动陆缘沉积,直到晚泥盆世向陆相转变
    重新厘定了温都尔庙群、白乃庙组、阿木山组及寿山沟组 温都尔庙群(长城系–蓟县系):下部桑达来呼都格火山岩,上部为哈尔哈达组碎屑岩;白乃庙组(青白口系):长英质及基性片岩;阿木山组:塔林宫地区建组 将温都尔庙群原划桑达来呼都格组重新厘定为二叠纪蛇绿混杂岩和洋岛海山建造,原划哈尔哈达组保留,时代为奥陶纪;将白乃庙组时代重新厘定为早奥陶世–中志留世;根据新识别出的植物化石,将达茂旗北塔林宫地区阿木山组下部与赤峰地区白家店组对比,上部与酒局子组对比;明确西乌旗地区寿山沟为半深海相浊积岩沉积 早古生代温都尔庙群为弧前增生楔,白乃庙组代表岩浆弧,与早古生代蛇绿岩共同代表了南部沟弧盆体系;晚古生代阿木山组的重新厘定,解决了地层分区与构造单元划分的不一致,使之统一起来。寿山沟组沉积环境表明晚古生代洋盆并未封闭
    重新厘定了古生代侵入岩时空分布及性质 部分年龄为K–Ar、Rb–Sr方法测定 本次编图根据锆石U–Pb年龄更新了兴蒙造山带中段古生代侵入岩时代,全区大部分侵入体都有精确年龄限定。在二连–东乌旗地区,将大量原划二叠纪侵入岩重新厘定为石炭纪和白垩纪,将泥盆纪侵入岩重新厘定为奥陶纪;将白音宝力道地区泥盆纪侵入岩重新厘定为奥陶纪和志留纪 兴蒙造山带中段古生代岩浆作用主要分为奥陶纪–早志留世和晚石炭–早二叠世两期,分别代表了早、晚古生代大洋俯冲及弧陆碰撞和碰撞造山过程。与前人相比,汇聚了大量高精度锆石年龄,明确了岩浆作用时空分布及构造背景及对造山过程的约束
    在早古生代北部造山带/弧盆系新识别出萨音敖包蛇绿混杂岩 本次工作新厘定 在阿巴嘎旗南部萨音敖包地区新识别出早古生代(519 Ma)蛇绿岩,并在其中识别出代表初始俯冲的玻安质岩石,其北侧为岛弧型侵入岩(485~493 Ma),南侧为温都尔庙群哈尔哈达组增生楔,指示大洋向北的俯冲极性 进一步明确了早古生代大洋向南北双向俯冲的构造格局,较为细致的刻画了增生造山带结构–由洋向两侧分别为增生楔、蛇绿岩、岛弧及弧后盆地
    在图上表达出二道井–迪彦庙蛇绿岩带 本次工作新厘定 分布于苏右旗南部二道井(298 Ma)、达青牧场(314~318 Ma)和迪彦庙(340 Ma)地区,位于石炭纪白音宝力道–西乌旗岛弧南侧,代表了石炭纪大洋板片向北俯冲。时代介于贺根山与索伦–西拉沐伦蛇绿岩之间 与苏尼特左旗–西乌旗岛弧及沉积建造共同代表了西拉沐伦蛇绿岩北侧发育的石炭纪增生带,反映了由北向南逐次拼贴增生的过程
    新识别出乌兰沟早二叠世蛇绿岩 原划为温都尔庙群桑达来呼都格组 乌兰沟地区原划温都尔庙群桑达来呼都格组中识别出早二叠世蛇绿混杂岩,辉长岩年龄为292±10 Ma,其中还发育洋岛海山建造(包括OIB型玄武岩和盖帽碳酸盐岩)。蛇绿岩类型为SSZ型 进一步明确了索伦–乌兰沟–西拉沐伦蛇绿岩带的空间分布、时代及分区意义,对构造单元划分及地层分区具有重要约束作用。同时二叠纪SSZ型蛇绿岩的确定也表明晚古生代洋盆未封闭
    重新划分了构造单元 以贺根山蛇绿岩带为界划分为北部西伯利亚板块和南部华北板块 以索伦–西拉沐伦蛇绿岩带为界将兴蒙造山带中段划分为北部的西伯利亚板块和南部的华北板块2个一级构造单元,再以贺根山蛇绿岩带为界将北部西伯利亚板块划分为西伯利亚东南缘陆缘增生带和锡林浩特复合增生带2个二级构造单元,南侧华北板块以赤峰–白云鄂博断裂划分为华北北缘增生带和华北陆块2个二级构造单元 考虑到增生造山带的生长方式,将蛇绿岩作为一级构造单元–板块的界线,其他都是拼贴在板块边缘的岛弧、微陆块、增生楔等地体。与前人划分方案相比,未将造山带作为独立构造单元来划分
    下载: 导出CSV

    Table 1.  Metadata Table of Database (Dataset)

    Items Description
    Database (dataset) name 1∶500 000 Geological Map Spatial Database of the Xiwuqi and Bainaimiao Areas in the Erlian-Dongwuqi Metallogenic Belt
    Database (dataset) authors Wang Shuqing, Tianjin Center, China Geological Survey
    Hu Xiaojia, Tianjin Center, China Geological Survey
    Yang Zeli, Tianjin Center, China Geological Survey
    Data acquisition time 2014—2018
    Geographic area 110°00'–120°00' E, 41° 40'00"–46°40'00" N
    Data format MapGIS
    Data size 210 MB
    Data service system URL http://dcc.cgs.gov.cn
    Fund project China Geological Survey project named ‘Geological and Mineral Survey of the Xiwuqi and Bainaimiao Areas in the Erlian-Dongwuqi Metallogenic Belt’ (DD20160041)
    Language Chinese
    Database (dataset) composition This geological map spatial database includes a 1∶500 000 geological map database, geographical map, system database and font database. The geological map database consists of a main map, auxiliary map and map appearance. The main map includes strata, intrusive rocks, dikes, geological boundaries, faults, annotations, fault properties and isotopic age. The auxiliary map includes tectonic unit division and stratigraphic division. The map appearance includes a legend, drawing frame, drawing parameters and the author information.
    下载: 导出CSV

    Table 2.  Parameters of the geological map spatial database of the Xiwuqi and Bainaimiao areas in the Erlian-Dongwuqi metallogenic belt

    Coordinate system type Projection type Ellipsoid parameter Scale denominator Coordinate unit Parameter proportion
    Projection rectangular coordinates Coordinate system of Lambert isometric conical projection Beijing 54/Ellipsoid Krasovski 1940 500 000 mm 1∶1
    First standard longitude and latitude Second standard longitude and latitude Longitude of central meridian Latitude of projection origin Frame longitude range Frame latitude range
    42°50′00″ 45°40′00″ 114°00′00″ 41°30′00″ 109°56′00″–
    119°56′00″
    41°33′00″–
    46°53′00″
    下载: 导出CSV

    Table 3.  Main achievements in map compilation

    Achievement Previous study Specific Content Significance
    Paleozoic stratigraphic sub-regions are re-divided The Xing’an–Mongolian Orogeny is divided into the Tianshan-Xingmeng and North China stratigraphic regions by the Hegenshan ophiolitic belt With the Hegenshan-Suolun-Xilamulun ophiolitic belt as the boundary, the Paleozoic strata in the middle part of the Xing’an–Mongolian orogeny are divided into three stratigraphic areas, namely, Hongeer-Dongwuqi, Xilinhaote and Baoerhantu-Bainaimiao Compared with previous stratigraphic zoning schemes, besides considering the division of biota, we considered important tectonic boundaries, such as ophiolitic belts, in stratigraphic division
    The Early Devonian Jilin Baolige Formation (D1j), the Late Devonian Hanwulabage Formation (D3h) and the Early Carboniferous Hanaobao Formation (C1h) have been newly established in the Honge’er-Dongwuqi stratigraphic sub-region Newly established in this project The newly discovered Monograptus uniformis graptolite assemblage indicates that the Jilinabolige Formation is a semi-deep-sea deposit in the Early Devonian. The Hanwulabage Formation in the late Devonian, which contains plant fossils such as Schizocarpus orbicularis, is a set of marine-terrigenous facies sediments. The Hanaobao Formation in the Early Carboniferous is a continental volcanic rock formation The Late Paleozoic stratigraphic framework in the Dongwuqi area has been further improved. This area had continuous passive continental margin deposit since the Woduhe Formation in the Pridoli series and has transitioned to continental facies in the Late Devonian, ending the oceanic evolution
    The Wenduermiao Group, Bainaimiao Formation, Amushan Formation and Shoushangou Formation have been redefined The Wenduermiao Group (Changcheng System-Jixian System): the lower part consists of Sangdalaihuduge volcanic rock and the upper part consists of clastic rocks of the Haarhadda Formation; the Bainaimiao Formation (Qingbaikou System): felsic and basic schist; Amushan Formation: established in the Talinggong area The original Wenduermiao Group, Sangdalaihuduge Formation, is redefined as a Permian ophiolitic mélange and ocean island seamount formation, while the original Haarhadda Formation is preserved as an Ordovician formation. The era of the Bainaimiao Formation is redefined as Early Ordovician-Middle Silurian. According to the newly identified plant fossils, the Amushan Formation in the northern Talingong area of Damaoqi is correlated with the Baijiadian Formation in the Chifeng area in the lower part, and with the Jiujuzi Formation in the upper part. It is clear that Shoushangou in the Xiwuqi area is a turbidite deposit with semi-deep-sea facies. The Early Paleozoic Wenduermiao Group is a pre-arc accretionary wedge, and the Bainaimiao Formation represents magmatic arc, which together with the Early Paleozoic ophiolite represents the southern trench-arc basin system. The redefinition of the Late Paleozoic Amushan Formation has reconciled the inconsistencies between stratigraphic division and tectonic unit division in an effort to unify them. The sedimentary environment of the Shoushangou Formation indicates that the Late Paleozoic ocean basin has not closed
    The temporal-spatial distribution and properties of Paleozoic intrusive rocks have been re-determined The era is partially determined by the K-Ar, Rb-Sr method. According to zircon in-situ U-Pb aging, this map updates the era of the Paleozoic intrusive rocks in the middle part of the Xing’an–Mongolian orogeny. Most of the intrusive bodies in the study area are of precise ages. In the Erlian-Dongwuqi area, a large number of intrusive rocks originally classified as Permian are redefined as Carboniferous and Cretaceous, and the Devonian intrusive rocks in Baiyinbaolidao area are redefined as Ordovician and Silurian Paleozoic magmatism in the middle part of the Xing’an–Mongolian orogeny is divided into two main stages: Ordovician-Early Silurian and Late Carboniferous-Early Permian, respectively representing the Early and Late Paleozoic ocean subduction, arc-continent collision and final closure of the ocean. Compared with previous compilation efforts, we have gathered a large number of high-precision zircon ages, and have clearly defined the temporal-spatial distribution of magmatism, tectonic background and constraints on the orogeny processes
    The Sayin Aobao Ophiolitic Mélange is newly identified in the Early Paleozoic Northern Orogenic Belt/Arc Basin System Newly determined in this map compilation The Early Paleozoic (519 Ma) ophiolite is newly identified in the Sayin Aobao area in the south of Abaga Banner, in which Bininitic rocks representing initial subduction were identified. The north side features island arc intrusive rocks (485–493 Ma), and the south side features accretionary wedge of the Haarhadda Formation of the Wenduermiao Group, indicating the northward subduction polarity The tectonic pattern of bi-direction subduction of the Early Paleozoic ocean is further clarified and the accretionary orogenic belt structure is described in detail; namely, accretionary wedge, ophiolite, island arc and back-arc basin on both sides from the ocean
    The Erdaojing-Diyanmiao ophiolitic belt is expressed on the map Newly determined in this project. Distributed in the Erdaojing (298 Ma), Daqingmuchang (314–318 Ma) and Diyanmiao (340 Ma) areas in the south of the Sunidyou Banner; located on the south side of the Carboniferous Baiyinbaolidao-Xiwuqi Island Arc, representing northward subduction of the Carboniferous ocean; age is between Hegenshan and Suolun-Xilamulun ophiolite Together with the Sunitezuoqi-Xiwuqi island arc and sedimentary formation, it represents the Carboniferous accretion zone developed on the northern side of the Xilamulun ophiolite, reflecting the process of successive collision and accretion from north to south
    The Early Permian ophiolite in Wulangou is newly identified Originally included in the Sandalaihuduge Formation of the Wenduermiao Group The Early Permian Ophiolitic Mélange is identified in the Sandalaihuduge Formation of the Wenduermiao Group in the Wulangou area. Gabbro age is 292± 10 Ma and ocean island seamount formation (including OIB basalt and cap carbonate) is also developed. The ophiolite is of SSZ type The spatial distribution, age and zoning significance of the Suolun-Wulangou-Xilamulun ophiolitic belt are further clarified, which is conducive to more precise tectonic unit division and stratigraphic division. Meanwhile, the determination of the Permian SSZ ophiolite also indicates that the Late Paleozoic ocean basin has not closed
    Tectonic units are re-divided Bounded by the Hegenshan ophiolitic belt, it is divided into the northern Siberian plate and North China plate With the Suolun-Xilamulun ophiolitic belt as the boundary, the middle part of the Xing’an–Mongolian orogeny is divided into two first-order tectonic units: the northern Siberian plate and the North China plate in the south. The northern Siberian plate is divided into two secondary tectonic units, specifically, the continental margin accretion zone and the Xilinhot composite accretion zone. While the North China plate on the south side is divided into two secondary tectonic units, namely, the northern margin accretion zone and the North China continental block, with the boundary of the Chifeng–Bayan Obo fault Considering the growth mode of accretionary orogenic belts, ophiolite is adopted as a main boundary of the first-class tectonic unit (plate), while the others are geobodies attached at the edge of the plate, such as island arcs, micro-continents and accretionary wedges. In contrast with previous division schemes, the orogenic belt is not taken as an independent tectonic unit
    下载: 导出CSV
  • [1]

    Chen B, Jahn B M, Tian W. 2009. Evolution of the Solonker suture zone: Constraints from zircon U-Pb ages, Hf isotopic ratios and whole-rock Nd-Sr isotope compositions of subduction- and collision-related magmas and forearc sediments[J]. Journal of Asian Earth Sciences, 34(3): 245−257. doi: 10.1016/j.jseaes.2008.05.007

    [2]

    Jian P, Liu D Y, Kröner A, Windley B F, Shi Y R, Zhang W, Zhang F Q, Miao L C, Zhang L Q, Tomurhuu D. 2010. Evolution of a Permian intraoceanic arc-trench system in the Solonker suture zone, Central Asian Orogenic Belt, China and Mongolia[J]. Lithos, 118(1–2): 169−190. doi: 10.1016/j.lithos.2010.04.014

    [3]

    Jian P, Liu D, Kröner A, Windley B F, Shi Y R, Zhang F Q, Shi G H, Miao L C, Zhang W, Zhang Q, Zhang L Q, Ren J S. 2008. Time scale of an early to mid-Paleozoic orogenic cycle of the long-lived Central Asian Orogenic Belt, Inner Mongolia of China: Implications for continental growth[J]. Lithos, 101(3–4): 233−259. doi: 10.1016/j.lithos.2007.07.005

    [4]

    Jian P, Kröner A, Windley B F, Shi Y R, Zhang W, Zhang L Q, Yang W R. 2012. Carboniferous and Cretaceous mafic-ultramafic massifs in Inner Mongolia (China): A SHRIMP zircon and geochemical study of the previously presumed integral “Hegenshan ophiolite”[J]. Lithos, 142–143: 48−66. doi: 10.1016/j.lithos.2012.03.007

    [5]

    Li J Y. 2006. Permian geodynamic setting of Northeast China and adjacent regions: closure of the Paleo-Asian Ocean and subduction of the Paleo-Pacific Plate[J]. Journal of Asian Earth Sciences, 26(3–4): 207−224. doi: 10.1016/j.jseaes.2005.09.001

    [6]

    Li Y J, Wang G H, Santosh M, Wang J F, Dong P P, Li H Y. 2018. Supra-subduction zone ophiolites from Inner Mongolia, North China: Implications for the tectonic history of the southeastern Central Asian Orogenic Belt[J]. Gondwana Research, 59: 126−143. doi: 10.1016/j.gr.2018.02.018

    [7]

    Li Y J, Wang G H, Santosh M, Wang J F, Dong P P, Li H Y. 2020. Subduction initiation of the SE Paleo-Asian Ocean: Evidence from a well preserved intra-oceanic forearc ophiolite fragment in central Inner Mongolia, North China[J]. Earth and Planetary Science Letters, 535: 116087. doi: 10.1016/j.jpgl.2020.116087

    [8]

    Liu J F, Li J Y, Chi X G, Qu J F, Hu Z C, Fang S, Zhang Z. 2013. A late-Carboniferous to early early-Permian subduction-accretion complex in Daqing pasture, southeastern Inner Mongolia: Evidence of northward subduction beneath the Siberian paleoplate southern margin[J]. Lithos, 177: 285−296. doi: 10.1016/j.lithos.2013.07.008

    [9]

    Liu Y J, Li W M, Feng Z Q, Wen Q B, Neubauer F, Liang C Y. 2017. A review of the Paleozoic tectonics in the eastern part of Central Asian Orogenic Belt[J]. Gondwana Research, 43: 123−148. doi: 10.1016/j.gr.2016.03.013

    [10]

    Luo Z W, Xu B, Shi G Z, Zhao P, Faure M, Chen Y. 2016. Solonker ophiolite in Inner Mongolia, China: A late Permian continental margin-type ophiolite[J]. Lithos, 261: 72−91. doi: 10.1016/j.lithos.2016.03.001

    [11]

    Miao L C, Fan W M, Liu D Y, Zhang F Q, Shi Y R, Guo F. 2008. Geochronology and geochemistry of the Hegenshan ophiolitic complex: Implications for late-stage tectonic evolution of the Inner Mongolia-Daxinganling Orogenic Belt, China[J]. Journal of Asian Earth Sciences, 32(5–6): 348−370. doi: 10.1016/j.jseaes.2007.11.005

    [12]

    Wan B, Li S H, Xiao W J, Windley B F. 2018. Where and when did the Paleo-Asian ocean form?[J]. Precambrian Research, 317: 241−252. doi: 10.1016/j.precamres.2018.09.003

    [13]

    Wei R H, Gao Y F, Xu S C, Santosh M, Xin H T, Zhang Z M, Li W L, Liu Y F. 2018. Carboniferous continental arc in the Hegenshan accretionary belt: Constrains from plutonic complex in central Inner Mongolia[J]. Lithos, 308–309: 242−261. doi: 10.1016/j.lithos.2018.03.010

    [14]

    Xiao W J, Windley B F, Han C M, Liu W, Wan B, Zhang J E, Ao S J, Zhang Z Y, Song D F. 2018. Late Paleozoic to Early Triassic multiple roll-back and oroclinal bending of the Mongolia collage in Central Asia[J]. Earth-Science Reviews, 186: 94−128. doi: 10.1016/j.earscirev.2017.09.020

    [15]

    Xiao W J, Windley B F, Hao J, Zhai M G. 2003. Accretion leading to collision and the Permian Solonker Suture, Inner Mongolia, China; termination of the Central Asian orogenic belt[J]. Tectonics, 22(6): 1069.

    [16]

    Xiao W J, Windley B F, Sun S, Li J L, Huang B C, Han C M, Yuan C, Sun M, Chen H L. 2015. A Tale of Amalgamation of Three Permo-Triassic Collage Systems in Central Asia: Oroclines, Sutures, and Terminal Accretion[J]. Annual Review of Earth & Planetary Sciences, 43(1): 477−507.

    [17]

    Xu B, Charvet J, Chen Y, Zhao P, Shi G Z. 2013. Middle Paleozoic convergent orogenic belts in western Inner Mongolia (China): framework, kinematics, geochronology and implications for tectonic evolution of the Central Asian Orogenic Belt[J]. Gondwana Research, 23(4): 1342−1364. doi: 10.1016/j.gr.2012.05.015

    [18]

    Xu B, Zhao P, Wang Y Y, Liao W, Luo Z W, Bao Q Z, Zhou Y H. 2015. The pre-Devonian tectonic framework of Xing’an-Mongolia orogenic belt (XMOB) in North China[J]. Journal of Asian Earth Sciences, 97(Part B): 183−196.

    [19]

    Zhang S H, Zhao Y, Song B, Yang Z Y, Hu J M, Wu H. 2007. Carboniferous granitic plutons from the northern margin of the North China block: implications for a late Palaeozoic active continental margin[J]. Journal of the Geological Society, 164(2): 451−463. doi: 10.1144/0016-76492005-190

    [20]

    Zhang S H, Zhao Y, Song B, Hu J M, Liu S W, Yang Y H, Chen F K, Liu X M, Liu J. 2009. Contrasting Late Carboniferous and Late Permian-Middle Triassic intrusive suites from the northern margin of the North China craton: Geochronology, petrogenesis, and tectonic implications[J]. Geological Society of America Bulletin, 121(1–2): 181−200.

    [21]

    Zhang S H, Zhao Y, Ye H, Liu J M, Hu Z C. 2014. Origin and evolution of the Bainaimiao arc belt: Implications for crustal growth in the southern Central Asian orogenic belt[J]. Geological Society of America Bulletin, 126(9–10): 1275−1300. doi: 10.1130/B31042.1

    [22]

    Zhang Z C, Li K, Li J F, Tang W H, Chen Y, Luo Z W. 2015. Geochronology and geochemistry of the Eastern Erenhot ophiolitic complex: Implications for the tectonic evolution of the Inner Mongolia-Daxinganling Orogenic Belt[J]. Journal of Asian Earth Sciences, 97(Part B): 279−293.

    [23]

    Zhou J B, Wilde S A, Zhao G C, Han J. 2018. Nature and assembly of microcontinental blocks within the Paleo-Asian Ocean[J]. Earth-Science Reviews, 186: 76−93. doi: 10.1016/j.earscirev.2017.01.012

    [24]

    鲍庆中, 张长捷, 吴之理, 王宏, 李伟, 桑家和, 刘永生. 2007. 内蒙古白音高勒地区石炭纪石英闪长岩SHRIMP锆石U-Pb年代学及其意义[J]. 吉林大学学报(地球科学版), 37(1): 15−23. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cckjdxxb200701003

    [25]

    郭喜运, 孙华山, 董挨管, 任建勋, 徐瑞英, 高博. 2019. 内蒙古锡林浩特北早二叠世花岗岩类定年及成因[J]. 中国地质, 46(6): 1396−1409. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi201906012

    [26]

    何付兵, 魏波, 徐吉祥, 孙永华, 李瑞杰. 2017. 内蒙古巴彦敖包地区宝力高庙组火山岩地球化学特征、锆石U-Pb年龄及地质意义[J]. 中国地质, 44(6): 1159−1174. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi201706011

    [27]

    李锦轶, 刘建峰, 曲军峰, 郑荣国, 赵硕, 张进, 孙立新, 李永飞, 杨晓平, 王励嘉. 2019a. 中国东北地区主要地质特征和地壳构造格架[J]. 岩石学报, 35(10): 2989−3016. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201910005

    [28]

    李锦轶, 刘建峰, 曲军峰, 郑荣国, 赵硕, 张进, 王励嘉, 张晓卫. 2019b. 中国东北地区古生代构造单元: 地块还是造山带?[J]. 地球科学, 44(10): 3157−3177.

    [29]

    李文国, 李庆富, 姜万德. 1996. 内蒙古自治区岩石地层[M]. 武汉: 中国地质大学出版社.

    [30]

    刘永江, 冯志强, 蒋立伟, 金巍, 李伟民, 关庆彬, 温泉波, 梁琛岳. 2019. 中国东北地区蛇绿岩[J]. 岩石学报, 35(10): 3017−3047. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201910006

    [31]

    刘永江, 张兴洲, 金巍, 迟效国, 王成文, 马志红, 韩国卿, 温泉波, 赵英利, 王文弟, 赵喜峰. 2010. 东北地区晚古生代区域构造演化[J]. 中国地质, 37(4): 943−951. doi: 10.3969/j.issn.1000-3657.2010.04.010

    [32]

    邵济安, 何国琦, 唐克东. 2015. 华北北部二叠纪陆壳演化[J]. 岩石学报, 31(1): 47−55. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201501003

    [33]

    邵济安, 唐克东, 何国琦. 2014. 内蒙古早二叠世构造古地理的再造[J]. 岩石学报, 30(7): 1858−1866. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201407002

    [34]

    孙立新, 张云, 李影, 张永, 任邦方, 张天福. 2017. 内蒙古赤峰地区晚泥盆世双峰式火山岩地球化学特征与板内伸展事件[J]. 中国地质, 44(2): 371−388. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi201702012

    [35]

    孙立新, 任邦方, 王树庆, 许新英, 张云. 2018. 内蒙古苏尼特左旗中元古代片麻状花岗岩的成因及大地构造意义[J]. 地质学报, 92(11): 3−25. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb201811001

    [36]

    王金芳, 李英杰, 李红阳, 董培培. 2018. 内蒙古梅劳特乌拉蛇绿岩中早二叠世高镁闪长岩的发现及洋内俯冲作用[J]. 中国地质, 45(4): 706−719. doi: 10.12029/gc20180405

    [37]

    王树庆, 辛后田, 胡晓佳, 张永, 赵华雷, 耿建珍, 杨泽黎, 滕学建, 李艳锋. 2016. 内蒙古乌兰敖包图早古生代侵入岩年代学、地球化学特征及地质意义[J]. 地球科学, 41(4): 555−569. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201604001

    [38]

    王树庆, 胡晓佳, 赵华雷. 2019. 内蒙古苏左旗洪格尔地区新发现晚石炭世碱性花岗岩[J]. 地质调查与研究, 42(2): 81−85. doi: 10.3969/j.issn.1672-4135.2019.02.001

    [39]

    王树庆, 胡晓佳, 杨泽黎. 2020. 1∶500 000 二连−东乌旗成矿带西乌旗和白乃庙地区地质图空间数据库[DB/OL]. 地质科学数据出版系统. (2020-06-30). DOI:10.35080/data.H.2020.P3.

    [40]

    徐备, 王志伟, 张立杨, 王智慧, 杨振宁, 贺跃. 2018. 兴蒙陆内造山带[J]. 岩石学报, 34(10): 2819−2844. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201810002

    [41]

    徐备, 赵盼, 鲍庆中, 周永恒, 王炎阳, 罗志文. 2014. 兴蒙造山带前中生代构造单元划分初探[J]. 岩石学报, 30(7): 1841−1857. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201407001

    [1]

    Bao Qingzhong, Zhang Changjie, Wu Zhili, Wang Hong, Li Wei, Sang Jiahe, Liu Yongsheng. 2007. SHRIMP U–Pb Zircon Geochronology of a Carboniferous Quartz Diorite in Baiyingaole Area, Inner Mongolia and Its Implications[J]. Journal of Jilin University (Earth Science Edition), 37(1): 15−23 (in Chinese with English abstract).

    [2]

    Chen Bin, Jahn Borming, Tian Wei. 2009. Evolution of the Solonker suture zone: Constraints from zircon U-Pb ages, Hf isotopic ratios and whole-rock Nd-Sr isotope compositions of subduction- and collision-related magmas and forearc sediments[J]. Journal of Asian Earth Sciences, 34(3): 245−257. doi: 10.1016/j.jseaes.2008.05.007

    [3]

    Guo Xiyun, Sun Huashan, Dong Aiguan, Ren Jianxun, Xu Ruiying, Gao Bo. 2019. The genesis and dating of the Early Permian granitic rock in the north of Xilin Hot, Inner Mongolia[J]. Geology in China, 46(6): 1396−1409 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi201906012

    [4]

    He Fubing, Wei Bo, Xu Jixiang, Sun Yonghua, Li Ruijie. 2017. Ages, origin and geological implications of the volcanic rocks in the Baoligaomiao Formation of East Ujimqin Banner, Inner Mongolia[J]. Geology in China, 44(6): 1159−1174 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi201706011

    [5]

    Jian Ping, Liu Dunyi, Kröner Alfred, Windley Brian F, Shi Yuruo, Zhang Wei, Zhang Fuqin, Miao Laicheng, Zhang Lvqiao, Tomurhuu Dondov. 2010. Evolution of a Permian intraoceanic arc-trench system in the Solonker suture zone, Central Asian Orogenic Belt, China and Mongolia[J]. Lithos, 118(1–2): 169−190. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=40ff8aa320c272880289a116d19525f3

    [6]

    Jian Ping, Liu Dunyi, Kröner Alfred, Windley Brian F, Shi Yuruo, Zhang Fuqin, Shi Guanghai, Miao Laicheng, Zhang Wei, Zhang Qi, Zhang Lvqiao, Ren Jishun. 2008. Time scale of an early to mid-Paleozoic orogenic cycle of the long-lived Central Asian Orogenic Belt, Inner Mongolia of China: Implications for continental growth[J]. Lithos, 101(3–4): 233−259.

    [7]

    Jian Ping, Kröner Alfred, Windley Brian F, Shi Yuruo, Zhang Wei, Zhang Lvqiao, Yang Weiran. 2012. Carboniferous and Cretaceous mafic–ultramafic massifs in Inner Mongolia (China): A SHRIMP zircon and geochemical study of the previously presumed integral “Hegenshan ophiolite”[J]. Lithos, 142–143: 48−66.

    [8]

    Li Jinyi. 2006. Permian geodynamic setting of Northeast China and adjacent regions: closure of the Paleo-Asian Ocean and subduction of the Paleo-Pacific Plate[J]. Journal of Asian Earth Sciences, 26(3–4): 207−224.

    [9]

    Li Jinyi, Liu Jianfeng, Qu Junfeng, Zheng Rongguo, Zhao Shuo, Zhang Jin, Sun Lixin, Li Yongfei, Yang Xiaoping, Wang Lijia, Zhang Xiaowei. 2019a. Major geological features and crustal tectonic framework of Northeast China[J]. Acta Petrologica Sinica, 35(10): 2989−3016 (in Chinese with English abstract). doi: 10.18654/1000-0569/2019.10.04

    [10]

    Li Jinyi, Liu Jianfeng, Qu Junfeng, Zheng Rongguo, Zhao Shuo, Zhang Jin, Wang Lijia, Zhang Xiaowei. 2019b. Paleozoic Tectonic Units of Northeast China: Continental Blocks or Orogenic Belts?[J]. Earth Science, 44(10): 3157−3177 (in Chinese with English abstract).

    [11]

    Li Wenguo, Li Qingfu, Jiang Wande. 1996. Lithostratigtaphy of Inner Mongolian Autonomous Region[M]. Wuhang: China University of Geosciences Press, 354 (in Chinese).

    [12]

    Li Yingjie, Wang Genhou, Santosh M, Wang Jingfang, Dong Peipei, Li Hongying. 2018. Supra-subduction zone ophiolites from Inner Mongolia, North China: Implications for the tectonic history of the southeastern Central Asian Orogenic Belt[J]. Gondwana Research, 59: 126−143. doi: 10.1016/j.gr.2018.02.018

    [13]

    Li Yingjie, Wang Genhou, Santosh M, Wang Jinfang, Dong Peipei, Li Hongying. 2020. Subduction initiation of the SE Paleo-Asian Ocean: Evidence from a well preserved intra-oceanic forearc ophiolite fragment in central Inner Mongolia, North China[J]. Earth and Planetary Science Letters, 535: 116087. doi: 10.1016/j.jpgl.2020.116087

    [14]

    Liu Jianfeng, Li Jinyi, Chi Xiaoguo, Qu Junfeng, Hu Zhaochu, Fang Shu, Zhang Zhong. 2013. A late-Carboniferous to early early-Permian subduction–accretion complex in Daqing pasture, southeastern Inner Mongolia: Evidence of northward subduction beneath the Siberian paleoplate southern margin[J]. Lithos, 177: 285−296. doi: 10.1016/j.lithos.2013.07.008

    [15]

    Liu Yongjiang, Zhang Xingzhou, Jin Wei, Chi Xiaoguo, Wang Chengwen, Ma Zhihong, Han Guoqing, Wen Quanbo, Zhao Yingli, Wang Wendi, Zhao Xifeng. 2010. Late Paleozoic tectonic evolution in Northeast China[J]. Geology in China, 37(4): 943−951 (in Chinese with English abstract).

    [16]

    Liu Yongjiang, Li Weimin, Feng Zhiqiang, Wen Quanbo, Neubauer Franz, Liang Chenyue. 2017. A review of the Paleozoic tectonics in the eastern part of Central Asian Orogenic Belt[J]. Gondwana Research, 43: 123−148. doi: 10.1016/j.gr.2016.03.013

    [17]

    Liu Yongjiang, Feng Zhiqiang, Jiang Liwei, Jin Wei, Li Weimin, Guan Qingbin, Wen Quanbo, Liang Chenyue. 2019. Ophiolite in the eastern Central Asian Orogenic Belt, NE China[J]. Acta Petrologica Sinica, 35(10): 3017−3047 (in Chinese with English abstract). doi: 10.18654/1000-0569/2019.10.05

    [18]

    Luo Z W, Xu B, Shi G Z, Zhao P, Faure M, Chen Y. 2016. Solonker ophiolite in Inner Mongolia, China: A late Permian continental margin-type ophiolite[J]. Lithos, 261: 72−91. doi: 10.1016/j.lithos.2016.03.001

    [19]

    Miao L C, Fan W M, Liu D Y, Zhang F Q, Shi Y R, Guo F. 2008. Geochronology and geochemistry of the Hegenshan ophiolitic complex: Implications for late-stage tectonic evolution of the Inner Mongolia-Daxinganling Orogenic Belt, China[J]. Journal of Asian Earth Sciences, 32(5–6): 348−370.

    [20]

    Shao Ji’an, Tang Kedong, He Guoqi. 2014. Early Permian tectono-palaeogeographic reconstruction of Inner Mongolia, China[J]. Acta Petrologica Sinica, 30(7): 1858−1866 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201407002

    [21]

    Shao Ji’an, He Guoqi, Tang Kedong. 2015. The evolution of Permian continental crust in northern part of North China[J]. Acta Petrologica Sinica, 31(1): 47−55 (in Chinese with English abstract).

    [22]

    Sun Lixin, Zhang Yun, Li Ying, Zhang Yong, Ren Bangfang, Zhang Tianfu. 2017. Geochemical characteristics and intraplate extension of Late Devonian bimodal volcanic rocks in Chifeng area of Inner Mongolia[J]. Geology in China, 44(2): 371−388 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi201702012

    [23]

    Sun Lixin, Ren Bangfang, Wang Shuqing, Xu Xinying, Zhang Yun. 2018. Petrogenesis of the Mesoproterozoic Gneissic Granite in the Sonid Left Banner Area, Inner Mongolia, and Its Tectonic Implications[J]. Acta Geologica Sinica, 92(11): 3−25 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb201811001

    [24]

    Wan B, Li S H, Xiao W J, Windley B F. 2018. Where and when did the Paleo-Asian ocean form?[J]. Precambrian Research, 317: 241−252. doi: 10.1016/j.precamres.2018.09.003

    [25]

    Wang Jinfang, Li Yingjie, Li Hongyang, Dong Peipei. 2018. The discovery of the Early Permian high-Mg diorite in Meilaotewula SSZ ophiolite of Inner Mongolia and and its Intra-oceanic Subduction[J]. Geology in China, 45(4): 706−719 (in Chinese with English abstract).

    [26]

    Wang Shuqing, Xin Houtian, Hu Xiaojia, Zhang Yong, Zhao Hualei, Geng Jianzhen, Yang Zeli, Teng Xuejian, Li Yanfeng. 2016. Geochronology, Geochemistry and Geological Significance of Early Paleozoic Wulanaobaotu Intrusive Rocks, Inner Mongolia[J]. Earth Science, 41(4): 555−569 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201604001

    [27]

    Wang Shuqing, Hu Xiaojia, Zhao Hualei. 2019. Geochronology of Late Carboniferous alkaline granite from Hongeer area, Sunidzuoqi, Inner Mongolia[J]. Geological Survey and Research, 42(2): 81−85 (in Chinese with English abstract).

    [28]

    Wang Shuqing, Hu Xiaojia, Yang Zeli. 2020. 1∶500 000 Geological Map Spatial Database of the Xiwuqi and Bainaimiao Areas in the Erlian – Dongwuqi Metallogenic Belt[DB/OL]. Geoscientific Data & Discovery Publishing System. (2020-06-30). DOI: 10.35080/data.H.2020.P3.

    [29]

    Wei R H, Gao Y F, Xu S C, Santosh M, Xin H T, Zhang Z M, Li W L, Liu Y F. 2018. Carboniferous continental arc in the Hegenshan accretionary belt: Constrains from plutonic complex in central Inner Mongolia[J]. Lithos, 308–309: 242−261.

    [30]

    Xiao W J, Windley B F, Han C M, Liu W, Wan B, Zhang J E, Ao S J, Zhang Z Y, Song D F. 2018. Late Paleozoic to Early Triassic multiple roll-back and oroclinal bending of the Mongolia collage in Central Asia[J]. Earth-Science Reviews, 186: 94−128. doi: 10.1016/j.earscirev.2017.09.020

    [31]

    Xiao W J, Windley B F, Hao J, Zhai M G. 2003. Accretion leading to collision and the Permian Solonker Suture, Inner Mongolia, China; termination of the Central Asian orogenic belt[J]. Tectonics, 22(6): 1069.

    [32]

    Xiao W J, Windley B F, Sun S, Li J L, Huang B C, Han C M, Yuan C, Sun M, Chen H L. 2015. A Tale of Amalgamation of Three Permo-Triassic Collage Systems in Central Asia: Oroclines, Sutures, and Terminal Accretion[J]. Annual Review of Earth & Planetary Sciences, 43(1): 477−507.

    [33]

    Xu B, Charvet J, Chen Y, Zhao P, Shi G Z. 2013. Middle Paleozoic convergent orogenic belts in western Inner Mongolia (China): framework, kinematics, geochronology and implications for tectonic evolution of the Central Asian Orogenic Belt[J]. Gondwana Research, 23(4): 1342−1364. doi: 10.1016/j.gr.2012.05.015

    [34]

    Xu Bei, Zhao Pan, Bao Qingzhong, Zhou Yongheng, Wang Yanyang, Luo Zhiwen. 2014. Preliminary study on the pre-Mesozoic tectonic unit division of the Xing–Meng Orogenic Belt(XMOB)[J]. Acta Petrologica Sinica, 30(7): 1841−185 (in Chinese with English abstract).

    [35]

    Xu B, Zhao P, Wang Y Y, Liao W, Luo Z W, Bao Q Z, Zhou Y H. 2015. The pre-Devonian tectonic framework of Xing’an–Mongolia orogenic belt (XMOB) in North China[J]. Journal of Asian Earth Sciences, 97(Part B): 183−196.

    [36]

    Xu Bei, Wang Zhiwei, Zhang Liyang, Wang Zhihui, Yang Zhenning, He Yue. 2018. The Xing–Meng Intracontinent Orogenic Belt[J]. Acta Petrologica Sinica, 34(10): 2819−2844 (in Chinese with English abstract).

    [37]

    Zhang S H, Zhao Y, Song B, Yang Z Y, Hu J M, Wu H. 2007. Carboniferous granitic plutons from the northern margin of the North China block: implications for a late Palaeozoic active continental margin[J]. Journal of the Geological Society, 164(2): 451−463. doi: 10.1144/0016-76492005-190

    [38]

    Zhang S H, Zhao Y, Song B, Hu J M, Liu S W, Yang Y H, Chen F K, Liu X M, Liu J. 2009. Contrasting Late Carboniferous and Late Permian-Middle Triassic intrusive suites from the northern margin of the North China craton: Geochronology, petrogenesis, and tectonic implications[J]. Geological Society of America Bulletin, 121(1–2): 181−200.

    [39]

    Zhang S H, Zhao Y, Ye H, Liu J M, Hu Z C. 2014. Origin and evolution of the Bainaimiao arc belt: Implications for crustal growth in the southern Central Asian orogenic belt[J]. Geological Society of America Bulletin, 126(9–10): 1275−1300.

    [40]

    Zhang Z C, Li K, Li J F, Tang W H, Chen Y, Luo Z W. 2015. Geochronology and geochemistry of the Eastern Erenhot ophiolitic complex: Implications for the tectonic evolution of the Inner Mongolia–Daxinganling Orogenic Belt[J]. Journal of Asian Earth Sciences, 97(Part B): 279−293.

    [41]

    Zhou J B, Wilde S A, Zhao G C, Han J. 2018. Nature and assembly of microcontinental blocks within the Paleo-Asian Ocean[J]. Earth-Science Reviews, 186: 76−93. doi: 10.1016/j.earscirev.2017.01.012

  • 加载中

(4)

(6)

计量
  • 文章访问数:  935
  • PDF下载数:  5
  • 施引文献:  0
出版历程
收稿日期:  2020-04-24
修回日期:  2020-05-16
刊出日期:  2020-06-25

目录