-
摘要:
河南省石门幅(I49E017018)1∶50 000地质图数据库是按《区域地质调查技术要求(1∶50 000)》和地质行业的统一标准及要求,在充分搜集和利用1∶200 000、1∶250 000和1∶50 000等区域地质调查工作成果资料的基础上,采用数字填图系统(DGSS)进行野外地质填图和数据库建设,并应用室内与野外填编图相结合的方法完成的。通过本数据库的建设,重点对图幅内侵入岩时代及岩石类型进行了归纳总结,将原划定的石门岩体和五垛山岩体统一归并为晚奥陶世、早志留世、中—晚志留世及志留纪末期4期岩浆活动,建立了岩浆演化序列。根据侵入岩的形成时代及其与地层接触关系,将早古生代二郎坪群大庙组和火神庙组的时代归属进行了重新厘定,将其置于寒武纪–奥陶纪。本数据库包含5个地层单元和4期岩浆岩,数据量约为10.4 MB, 包括66个样品的岩石化学分析数据,19个样品的年龄数据。这些数据充分反映了1∶50 000区域地质调查最新成果,对该区矿产地质调查、地质灾害防治及生态环境保护等具参考和指导意义。
Abstract:The 1∶50 000 geologic map database of the Shimen map sheet (I49E017018), Henan Province (also referred to as the Database) was developed in accordance with the ‘Technical Requirements for Regional Geological Survey (Scale: 1∶50 000)’ and other unified standards and requirements in the geologic industry, of which previous 1∶200 000-, 1∶250 000- and 1∶50 000-scale regional geological survey results were fully collected and utilized. In addition, the digital mapping system (DGSS) was adopted for geological field mapping and database building, and indoor map preparation was conducted along with field mapping. This Database was mainly built to summarize the eras and types of intrusions in the map sheet, as well as further incorporating the previously determined Shimen and Wuduoshan intrusives into the four stages of magmatic activities, specifically the Late Ordovician, Early Silurian, Mid-Late Silurian and the end of the Silurian period. As a result, the magma evolution sequence was built. Furthermore, based on the formation eras of the intrusions and the contact relationships between the intrusions and strata, the eras of the Damiao Formation and Huoshenmiao Formation of the Early Paleozoic Erlangping Group were re-determined to be of the Cambrian – Ordovician. The Database covers five stratigraphic units and four stages of magmatites, as well as rock geochemistry analytical data of 66 samples and dating data of 19 samples, with a data size of about 10.4 MB. The Database fully reflects the latest results of the 1∶50 000-scale regional geological surveys, providing references and guidance for future mineral and geological surveys, geologic hazard prevention & control and ecological environmental protection in the Shimen map sheet area.
-
Key words:
- database /
- geologic map /
- 1∶50 000 /
- magmatite /
- Shimen map sheet /
- Henan Province /
-
表 1 数据库(集)元数据简表
条目 描述 数据库(集)名称 河南省石门幅1∶50 000地质图数据库 数据库(集)作者 沉积岩类:方怀宾,河南省地质调查院
火山岩类:晁红丽,河南省地质调查院
侵入岩类:李开文,河南省地质调查院
变质岩类:刘 坤,河南省地质调查院数据时间范围 2014—2016年 地理区域 地理坐标:东经 112°15′~112°30′,北纬 33°10′~33°20′ 数据格式 MapGIS 数据量 10.4 MB 数据服务系统网址 http://dcc.cgs.gov.cn 基金项目 中国地质调查局地质调查项目“中条–熊耳山成矿区地质矿产调查”(项目编号:DD20160043)和“河南省1∶50 000石门、内乡、镇平、安臯幅区域地质矿产调查”(项目编号:12120114027001)联合资助 语种 中文 数据库(集)组成 河南省石门幅1∶50 000地质图数据库包括1∶50 000地质图库和图饰。地质图库包括沉积岩、火山岩、侵入岩、变质岩、第四系、脉岩、构造、地质界线、产状、同位素样品及年龄、岩性花纹、地质代号以及地名、道路、河流、水库等。图饰包括接图表、柱状图、侵入岩单位图、图例、图切剖面、构造纲要图、责任表 表 2 晚奥陶世闪长岩地质体面实体属性
序号 数据项名称 标注编码 数据类型 内容描述实例 1 标识号 *Feature_Id Character AI49E017018000000012 2 原编码 Source_Id Character 3 类型代码 *Feature_Type Character δO@3 4 名称 Geobody_Name Character 晚奥陶世闪长岩 5 时代 Geobody_Era Character O@3 6 下限年龄值 Geobody_Age1 Double 449.1 Ma 7 上限年龄值 Geobody_Age2 Double 465.0 Ma 8 子类型标识 Subtype Interger 1 注:@代表下标。 表 3 晚奥陶世闪长岩侵入岩年代单位属性表
序号 数据项名称 标准编码 数据类型 内容描述实例 1 要素分类(地质代码) *Feature_Type Character δO@3 2 岩体填图单位名称 Intru_Body_Name Character 晚奥陶世闪长岩 3 岩体填图单位符号 Intru_Body_Code Character δO@3 4 岩石名称(岩性) Rock_Name Character 片麻状粗中粒角闪闪长岩 5 岩石颜色 Color Character 灰绿色 6 岩石结构 Rock_Texture Character 半自形粒状结构 7 岩石构造 Rock_Structure Character 块状构造、片麻状构造 8 岩相 Rock_Phases Character 深成相 9 与围岩接触关系 Contact_Relation Character 侵入接触 10 主要矿物及含量 Primary_Mineral Character 斜长石(40%~50%)和角闪石(30%~35%) 11 次要矿物及含量 Secondary_Mineral Character 钾长石(3%~5%)、石英(2%~4%) 12 与围岩接触面走向/° Strike Integer 93 13 与围岩接触面倾向/° Dip_Direction Integer 3 14 与围岩接触面倾角/° Dip_Angle Integer 65 15 形成时代 Era Character O@3 16 含矿性 Commodities Character * 17 子类型标识 Subtype Integer 0 注:@代表下标。 表 4 侵入岩填图单位表
代 世 代号 岩性 LA-ICPMS 锆石U-Pb年龄/Ma 古生代 志留纪末期 ξγS4 多斑粗中粒黑云母正长花岗岩 418.0±2.9 中—晚志留世 ηγS2–3 中细粒含白云母黑云母二长花岗岩 433.1±2.1; 435.4±3.9 中斑中细粒黑云母二长花岗岩 含斑中细粒黑云母二长花岗岩 中细粒黑云母二长花岗岩 435.2±2.4; 445.4±2.8 早志留世 γδS1 细粒黑云母花岗闪长岩 435.7±2.0 中斑中细粒黑云母花岗闪长岩 433.3±3.2 晚奥陶世 ηοO3 多中斑中粒角闪石英二长岩 434.6±3.2 δηοO3 少斑粗中粒角闪石英二长闪长岩 ηO3 细粒角闪石黑云母二长岩 449.1±6.7 δO3 粗中粒角闪闪长岩 465.0±14 表 5 综合地层柱状剖面表
界 系 统 群 组 代号 厚度/m 岩性 新生界 第四系 全新统 Qhpal 0~7 砂砾石、细砂、亚砂土 上更新统 Qp3pal 0~21 含泥砂砾、含泥细砂、黏土 中更新统 Qp2pal 0~10 砂砾、粗砂、中砂、细砂及黏土,含钙质结核 下古生界 寒武系—奥陶系 二郎坪群 火神庙组 Є–Oh >120 斜长角闪片岩、斜长角闪岩 大庙组 Є–Od >176.9 大理岩、斜长角闪片岩、黑云石英片岩 Table 1. Metadata Table of Database (Dataset)
Items Description Database (dataset) name 1∶50 000 Geologic Map Database of the Shimen Map Sheet, Henan Province, China Database (dataset) authors For sedimentary rocks: Fang Huaibin, Henan Institute of Geological Survey
For volcanics: Chao Hongli, Henan Institute of Geological Survey
For intrusions: Li Kaiwen, Henan Institute of Geological Survey
For metamorphic rocks: Liu Kun, Henan Institute of Geological SurveyData acquisition time 2014 – 2016 Geographical area 112°15′ – 112°30′E, 33°10′ – 33°20′N Data format MapGIS Data size 10.4 MB Data service system URL http://dcc.cgs.gov.cn Fund project Jointly funded by the projects titled ‘Geological and Mineral Survey of the Zhongtiao-Xiongershan Metallogenic Area’ (No.: DD20160043) and ‘1∶50 000-scale Regional Geological and Mineral Survey of Shimen, Neixiang, Zhenping and Angao Map Sheets, Henan Province’ (No.: 12120114027001) initiated by China Geological Survey Language Chinese Database (dataset) composition The Database consists of databases and map decorations of a 1∶50 000 geologic map. The databases include the data of sedimentary rocks, volcanics, intrusions, metamorphic rocks, the Quaternary, dikes, structures, geologic boundaries, attitude, isotopic samples and ages, lithologic patterns, geologic codes and local names, roads, rivers, and reservoirs. The map decorations include an index map, histograms, an intrusion unit map, legends, transverse cutting profiles, a geologic structure outline map and a duty table Table 2. Attributes of geologic polygon entities of ordovician diorites
No. Data item Label code Data type Example of content description 1 ID *Feature_Id Character AI49E017018000000012 2 Original code Source_Id Character 3 Type code *Feature_Type Character δO@3 4 Name Geobody_Name Character Late Ordovician diorites 5 Era Geobody_Era Character O@3 6 Minimum age Geobody_Age1 Double 449.1 Ma 7 Maximum age Geobody_Age2 Double 465.0 Ma 8 Subtype ID Subtype Integer 1 Note: @ denotes subscript. Table 3. Attributes of lithochronologic units of late Ordovician diorite intrusions
No. Data item Standard code Data type Examples of content description 1 Feature type (geologic code) *Feature_Type Character δO@3 2 Name of rock-mass mapping unit Intru_Body_Name Character Late Ordovician diorite 3 Symbol of rock-mass mapping unit Intru_Body_Code Character δO@3 4 Rock name (lithology) Rock_Name Character Gneissic coarse–medium-grained hornblende diorite 5 Rock color Color Character Grayish-green 6 Rock texture Rock_Texture Character Hypidiomorphic granular texture 7 Rock structure Rock_Structure Character Massive structure, gneissic structure 8 Lithofacies Rock_Phases Character Plutonic facies 9 Contact relationship with surrounding rocks Contact_Relation Character Intrusive contact 10 Primary minerals and their content Primary_Mineral Character Plagioclase (40–50%) and hornblende (30–35%) 11 Secondary minerals and their content Secondary_Mineral Character Orthoclase (3–5%) and quartz (2–4%) 12 Strike of the interface with surrounding rocks/° Strike Integer 93 13 Dip of the contact surface with surrounding rocks/° Dip_Direction Integer 3 14 Dip angle of the contact surface with surrounding rocks/° Dip_Angle Integer 65 15 Formation era Era Character O@3 16 Ore-bearing properties Commodities Character * 17 Subtype ID Subtype Integer 0 Note: @ denotes subscript. Table 4. Mapping units of the intrusions
Era Epoch Code Lithology LA–ICPMS Zircon U–Pb age /Ma Paleozoic The end of the Silurian period ξγS4 Highly-porphyritic coarse- –medium-grained biotite syenogranites 418.0±2.9 Mid–Late Silurian ηγS2–3 Medium–fine-grained muscovite-biotite adamellites 433.1±2.1; 435.4±3.9 Moderately-porphyritic medium–fine-grained biotite adamellites Porphyritic medium–fine-grained biotite adamellites Medium–fine-grained biotite adamellites 435.2±2.4; 445.4±2.8 Early Silurian γδS1 Fine-grained biotite granodiorites 435.7±2.0 Moderately-porphyritic medium- – fine-grained biotite granodiorites 433.3±3.2 Late Ordovician ηοO3 Highly–moderately-porphyritic medium-grained hornblende-quartz monzonites 434.6±3.2 δηοO3 Lowly-porphyritic coarse– medium-grained hornblende-quartz monzodiorites ηO3 Fine-grained hornblende-biotite monzonites 449.1±6.7 δO3 Coarse–medium-grained hornblende diorites 465.0±14 Table 5. Comprehensive histogram section table
Erathem System Series Group Formation Code Thickness/m Lithology Cenozoic Quaternary Holocene Qhpal 0–7 Sandy gravels, fine sand, sandy loam Upper Pleistocene Qp3pal 0–21 Argillaceous sandy gravels, argillaceous fine sand, clay Middle Pleistocene Qp2pal 0–10 Sandy gravels, coarse sand, medium sand, fine sand and clay, calcareous nodules Lower Paleozoic Cambrian–Ordovician Erlangping Group Huoshenmiao Formation Є–Oh >120 Plagioclasite- hornblende schists, amphibolites Damiao Formation Є–Od >176.9 Marbles, plagioclasite- hornblende schists, biotite-quartz schists -
[1] Bader T, Zhang Lifei, Li Xiaowei, Xia Bin, Franz L, Capitani C, Li Qingyun. 2020. High-P granulites of the Songshugou area (Qinling Orogen, east-central China): petrography, phase relations, and U/Pb zircon geochronology[J]. Journal of Metamorphic Geology, 38(4): 421−450. doi: 10.1111/jmg.12527
[2] Chen Youwei, Hu Ruizhong, Bi Xianwu, Dong Shaohua, Xu Yue, Zhou Ting. 2018. Zircon U-Pb ages and Sr-Nd-Hf isotopic characteristics of the Huichizi granitic complex in the North Qinling Orogenic Belt and their geological significance[J]. Journal of Earth Science, 29(3): 492−507. doi: 10.1007/s12583-017-0906-6
[3] Li Nuo, Chen YanJing, Santosh M, Pirajno F. 2018. Late Mesozoic granitoids in the Qinling Orogen, Central China, and tectonic significance[J]. Earth-Science Reviews, 182: 141−173. doi: 10.1016/j.earscirev.2018.05.004
[4] Liu Liang, Liao Xiaoying, Wang Yawei, Wang Chao, Santosh M, Yang Min, Zhang Chengli, Chen Danling. 2016. Early Paleozoic tectonic evolution of the North Qinling Orogenic Belt in Central China: Insights on continental deep subduction and multiphase exhumation[J]. Earth-Science Reviews, 159: 58−81. doi: 10.1016/j.earscirev.2016.05.005
[5] Shi Yu, Huang Qianwen, Liu Xijun, Krapež B, Yu Jinhai, Bai Zhian. 2018. Provenance and tectonic setting of the supra-crustal succession of the Qinling complex: Implications for the tectonic affinity of the North Qinling Belt, Central China[J]. Journal of Asian Earth Sciences, 158: 112−139. doi: 10.1016/j.jseaes.2018.02.011
[6] Wang Yong, Shi Yonghong, Chen Bailin, Tan Renwen, Gao Yun, Shen Jinghui. 2019. Zircon U-Pb age of Fengxian acid pyroclastic rocks and its enlightenment to the existence of Pan-African orogeny in the West Qinling Orogenic Belt, China[J]. China Geology, 2(4): 557−559. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdz-e201904014
[7] Yang Liming, Song Shuguang, Allen M B, Su Li, Dong Jinlong, Wang Chao. 2018. Oceanic accretionary belt in the West Qinling Orogen: Links between the Qinling and Qilian orogens, China[J]. Gondwana Research, 64: 137−162. doi: 10.1016/j.gr.2018.06.009
[8] Zhang Yueqiao, Dong Shuwen, Li Jianhua. 2019. Late Paleogene sinistral strike-slip system along east Qinling and in southern North China: Implications for interaction between collision-related block trans-rotation and subduction-related back-arc extension in East China[J]. Tectonophysics, 769: 1−15.
[9] 方怀宾, 晁红丽, 李开文, 刘坤. 2020. 河南省石门幅1∶50 000地质图数据库[DB/OL]. 地质科学数据出版系统. (2020-06-30). DOI:10.35080/data.A.2020.P18.
[10] 赖亚, 赵国春, 李文兰, 赖群生, 樊中玲, 易志强, 文景. 2017. 东秦岭镇平地区花岗岩岩石地球化学特征及地质意义[J]. 华南地质与矿产, 33(4): 330−343. doi: 10.3969/j.issn.1007-3701.2017.04.002
[11] 雷敏. 2010. 秦岭造山带东部花岗岩成因及其与造山带构造演化的关系[D]. 北京: 中国地质科学院博士学位论文. 1–58.
[12] 李承东, 赵利刚, 许雅雯, 常青松, 王世炎, 许腾. 2018. 北秦岭宽坪岩群变质沉积岩年代学及地质意义[J]. 中国地质, 45(5): 992−1010. doi: 10.12029/gc20180508
[13] 李承东, 赵利刚, 许雅雯, 常青松, 许騰, 藤雪明. 2019. 东秦岭造山带龟山岩组的解体及俯冲增生杂岩的厘定[J]. 中国地质, 46(2): 438−439. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi201902024
[14] 李开文, 方怀宾, 郭君功, 刘坤, 赵焕, 王小娟. 2018. 东秦岭南召-镇平地区早古生代花岗岩类地球化学特征[J]. 现代矿业, 591(7): 57−60. doi: 10.3969/j.issn.1674-6082.2018.07.014
[15] 李开文, 方怀宾, 郭君功, 刘坤, 赵焕, 王小娟. 2019a. 东秦岭南召县五朵山岩体二云母花岗岩地球化学、锆石U-Pb年代学及地质意义[J]. 地球科学, 44(1): 123−134. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201901009
[16] 李开文, 方怀宾, 刘坤, 郭君功, 赵焕, 王小娟. 2019b. 东秦岭南召-镇平地区早古生代花岗岩类锆石U-Pb年龄及地质意义[J]. 矿物岩石地球化学通报, 38(6): 1091−1099. http://www.cqvip.com/QK/84215X/201906/7101123481.html
[17] 李名则, 吴才来, 雷敏, 秦海鹏, 刘春花. 2014. 东秦岭南召地区花岗岩岩石地球化学特征及LA-ICP-MS锆石U-Pb同位素年龄[J]. 地质论评, 60(2): 427−442. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzlp201402016
[18] 刘晓春, 李三忠, 江博明. 2015. 桐柏-红安造山带的构造演化: 从大洋俯冲/增生到陆陆碰撞[J]. 中国科学: 地球科学, 45(8): 1088−1108. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cd201508002
[19] 卢书炜. 1994. 南召县板山坪花岗质岩带地质特征与成因探讨[J]. 河南地质, 12(3): 189−197. http://www.cqvip.com/QK/96616X/19943/1597845.html
[20] 孟祥舒, 何艳红, 陈亮, 务磊. 2017. 秦岭-祁连结合部位早古生代埃达克岩的发现及其造山作用意义[J]. 地质学报, 91(12): 2679−2696. doi: 10.3969/j.issn.0001-5717.2017.12.007
[21] 王江波, 秦江锋, 胡鹏, 张良, 赵友东, 张泽中. 2018. 北秦岭早古生代宽坪岩体两期花岗质岩浆锆石U-Pb年代学、地球化学及其地质意义[J]. 地质论评, 64(1): 127−140. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzlp201801011
[22] 王涛, 王晓霞, 田伟, 张成立, 李伍平, 李舢. 2009. 北秦岭古生代花岗岩组合、岩浆时空演变及其对造山作用的启示[J]. 中国科学 D辑: 地球科学, 39(7): 949−971. http://www.cnki.com.cn/Article/CJFDTotal-JDXK200907008.htm
[23] 王晓霞, 王涛, 张成立. 2015. 秦岭造山带花岗质岩浆作用与造山带演化[J]. 中国科学: 地球科学, 45(8): 1109−1125. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cd201508003
[24] 王宗起, 闫全人, 闫臻, 王涛, 姜春发, 高联达, 李秋根, 陈隽璐, 张英利, 刘平, 谢春林, 向忠金. 2009. 秦岭造山带主要大地构造单元的新划分[J]. 地质学报, 83(11): 1527−1546. doi: 10.3321/j.issn:0001-5717.2009.11.001
[25] 许志琴, 李源, 梁凤华, 裴先治. 2015. “秦岭-大别-苏鲁”造山带中“古特提斯缝合带”的连接[J]. 地质学报, 89(4): 671−680. doi: 10.3969/j.issn.0001-5717.2015.04.001
[26] 张成立, 刘良, 王涛, 王晓霞, 李雷, 龚齐福, 李小菲. 2013. 北秦岭早古生代大陆碰撞过程中的花岗岩浆作用[J]. 科学通报, 58(23): 2323−2329. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kxtb201323016
[27] 张国伟, 孟庆任, 于在平, 孙勇, 周鼎武, 郭安林. 1996. 秦岭造山带的造山过程及其动力学特征[J]. 中国科学(D辑), 26(3): 193−200. doi: 10.3321/j.issn:1006-9267.1996.03.001
[28] 张国伟, 张本仁, 袁学诚, 肖庆辉. 2001. 秦岭造山带与大陆动力学[M]. 北京: 科学出版社, 236–451.
[29] 张昕, 吴才来, 陈红杰. 2017. 秦岭南召岩体中花岗岩脉的锆石U-Pb定年: 对燕山期构造环境的约束[J]. 中国地质, 44(5): 938−958. http://kns.cnki.net/KCMS/detail/detail.aspx?dbCode=CJFD&filename=DIZI201705009&tableName=CJFDPREP&url=
[30] 张翔, 石连成, 程莎莎, 段晨宇, 魏永强, 邓德伟, 卢亚运. 2019. 西秦岭造山带东段航磁特征及断裂构造格架[J]. 中国地质, 46(3): 587−600. doi: 10.12029/gc20190310
[31] 周澍, 张贺, 陈福坤. 2020. 北秦岭五垛山花岗岩锆石U-Pb年代学和地球化学特征及成因[J]. 高校地质学报, 25(6): 901−913. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxdzxb201906010
[1] Bader T, Zhang LF, Li XW, Xia B, Franz L, Capitani C, Li QY. 2020. High-P granulites of the Songshugou area (Qinling Orogen, east-central China): Petrography, phase relations, and U/Pb zircon geochronology[J]. Journal of Metamorphic Geology, 38(4): 421−450. doi: 10.1111/jmg.12527
[2] Chen YW, Hu RZ, Bi XW, Dong SH, Xu Y, Zhou T. 2018. Zircon U-Pb ages and Sr-Nd-Hf isotopic characteristics of the Huichizi granitic complex in the North Qinling Orogenic Belt and their geological significance[J]. Journal of Earth Science, 29(3): 492−507. doi: 10.1007/s12583-017-0906-6
[3] Fang Huaibin, Chao Hongli, Li Kaiwen, Liu Kun. 2020. 1∶50 000 Geologic Map Database of the Shimen Map Sheet, Henan Province, China[DB/OL]. Geoscientific Data & Discovery Publishing System. (2020–06–30). DOI: 10.35080/data.A.2020.P18.
[4] Lai Ya, Zhao Guochun, Li Wenlan, Lai Qunsheng, Fan Zhongling, Yi Zhiqiang, Wen Jing. 2017. Lithogeochemical characteristics and geological significance of granitoids in Zhenping area, Eastern Qinling Mountains[J]. Geology and Mineral Resources of South China, 33(4): 330−343 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hndzykc201704002
[5] Lei Min. 2010. Petrogenesis of granites and their relation to tectonic evolution of orogen in the east part of Qinling Orogenic Belt[D]. Beijing: Doctoral Dissertation of Chinese Academy of Geological Sciences: 1–58 (in Chinese with English abstract).
[6] Li Chengdong, Zhao Ligang, Xu Yawen, Chang Qingsong, Wang Shiyan, Xu Teng. 2018. Chronology of metasedimentary rocks from Kuanping Group Complex in North Qinling Belt and its geological significance[J]. Geology in China, 45(5): 992−1010 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi201805009
[7] Li Chengdong, Zhao Ligang, Xu Yawen, Chang Qingsong, Xu Teng, Teng Xueming. 2019. Disintegration of Guishan Formation-complex and delineation of subduction hyperplasia complex in East Qinling orogenic belt[J]. Geology in China, 46(2): 438−439 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi201902024
[8] Li Kaiwen, Fang Huaibin, Guo Jungong, Liu Kun, Zhao Huan, Wang Xiaojuan. 2018. Geochemistry characteristics of Paleozoic granitoid in Nanzhao-Zhenping area, Eastern Qinling Mountains[J]. Modern Mining, 591(7): 57−60 (in Chinese with English abstract).
[9] Li Kaiwen, Fang Huaibin, Guo Jungong, Liu Kun, Zhao Huan, Wang Xiaojuan. 2019a. Petrogeochemistry, LA-ICP-MS Zircon U-Pb dating and geological significance of two-mica granites from Wuduoshan granite in Nanzhao County, Eastern Qinling Mountains[J]. Earth Science, 44(1): 123−134 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201901009
[10] Li Kaiwen, Fang Huaibin, Liu Kun, Guo Jungong, Zhao Huan, Wang Xiaojuan. 2019b. LA-ICP-MS zircon U-Pb ages and geological significance of the early Paleozoic granitoids in the Nanzhao-Zhenping area, Eastern Qrogenic belt[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 38(6): 1091−1099 (in Chinese with English abstract).
[11] Li Mingze, Wu Cailai, Lei Min, Qin Haipeng, Liu Chunhua. 2014. Petrological characteristics and LA-ICP-MS U-Pb ages of granitoid in Nanzhao area, Eastern Qinling Mountains[J]. Geological Review, 60(2): 427−442 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzlp201402016
[12] Li N, Chen YJ, Santosh M, Pirajno F. 2018. Late Mesozoic granitoids in the Qinling Orogen, Central China, and tectonic significance[J]. Earth-Science Reviews, 182: 141−173. doi: 10.1016/j.earscirev.2018.05.004
[13] Liu L, Liao XY, Wang YW, Wang C, Santosh M, Yang M, Zhang CL, Chen DL. 2016. Early Paleozoic tectonic evolution of the North Qinling Orogenic Belt in Central China: Insights on continental deep subduction and multiphase exhumation[J]. Earth-Science Reviews, 159: 58−81. doi: 10.1016/j.earscirev.2016.05.005
[14] Liu XC, Li SZ, Jahn BM. 2015. Tectonic evolution of the Tongbai-Hong’an orogen in central China: From oceanic subduction/accretion to continent-continent collision[J]. Science China: Earth Sciences, 58: 1477−1496. doi: 10.1007/s11430-015-5145-z
[15] Lu Shuwei. 1994. The geological characteristics of granitic rock zone and its genesis in Banshanping, Nanzhao County[J]. Henan Geology, 12(3): 189−197 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HNDD403.004.htm
[16] Meng Xiangshu, He Yanhong, Chen Liang, Wu Lei. 2017. The Discovery of the Early Paleozoic adakitic rocks in the conjunction of the Qinling and Qilian Orogenic Belts and its implications[J]. Acta Geologica Sinica, 91(12): 2679−2696 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb201712007
[17] Shi Y, Huang QW, Liu XJ, Krapež B, Yu JH, Bai ZA. 2018. Provenance and tectonic setting of the supra-crustal succession of the Qinling complex: Implications for the tectonic affinity of the North Qinling Belt, Central China[J]. Journal of Asian Earth Sciences, 158: 112−139. doi: 10.1016/j.jseaes.2018.02.011
[18] Wang Jiangbo, Qin Jiangfeng, Hu Peng, Zhang Liang, Zhao Youdong, Zhang Zezhong. 2018. Zircon U-Pb ages and geochemical characteristics of the two-stage granitic magamtism from the Kuanping Pluton in the Northern Qinling Mountains: Petrogenesis and tectonic iImplication[J]. Geological Review, 64(1): 127−140 (in Chinese with English abstract).
[19] Wang Tao, Wang Xiaoxia, Tian Wei, Zhang Chengli, Li Wuping, Li Shan. 2009. North Qinling Paleozoic granite associations and their variation in ppace and time: Implications for orogenic processes in the orogens of Central China[J]. Science China (Series D-Earth), 39(7): 949−971 (in Chinese with English abstract).
[20] Wang Xiaoxia, Wang Tao, Zhang Chengli. 2015. Granitoid magmatism in the Qinling Orogen, Central China and its bearing on orogenic evolution[J]. Science China: Earth Sciences, 58: 1497−1512 (in Chinese with English abstract). doi: 10.1007/s11430-015-5150-2
[21] Wang Y, Shi YH, Chen BL, Tan RW, Gao Y, Shen JH. 2019. Zircon U-Pb age of Fengxian acid pyroclastic rocks and its enlightenment to the existence of Pan-African orogeny in the West Qinling Orogenic Belt, China[J]. China Geology, 2(4): 557−559. doi: 10.31035/cg2018130
[22] Wang Zongqi, Yan Quanren, Yan Zhen, Wang Tao, Jiang Chunfa, Gao Lianda, Li Qiugen, Chen Junlu, Zhang Yingli, Liu Ping, Xie Chunlin, Xiang Zhongjin. 2009. New division of the main tectonic unites of the Qinling Orogenic Belt, Central China[J]. Acta Geologica Sinica, 83(11): 1527−1546 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE200911003.htm
[23] Xu Zhiqin, Li Yuan, Liang Fenghua, Pei Xianzhi. 2015. A connection of the Paleo-Tethys suture zone in the Qinling-Dabie-Sulu Orogenic Belt[J]. Acta Geologica Sinica, 89(4): 671−680 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb201504001
[24] Yang LM, Song SG, Allen M B, Su Li, Dong JL, Wang C. 2018. Oceanic accretionary belt in the West Qinling Orogen: Links between the Qinling and Qilian orogens, China[J]. Gondwana Research, 64: 137−162. doi: 10.1016/j.gr.2018.06.009
[25] Zhang Chengli, Liu Liang, Wang Tao, Wang Xiaoxia, Li Lei, Gong Qifu, Li Xiaofei. 2013. Granitite magmatism related to Early Paleozoic continental collision in the North Qinling Belt[J]. Chinese Science Bulletin, 58(23): 2323−2329 (in Chinese). doi: 10.1360/csb2013-58-23-2323
[26] Zhang Guowei, Meng Qingren, Yu Zaiping, Sun Yong, Zhou Dingwu, Guo Anlin. 1996. Orogenesis and dynamics of the Qinling Orogen[J]. Science China (Series D–Earth), 26(3): 193−200 (in Chinese).
[27] Zhang Guowei, Zhang Benren, Yuan Xuecheng, Xiao Qinghui. 2001. Qinling Orogenic Belt and continental dynamics. Beijing: Science Press, 236–451 (in Chinese with English abstract).
[28] Zhang Xin, Wu Cailai, Chen Hongjie. 2017. The U-Pb dating of the granite dike in Nanzhao pluton and its’s constraints on tectonic setting in Yanshanian[J]. Geology in China, 44(5): 938−958 (in Chinese with English abstract).
[29] Zhang Xiang, Shi Liancheng, Cheng Shasha, Duan Chenyu, Wei Yongqiang, Deng Dewei, Lu Yayun. 2019. Aeromagnetic characteristics and fracture framework of the eastern part of the western Qinling orogen[J]. Geology in China, 46(3): 587−600 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi201903012
[30] Zhang YQ, Dong SW, Li JH. 2019. Late Paleogene sinistral strike-slip system along east Qinling and in southern North China: Implications for interaction between collision-related block trans-rotation and subduction-related back-arc extension in East China[J]. Tectonophysics, 769: 1−15. doi: 10.1016/j.tecto.2019.228181
[31] Zhou Shu, Zhang He, Chen Fukun. 2020. Zircon U-Pb Geochronology, Geochemistry and Petrogenesis of Granites from the Wuduoshan Pluton, the North Qinling Terrane[J]. Geological Journal of China Universities, 25(6): 901−913 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxdzxb201906010