中国地质调查局 中国地质科学院主办
科学出版社出版

吉林省浑江市幅1∶50 000水系沉积物测量原始数据集

吴玉诗, 王海建, 车海龙, 赵虹旭, 马录录, 李爱民, 刘臣臣, 孙冬雪, 马铭, 李东宇. 2020. 吉林省浑江市幅1∶50 000水系沉积物测量原始数据集[J]. 中国地质, 47(S2): 31-44. doi: 10.12029/gc2020Z203
引用本文: 吴玉诗, 王海建, 车海龙, 赵虹旭, 马录录, 李爱民, 刘臣臣, 孙冬雪, 马铭, 李东宇. 2020. 吉林省浑江市幅1∶50 000水系沉积物测量原始数据集[J]. 中国地质, 47(S2): 31-44. doi: 10.12029/gc2020Z203
WU Yushi, WANG Haijian, CHE Hailong, ZHAO Hongxu, MA Lulu, LI Aimin, LIU Chenchen, SUN Dongxue, MA Ming, LI Dongyu. 2020. Primary Dataset of 1∶50 000 Stream Sediment Survey of Hunjiang City Map-sheet, Jilin Province[J]. Geology in China, 47(S2): 31-44. doi: 10.12029/gc2020Z203
Citation: WU Yushi, WANG Haijian, CHE Hailong, ZHAO Hongxu, MA Lulu, LI Aimin, LIU Chenchen, SUN Dongxue, MA Ming, LI Dongyu. 2020. Primary Dataset of 1∶50 000 Stream Sediment Survey of Hunjiang City Map-sheet, Jilin Province[J]. Geology in China, 47(S2): 31-44. doi: 10.12029/gc2020Z203

吉林省浑江市幅1∶50 000水系沉积物测量原始数据集

  • 基金项目: 中国地质调查局地质调查项目“整装勘查区找矿预测与技术应用示范”子项目“吉林省白山市板石沟铁矿地区金及铁矿整装勘查区矿产调查与找矿预测”(121201004000172201–06)资助
详细信息
    作者简介: 吴玉诗, 男, 1977年生, 高级工程师, 主要从事地质矿产勘查工作; E-mail: 593483266@qq.com

Primary Dataset of 1∶50 000 Stream Sediment Survey of Hunjiang City Map-sheet, Jilin Province

  • Fund Project: A subject project titled “Mineral Survey and Prospecting Predication of Integrated Exploration Area of Iron and Gold Deposits in Banshigou, Baishan City, Jilin Province” (Project No.: 121201004000172201–06) of the China Geological Survey Project titled “Prospecting Predication and Technical Application Demonstration of Integrated Exploration Areas”
More Information
    Author Bio: WU Yushi, male, born in 1977, senior engineer, mainly engages in geological and mineral survey; E-mail: 593483266@qq.com .
  • 吉林省浑江市幅1∶50 000水系沉积物测量共采集1961件水系沉积物样品, 采样粒级为–10目~+80目, 平均采样密度为5.1个/km2。采用发射光谱法(AES)、泡沫塑料吸附石墨炉原子吸收分光光谱法(GFAAS)、原子荧光法(AFS)及等离子体质谱法(ICP–MS)分析了Au、Ag、Cu、Pb、Zn、As、Sb、Bi、Hg、W、Sn、Mo、Cd、Co、Cr、Ni 等16种元素, 形成吉林省1∶50 000浑江市幅水系沉积物测量原始数据集。数据集包含有1961件样品以及其16元素的原始数据表1个(Excel), MapGIS格式图集1套(含有1张矿产地质图、1张采样点位图、16张单元素地球化学图、16张单元素异常图)。通过本数据集新发现单元素地球化学异常403处, 综合异常24处, 结合地质、物探、化探、遥感及已有成矿线索圈定金矿找矿靶区3处、铜及多金属找矿靶区2处。本文数据集为该区域提供了一套基础性的数据资源, 为基础地质及其他领域应用提供基础地球化学依据。

  • 加载中
  • 图 1  吉林省白山市板石沟地区铁及金矿整装勘查区所属成矿区带位置图

    图 2  吉林省白山市板石沟地区铁及金矿整装勘查区区域地质简图

    Figure 1. 

    Figure 2. 

    表 1  数据库(集)元数据简表

    条目 描述
    数据库(集)名称 吉林省浑江市幅1∶50 000水系沉积物测量原始数据集
    数据库(集)作者 吴玉诗, 吉林省第四地质调查所
    王海建, 吉林省第四地质调查所
    车海龙, 吉林省第四地质调查所
    赵虹旭, 吉林省第四地质调查所
    马录录, 吉林省第四地质调查所
    数据时间范围 2018.05—2018.12
    地理区域 吉林省1∶50 000浑江市幅, 位于吉林省东南部, 吉林省白山市板石沟地区铁及金矿整装勘查区中部, 面积384 km2。地理坐标: E126°15′00″~126°30′00″; N41°50′00″~42°00′00″
    数据格式 *.xlsx, *.wt, *.wl, *.wp
    数据量 75.7 MB
    数据服务系统网址 http://dcc.cgs.gov.cn
    基金项目 中国地质调查局地质调查项目“整装勘查区找矿预测与技术应用示范(121201004000172201)”子项目“吉林省白山市板石沟地区铁及金矿整装勘查区矿产调查与找矿预测(121201004000172201–06)”
    语种 中文
    数据库(集)组成 本数据集包括1个Excel数据表, 为1961件样品×16种元素的原始分析数据; 1个MapGIS图集, 内含有1张矿产地质图、1张采样点位图、16张单元素地球化学图、16张单元素异常图
    下载: 导出CSV

    表 2  分析方法及配套方案

    分析方法 检验元素 测试精度
    发射光谱法(AES) Ag ≥0.01 nm
    石墨炉原子吸收分光光度法(GFAA) Au ≥0.002 nm
    原子荧光法(AFS) As、Hg ≥0.3 nm
    等离子质谱法(ICP–MS) Cr、Co、Ni、Cu、Zn、Mo、Cd、Sn、 Sb、W、Pb、Bi 0.01~10 μg/L
    下载: 导出CSV

    表 3  分析要求检出限与方法检出限对比表

    序号 元素 方法检出限 要求检出限 单位 分析方法
    1 Cr 10 15 μg/g ICP–MS
    2 Co 0.5 1 μg/g ICP–MS
    3 Ni 2 3 μg/g ICP–MS
    4 Cu 1 1.5 μg/g ICP–MS
    5 Zn 5 15 μg/g ICP–MS
    6 Mo 0.2 0.5 μg/g ICP–MS
    7 Cd 0.1 0.1 μg/g ICP–MS
    8 Sn 0.5 1 μg/g ICP–MS
    9 Sb 0.03 0.2 μg/g ICP–MS
    10 W 0.2 0.5 μg/g ICP–MS
    11 Pb 2 5 μg/g ICP–MS
    12 Bi 0.1 0.1 μg/g ICP–MS
    13 As 0.5 1 μg/g AFS
    14 Hg 0.005 0.0005 μg/g AFS
    15 Ag 0.02 0.03 μg/g AES
    16 Au 0.0003 0.0003 μg/g GFAAS
    下载: 导出CSV

    表 4  浑江市幅元素地球化学分析数据表

    序号 字符名称 数据类型 实例 序号 字符名称 数据类型 实例
    1 分析批号 字符型 2018化302 11 Bi 浮点型 0.25
    3 矿样号 字符型 HJS001C1 12 Hg 浮点型 0.034
    4 Au 浮点型 1.00 13 W 浮点型 1.41
    5 Ag 浮点型 70.80 14 Sn 浮点型 2.30
    6 Cu 浮点型 16.40 15 Mo 浮点型 0.84
    7 Pb 浮点型 19.40 16 Cd 浮点型 0.09
    8 Zn 浮点型 88.10 17 Co 浮点型 14.60
    9 As 浮点型 6.44 18 Cr 浮点型 71.20
    10 Sb 浮点型 0.57 19 Ni 浮点型 27.00
     注: 元素含量单位: Au、Hg为ng/g, 其他元素为μg/g。
    下载: 导出CSV

    表 5  浑江市幅元素地球化学图点元数据特征与类型

    序号 字符名称 数据类型 实例
    1 ID 长整型 1
    2 异常编号 字符串 Ag–1
    3 位置 字符串 (292208.88, 4653922.84)
    4 异常点数 长整型 3
    5 异常下限 双精度型 1
    6 异常面积 双精度型 0.558407
    7 异常面积序数 长整型 7
    8 平均值 双精度型 1.143667
    9 平均值序数 长整型 12
    10 极大值 双精度型 1.231
    11 极大值序数 长整型 12
    12 衬度 双精度型 1.143667
    13 衬度序数 长整型 12
    14 AD 双精度型 0.638632
    15 AD序数 长整型 8
    16 AP 双精度型 0.080224
    17 AP序数 长整型 11
    18 NAD 双精度型 0.638632
    19 NAD序数 长整型 8
    20 NAP 双精度型 0.080224
    21 NAP序数 长整型 8
    22 分带数 长整型 1
    下载: 导出CSV

    表 6  浑江市幅元素地球化学图线元数据特征与类型

    序号 字符名称 数据类型 实例
    1 ID 长整型 1
    2 长度 双精度型 80.55664
    3 高度 双精度型 1
    4 元素编号 字符串 Ag–1
    5 bh 字符串 Ag–1
    6 UserID 长整型 –1
    7 MAPCODE 字符串 K52E013002
    8 CHFCAC 字符串 1
    9 YSYCZ 浮点型 0.12
    10 YSYCLX 字符串 0
    11 YCTZ 字符串 0
    12 YCDZ 浮点型 0.15
    13 HLZ 浮点型 0.08
    下载: 导出CSV

    表 7  浑江市幅元素地球化学图面元数据特征与类型

    序号 字符名称 数据类型 实例
    1 ID 长整型 16
    2 面积 双精度型 433.29
    3 周长 双精度型 271.77
    4 MAPCODE 字符串 K52E013002
    5 Start_vaiue 双精度型 1
    6 end_vaiue 双精度型 2
    下载: 导出CSV

    表 8  分析方法的检出限及分析元素报出率

    序号 被检测元素 分析方法的检出限 规范要求的检出限 报出率/% 分析方法
    1 Au 0.0003 0.0003 100 GFAAS
    2 Ag 0.02 0.03 100 AES
    3 Cu 1.0 1.5 100 ICP–MS
    4 Pb 2 5 100 ICP–MS
    5 Zn 5 15 100 ICP–MS
    6 As 0.5 1 100 AFS
    7 Sb 0.03 0.2 100 ICP–MS
    8 Bi 0.1 0.1 100 ICP–MS
    9 Hg 0.005 0.0005 100 AFS
    10 W 0.2 0.5 100 ICP–MS
    11 Sn 0.5 1 100 ICP–MS
    12 Mo 0.2 0.5 100 ICP–MS
    13 Cd 0.1 0.1 100 ICP–MS
    14 Co 0.5 1 100 ICP–MS
    15 Cr 10 15 100 ICP–MS
    16 Ni 2 3 100 ICP–MS
     注:等离子体质谱法(ICP–MS)、原子荧光法AFS、泡沫塑料吸附石墨炉原子吸收法(GFAAS)
    下载: 导出CSV

    表 9  主要成矿元素综合异常特征一览表

    异常
    编号
    元素组合
    (按规模降序)
    规模
    (NAP)
    成矿主元素及伴生元素
    (规模)
    异常
    类别
    浑浑18HS–1 Cd–As–Hg–Au–Bi 7.28 Cd(3.67) 3
    浑浑18HS–2 Au–Cr–Hg–As–Cd–Cu–Ni 34.20 Au(22.81) Cr(4.12) 1
    浑浑18HS–3 Au–Cr–Hg 13.1 Au(7.85) Cr(4.77) 3
    浑浑18HS–4 As–Hg–Sb–Cr–Mo–W–Ni–Ag–
    Co–Sn–Cu
    47.76 Sb(10.69) Cr(5.35) Mo(3.52) W(1.48) Ni(1.41) Ag(1.12) Co(1.03) 2
    浑浑18HS–5 Cr–Au–Cu–Ni–Sb–Mo–W 33.32 Cr(13.69) Au(6.75) Cu(4.41) Ni(3.55) Sb(2.57) Mo(1.64) 2
    浑浑18HS–6 Hg–Sb–Au–W–Mo–Cd–As–Pb 36.77 Sb(9.45) Au(5.38) W(2.24) Mo(1.96) Cd(1.50) 2
    浑浑18HS–7 Cr–Mo–Cu–Ni–As–Sb 8.04 Cr(2.65) Mo(2.23) Cu(2.13) Ni(1.49) 3
    浑浑18HS–8 Au–Sb–Cr–Hg–W–Cu–As–Mo 48.54 Au(19.96) Sb(11.73) Cr(7.34) W(2.38) 2
    浑浑18HS–9 W–Cr–Au–Sb 7.68 W(2.69) Cr(2.60) Au(1.75) 乙3
    浑浑18HS–10 Cr–As–Sb–Bi–Cu–Zn–Pb–Co–
    Mo–Au–Ni–Sn–Cd
    41.59 Cr(12.4) Sb(4.11) Bi(3.24) Cu(2.33) Zn(2.23) Pb(1.75) Co(1.63) Mo(1.43) Au(1.36) 3
    浑浑18HS–11 Sb–Mo–W–As–Hg–Cu–Ni 6.49 Sb(1.38) Mo(1.05) W(1.03) 3
    浑浑18HS–12 Co–Cr–Mo–Cu–Pb–Sn–Au–Ni–Bi 22.74 Co(10.21) Cr(3.37) Mo(3.30) Cu(2.32) Pb(1.37) 3
    浑浑18HS–13 Mo–Au–Cu–W–Cd–Sb–Cr–Hg 44.54 Mo(12.72) Au(7.39) Cu(6.98) W(5.75) Cd(3.92) Sb(3.42) Cr(3.21) 2
    浑浑18HS–14 Cr–Sb–Mo–Ni–As–Cu–Co–Ag–Cd 23.19 Cr(8.35) Sb(5.19) Mo(2.70) Ni(2.26) 3
    浑浑18HS–15 Au–Cr–Ag–Cu–Cd–Pb–Bi–Sb–Zn–As–W–Co 26.89 Au(7.23) Cr(4.17) Ag(3.57) Cu(2.80) Cd(2.60) Pb(2.01) Bi(1.21) Sb(1.10) 2
    浑浑18HS–16 Au–Ag–Cu–Cr–Cd–Bi–Zn–Pb–Mo–As–Sb–W 90.87 Au(41.68) Ag(9.37) Cu(6.68) Cr(6.20) Cd(6.05) Bi(4.54) Zn(4.53) Pb(4.46) Mo(3.03) Sb(1.17) W(1.00) 1
    浑浑18HS–17 Au–Ag–Cu–Mo–Sb–Hg–As–Cr–Pb–W–Cd–Ni–Sn 80.04 Au(41.68) Ag(6.87) Cu(5.57) Mo(5.40) Sb(5.30) Cr(3.41) Pb(2.01) W(1.42) 1
    浑浑18HS–18 Sb–As–Au–Cd–W–Co–Cu 12.04 Sb(3.37) Au(2.20) Cd(1.61) W(1.14) 3
    浑浑18HS–19 Cr–Au–Cu–Sn–Hg–Bi 13.59 Cr(5.70) Au(2.99) Cu(2.88) Sn(1.08) 3
    浑浑18HS–20 As–Sb–Co–Cr–Au–Ag–Cu–Pb–
    Cd–Ni–Zn–Hg–Sn–W
    55.60 Sb(7.41) Co(6.81) Cr(5.79) Au(5.60) Ag(4.32) Cu(3.76) Pb(3.41) Cd(2.84) Ni(2.59) Zn(2.20) 2
    浑浑18HS–21 Cr–Cu–Ag–Co–Ni–Hg–Pb–Sn–Bi 24.87 Cr(6.95) Cu(4.66) Ag(3.47) Co(3.41) Ni(2.66) 3
    浑浑18HS–22 W–Hg–Cr–Mo–Au–Bi–As–Sn–
    Zn–Cu–Pb
    13.71 W(3.28) Cr(2.13) Mo(1.27) 3
    浑浑18HS–23 Pb–As–Cd–Hg–Mo–Cu–Ni 8.75 Pb(2.18) Cd(1.90) 3
    浑浑18HS–24 Hg–Sb–Cr–Cd–Cu–Pb–Bi–W–
    Ni–Co
    25.83 Sb(5.32) Cr(4.05) Cd(3.77) Cu(1.75) Pb(1.20) 3
    下载: 导出CSV

    Table 1.  Metadata Table of Database (Dataset)

    Item Description
    Database (dataset) name Primary Dataset of 1∶50 000 Stream Sediment Survey of Hunjiang City Map-sheet, Jilin Province
    Database (dataset) authors Wu Yushi, The Fourth Geological Survey of Jilin Province
    Wang Haijian, The Fourth Geological Survey of Jilin Province
    Che Hailong, The Fourth Geological Survey of Jilin Province
    Zhao Hongxu, The Fourth Geological Survey of Jilin Province
    Ma Lulu, The Fourth Geological Survey of Jilin Province
    Data acquisition time From May 2018 to December 2018
    Geographical area 1∶50 000 Hunjiang City map-sheet, Jilin Province lies in the southeastern part of Jilin Province and in the middle part of the integrated exploration area of iron and gold deposits in Banshigou, Baishan City, Jilin Province, covering an area of 384 km2;Coordinates: 126°15′00″−126°30′00″E; 41°50′00″−42°00′00″N
    Data formats *.xlsx, *.wt, *.wl, *.wp
    Data size 75.7 MB
    Data service system URL http://dcc.cgs.gov.cn
    Fund project The project titled Mineral Survey and Prospecting Predication of Integrated Exploration Area of Iron and Gold Deposits in Banshigou, Baishan City, Jilin Province (No.: 121201004000172201–06), which is a subject of the geological survey project titled Prospecting Predication and Technical Application Demonstration of Integrated Exploration Areas (No.: 121201004000172201) initiated by the China Geological Survey
    Language Chinese
    Database (dataset) composition The Dataset consists of one data table in Excel and a set of atlas in MapGIS format. The former is composed of the primary analysis data of 16 elements for 1961 samples, and the later includes one mineral geological map, one sampling point bitmap, 16 single-element geochemical maps and 16 single-element anomaly maps
    下载: 导出CSV

    Table 2.  Analysis methods and scheme

    Analysis method Elements tested Testing accuracy
    Atomic emission spectrometry (AES) Ag ≥ 0.01 nm
    Graphite furnace atomic absorption spectrometry (GFAAS) Au ≥ 0.002 nm
    Atomic fluorescence spectroscopy (AFS) As, Hg ≥ 0.3 nm
    Inductively coupled plasma mass spectrometry (ICP-MS) Cr, Co, Ni, Cu, Zn, Mo,
    Cd, Sn, Sb, W, Pb, Bi
    0.01−10 μg/L
    下载: 导出CSV

    Table 3.  Comparison between required detection limits of analysis and method detection limits

    No. Elements Method detection limit Required detection limit Unit Analysis method
    1 Cr 10 15 ×10–6 ICP–MS
    2 Co 0.5 1 ×10–6 ICP–MS
    3 Ni 2 3 ×10–6 ICP–MS
    4 Cu 1 1.5 ×10–6 ICP–MS
    5 Zn 5 15 ×10–6 ICP–MS
    6 Mo 0.2 0.5 ×10–6 ICP–MS
    7 Cd 0.1 0.1 ×10–6 ICP–MS
    8 Sn 0.5 1 ×10–6 ICP–MS
    9 Sb 0.03 0.2 ×10–6 ICP–MS
    10 W 0.2 0.5 ×10–6 ICP–MS
    11 Pb 2 5 ×10–6 ICP–MS
    12 Bi 0.1 0.1 ×10–6 ICP–MS
    13 As 0.5 1 ×10–6 AFS
    14 Hg 0.005 0.0005 ×10–6 AFS
    15 Ag 0.02 0.03 ×10–6 AES
    16 Au 0.0003 0.0003 ×10–6 GFAAS
    下载: 导出CSV

    Table 4.  Geochemical analysis data table of elements of Hunjiang City Map-sheet

    Serial number Field
    name
    Data
    type
    Example Serial number Field
    name
    Data
    type
    Example
    1 Analysis batch no. character 2018 Hua 302 11 Bi floating point 0.25
    3 Mineral sample no. character HJS001C1 12 Hg floating point 0.034
    4 Au floating point 1.00 13 W floating point 1.41
    5 Ag floating point 70.80 14 Sn floating point 2.30
    6 Cu floating point 16.40 15 Mo floating point 0.84
    7 Pb floating point 19.40 16 Cd floating point 0.09
    8 Zn floating point 88.10 17 Co floating point 14.60
    9 As floating point 6.44 18 Cr floating point 71.20
    10 Sb floating point 0.57 19 Ni floating point 27.00
      Notes: the content unit of Au and Hg is ×10–9, and that of other elements is ×10–6.
    下载: 导出CSV

    Table 5.  Metadata features and types of points in element geochemical maps of Hunjiang City Map-sheet

    No. Field name Data types Example
    1 ID long integer 1
    2 Anomaly no. character Ag–1
    3 Location character (292208.88, 4653922.84)
    4 Anomaly point number long integer 3
    5 Threshold of anomaly double precision 1
    6 Anomaly area double precision 0.558407
    7 Ordinal of anomaly area long integer 7
    8 Mean double precision 1.143667
    9 Ordinal of mean long integer 12
    10 Maximum double precision 1.231
    11 Ordinal of maximum long integer 12
    12 Contrast double precision 1.143667
    13 Ordinal of contrast long integer 12
    14 AD 0.638632
    15 Ordinal of AD long integer 8
    16 AP double precision 0.080224
    17 Ordinal of AP long integer 11
    18 NAD double precision 0.638632
    19 Ordinal of NAD long integer 8
    20 NAP double precision 0.080224
    21 Ordinal of NAP long integer 8
    22 Number of belts long integer 1
    下载: 导出CSV

    Table 6.  Metadata features and types of lines in element geochemical maps of Hunjiang City Map-sheet

    Serial number Field name Data type Example
    1 ID long integer 1
    2 Length double precision 80.55664
    3 Height double precision 1
    4 Element no. character Ag–1
    5 bh character Ag–1
    6 UserID long integer –1
    7 MAPCODE character K52E013002
    8 CHFCAC character 1
    9 YSYCZ floating point 0.12
    10 YSYCLX character 0
    11 YCTZ character 0
    12 YCDZ floating point 0.15
    13 HLZ floating point 0.08
    下载: 导出CSV

    Table 7.  Metadata features and types of polygons in element geochemical maps of Hunjiang City Map-sheet

    Serial number Field name Data type Example
    1 ID long integer 16
    2 Area double precision 433.29
    3 Perimeter double precision 271.77
    4 MAPCODE character K52E013002
    5 Start_value double precision 1
    6 end_value double precision 2
    下载: 导出CSV

    Table 8.  Detection limits and reported rates of analysis methods

    Serial
    number
    Element
    detected
    Detection limit of analysis method Detection limit required in
    the Specification
    Reported
    rate/%
    Analysis
    method
    1 Au 0.0003 0.0003 100 GFAAS
    2 Ag 0.02 0.03 100 AES
    3 Cu 1.0 1.5 100 ICP-MS
    4 Pb 2 5 100 ICP-MS
    5 Zn 5 15 100 ICP-MS
    6 As 0.5 1 100 AFS
    7 Sb 0.03 0.2 100 ICP-MS
    8 Bi 0.1 0.1 100 ICP-MS
    9 Hg 0.005 0.0005 100 AFS
    10 W 0.2 0.5 100 ICP-MS
    11 Sn 0.5 1 100 ICP-MS
    12 Mo 0.2 0.5 100 ICP-MS
    13 Cd 0.1 0.1 100 ICP-MS
    14 Co 0.5 1 100 ICP-MS
    15 Cr 10 15 100 ICP-MS
    16 Ni 2 3 100 ICP-MS
      Notes: inductively coupled plasma mass spectrometry (ICP-MS), atomic fluorescence spectroscopy (AFS) and adsorption of foam plastic by graphite furnace atomic absorption spectrometry (GFAAS)
    下载: 导出CSV

    Table 9.  Features of integrated anomalies of major metallogenic elementsD

    Anomaly no. Element association (descending order by scale) Scale
    (NAP)
    Major and associated metallogenic elements (scale) Anomaly class
    Hunhun18HS–1 Cd–As–Hg–Au–Bi 7.28 Cd(3.67) B3
    Hunhun18HS–2 Au–Cr–Hg–As–Cd–Cu–Ni 34.20 Au(22.81) Cr(4.12) A1
    Hunhun18HS–3 Au–Cr–Hg 13.1 Au(7.85) Cr(4.77) B3
    Hunhun18HS–4 As–Hg–Sb–Cr–Mo–W–Ni–Ag–Co–Sn–Cu 47.76 Sb(10.69) Cr(5.35) Mo(3.52) W(1.48) Ni(1.41) Ag(1.12) Co(1.03) B2
    Hunhun18HS–5 Cr–Au–Cu–Ni–Sb–Mo–W 33.32 Cr(13.69) Au(6.75) Cu(4.41) Ni(3.55) Sb(2.57) Mo(1.64) B2
    Hunhun18HS–6 Hg–Sb–Au–W–Mo–Cd–As–Pb 36.77 Sb(9.45) Au(5.38) W(2.24) Mo(1.96) Cd(1.50) B2
    Hunhun18HS–7 Cr–Mo–Cu–Ni–As–Sb 8.04 Cr(2.65) Mo(2.23) Cu(2.13) Ni(1.49) B3
    Hunhun18HS–8 Au–Sb–Cr–Hg–W–Cu–As–Mo 48.54 Au(19.96) Sb(11.73) Cr(7.34)W(2.38) B2
    Hunhun18HS–9 W–Cr–Au–Sb 7.68 W(2.69) Cr(2.60) Au(1.75) B3
    Hunhun18HS–10 Cr–As–Sb–Bi–Cu–Zn–Pb–
    Co–Mo–Au–Ni–Sn–Cd
    41.59 Cr(12.4) Sb(4.11) Bi(3.24) Cu(2.33)Zn(2.23) Pb(1.75) Co(1.63) Mo(1.43) Au(1.36) B3
    Hunhun18HS–11 Sb–Mo–W–As–Hg–Cu–Ni 6.49 Sb(1.38) Mo(1.05) W(1.03) B3
    Hunhun18HS–12 Co–Cr–Mo–Cu–Pb–Sn–Au–Ni–Bi 22.74 Co(10.21) Cr(3.37) Mo(3.30)Cu(2.32) Pb(1.37) B3
    Hunhun18HS–13 Mo–Au–Cu–W–Cd–Sb–Cr–Hg 44.54 Mo(12.72) Au(7.39) Cu(6.98) W(5.75) Cd(3.92) Sb(3.42) Cr(3.21) B2
    Hunhun18HS–14 Cr–Sb–Mo–Ni–As–Cu–Co–Ag–Cd 23.19 Cr(8.35) Sb(5.19) Mo(2.70) Ni(2.26) B3
    Hunhun18HS–15 Au–Cr–Ag–Cu–Cd–Pb–Bi–Sb–Zn–As–W–Co 26.89 Au(7.23) Cr(4.17) Ag(3.57) Cu(2.80) Cd(2.60) Pb(2.01) Bi(1.21) Sb(1.10) B2
    Hunhun18HS–16 Au–Ag–Cu–Cr–Cd–Bi–Zn–Pb–Mo–As–Sb–W 90.87 Au(41.68) Ag(9.37) Cu(6.68) Cr(6.20) Cd(6.05) Bi(4.54) Zn(4.53) Pb(4.46) Mo(3.03) Sb(1.17) W(1.00) A1
    Hunhun18HS–17 Au–Ag–Cu–Mo–Sb–Hg–
    As–Cr–Pb–W–Cd–Ni–Sn
    80.04 Au(41.68) Ag(6.87) Cu(5.57) Mo(5.40) Sb(5.30) Cr(3.41) Pb(2.01) W(1.42) A1
    Hunhun18HS–18 Sb–As–Au–Cd–W–Co–Cu 12.04 Sb(3.37) Au(2.20) Cd(1.61) W(1.14) B3
    Hunhun18HS–19 Cr–Au–Cu–Sn–Hg–Bi 13.59 Cr(5.70) Au(2.99) Cu(2.88) Sn(1.08) B3
    Hunhun18HS–20 As–Sb–Co–Cr–Au–Ag–Cu–Pb–Cd–Ni–Zn–Hg–Sn–W 55.60 Sb(7.41) Co(6.81) Cr(5.79) Au(5.60) Ag(4.32) Cu(3.76) Pb(3.41) Cd(2.84) Ni(2.59) Zn(2.20) B2
    Hunhun18HS–21 Cr–Cu–Ag–Co–Ni–Hg–Pb–Sn–Bi 24.87 Cr(6.95) Cu(4.66) Ag(3.47) Co(3.41) Ni(2.66) B3
    Hunhun18HS–22 W–Hg–Cr–Mo–Au–Bi–As–Sn–Zn–Cu–Pb 13.71 W(3.28) Cr(2.13) Mo(1.27) B3
    Hunhun18HS–23 Pb–As–Cd–Hg–Mo–Cu–Ni 8.75 Pb(2.18) Cd(1.90) B3
    Hunhun18HS–24 Hg–Sb–Cr–Cd–Cu–Pb–Bi–W–Ni–Co 25.83 Sb(5.32) Cr(4.05) Cd(3.77) Cu(1.75) Pb(1.20) B3
    下载: 导出CSV
  • [1]

    陈柏林, 李中坚, 董诚, 丁式江, 舒斌, 廖香俊, 董法先, 傅杨荣. 2004. 海南抱伦金矿床控矿构造特征及其对金矿化的控制作用[J]. 中国地质, 31(2): 139−146. doi: 10.3969/j.issn.1000-3657.2004.02.004

    [2]

    付建飞, 王恩德, 夏建明, 门业凯, 陈慧钧, 尤欣慰, 成林. 2014. 辽宁眼前山铁矿元素地球化学特征与沉积古环境研究[J]. 中国地质, 41(6): 1929−1943. doi: 10.3969/j.issn.1000-3657.2014.06.011

    [3]

    郭福生, 吴志春, 谢财富, 刘林清, 姜勇彪, 时国, 周万鹏. 2012. 数字地质填图系统的几点改进意见及实用技巧[J]. 中国地质, 39(1): 252−259. doi: 10.3969/j.issn.1000-3657.2012.01.025

    [4]

    洪秀伟, 庞宏伟, 刘学文, 李尔峰, 王文清, 王长峰, 刘铁. 2010. 辽宁本溪大台沟铁矿地质特征[J]. 中国地质, 37(5): 1426−1433. doi: 10.3969/j.issn.1000-3657.2010.05.019

    [5]

    李超岭, 黄与能, 张克信, 叶天竺, 李丰丹, 刘畅, 龙宝林, 于庆文, 张生辉, 陶继雄, 刘修国, 葛梦春, 吕志成, 朱学立, 徐开锋, 杨东来, 李景朝, 陈春香. 2013. 固体矿产勘查数据库内容与结构[S]. 北京: 中国地质调查局. 1–319.

    [6]

    李超岭, 杨东来, 于庆文. 2002. 数字地质调查与填图技术方法研究[J]. 中国地质, 2(2): 213−217. doi: 10.3969/j.issn.1000-3657.2002.02.020

    [7]

    李随民, 吴景霞, 栾文楼, 魏明辉, 陈树清. 2009. 地球化学块体方法在冀北金矿资源潜力估算中的应用[J]. 中国地质, 36(2): 444−449. doi: 10.3969/j.issn.1000-3657.2009.02.018

    [8]

    李随民, 魏明辉, 郝华金. 2014. 消除背景影响的化探异常圈定方法——以张家口地区为例[J]. 中国地质, 41(6): 2083−2090. doi: 10.3969/j.issn.1000-3657.2014.06.021

    [9]

    刘洪, 黄瀚霄, 李光明, 肖万峰, 张智林, 刘波, 马东方, 董磊, 马东. 2015. 因子分析在藏北商旭金矿床地球化学勘查中的应用[J]. 中国地质, 42(4): 1126−1136. doi: 10.3969/j.issn.1000-3657.2015.04.026

    [10]

    刘训, 游国庆. 2015. 中国的板块构造区划[J]. 中国地质, 42(1): 1−17. doi: 10.3969/j.issn.1000-3657.2015.01.002

    [11]

    牛树银, 李凤友, 陈华山, 孙爱群, 王宝德, 王金忠, 马宝军. 2012. 冀东金厂峪金矿深部和外围找矿预测[J]. 中国地质, 39(4): 999−1006. doi: 10.3969/j.issn.1000-3657.2012.04.016

    [12]

    潘桂棠, 肖庆辉, 陆松年, 邓晋福, 冯益民, 张克信, 张智勇, 王方国, 邢光福, 郝国杰, 冯艳芳. 2009. 中国大地构造单元划分[J]. 中国地质, 36(1): 1−28. doi: 10.3969/j.issn.1000-3657.2009.01.001

    [13]

    师淑娟, 王学求, 宫进忠. 2011. 金的地球化学异常与金矿床规模之间关系的统计学特征——以河北省为例[J]. 中国地质, 38(6): 1562−1567. doi: 10.3969/j.issn.1000-3657.2011.06.015

    [14]

    宋相龙, 肖克炎, 丁建华, 范建福, 李楠. 2017. 全国重要固体矿产重点成矿区带数据集[J]. 中国地质, 44(S1): 72−81.

    [15]

    孙启祯. 1994. 边缘成矿与成矿边缘效应[J]. 地学前缘, (4): 176−183. doi: 10.3321/j.issn:1005-2321.1994.04.021

    [16]

    王登红. 2016. 对华南矿产资源深部探测若干问题的探讨——以若干超大型矿床深部找矿突破为例[J]. 中国地质, 43(5): 1585−1598.

    [17]

    王来云, 孙念仁, 钟立平. 2010. 大兴安岭北段贵金属有色金属区域成矿地质特征及找矿方法[J]. 吉林地质, 29(1): 36−40. doi: 10.3969/j.issn.1001-2427.2010.01.009

    [18]

    王磊, 胡兆国, 李向民, 闫海忠, 杨超. 2020. 甘肃省党河南山乌兰达坂沟—扎子沟地区水系沉积物地球化学特征及找矿远景预测[J]. 中国地质, 47(2): 516−527.

    [19]

    王磊, 杨建国, 王小红, 齐琦, 李文明, 姜安定, 张洲远. 2016. 甘肃北山拾金坡——南金滩地区水系沉积物地球化学特征及找矿远景[J]. 中国地质, 43(2): 585−593. doi: 10.3969/j.issn.1000-3657.2016.02.018

    [20]

    王新春, 齐钒宇, 李晓蕾, 高学正. 2016. 资料数据集成与服务研究——以整装勘查区地质工作为例[J]. 中国地质, 43(2): 691−697. doi: 10.3969/j.issn.1000-3657.2016.02.028

    [21]

    王成辉, 王登红, 黄凡, 徐珏, 陈郑辉, 应立娟, 刘善宝. 2012. 中国金矿集区及其资源潜力探讨[J]. 中国地质, 39(5): 1125−1142. doi: 10.3969/j.issn.1000-3657.2012.05.002

    [22]

    王杨刚, 李娜, 向运川, 刘国, 于艳, 张大可, 何翠云, 何学洲, 赵军, 吴文娟. 2015. 全球地质矿产数据建库方法技术研究[J]. 中国地质, 42(1): 342−353. doi: 10.3969/j.issn.1000-3657.2015.01.028

    [23]

    汪东波, 江少卿, 董方浏. 2016. 藏北多龙矿集区荣那斑岩铜矿找矿突破的实践[J]. 中国地质, 43(5): 1599−1612.

    [24]

    韦少港, 宋扬, 唐菊兴, 高轲, 冯军, 李彦波, 侯淋. 2016. 西藏色那铜(金)矿床石英闪长玢岩年代学、地球化学与岩石成因[J]. 中国地质, 43(6): 1894−1912.

    [25]

    吴玉诗, 王海建, 车海龙, 赵虹旭, 马录录. 2020. 吉林省浑江市幅 1∶50 000 水系沉积物测量原始数据集[DB/OL].地质科学数据出版系统. (2020-12-30). DOI: 10.35080/data.C.2020.P23.

    [26]

    奚小环, 李敏. 2012. 中国区域化探若干基本问题研究: 1999—2009[J]. 中国地质, 39(2): 267−282. doi: 10.3969/j.issn.1000-3657.2012.02.001

    [27]

    向运川, 牟绪赞, 任天祥, 刘荣梅, 吴轩. 2018. 全国区域化探数据库[J]. 中国地质, 45(S1): 32−44. doi: 10.12029/gc2018Z103

    [28]

    杨剑, 唐发伟, 王桥, 王永华. 2015. 云南北衙地区成矿地球化学特征及找矿方向[J]. 中国地质, 42(6): 1989−1999.

    [29]

    袁慧香, 王杨刚, 任永强, 王春女, 刘娜. 2015. 基于ArcGIS的整装勘查信息系统设计与建立[J]. 中国地质, 42(1): 354−364. doi: 10.3969/j.issn.1000-3657.2015.01.029

    [30]

    赵武强, 崔森, 邹先武, 汤朝阳, 夏杰, 金世超. 2014. 湖南禾库地区水系沉积物地球化学特征及找矿预测[J]. 中国地质, 41(2): 638−647. doi: 10.3969/j.issn.1000-3657.2014.02.024

    [31]

    张璟, 陈远荣, 谢桃园, 李凤友, 袁玉华, 赵俊, 宋御, 邹杰. 2010. 团结沟金矿矿床成因、构造控矿规律与找矿方向浅析[J]. 中国地质, 37(6): 1710−1719. doi: 10.3969/j.issn.1000-3657.2010.06.017

    [32]

    张江华, 王葵颖, 赵阿宁, 陈华清, 柯海玲, 刘瑞平. 2013. 小秦岭金矿区水系沉积物重金属特征研究[J]. 中国地质, 40(2): 602−611. doi: 10.3969/j.issn.1000-3657.2013.02.023

    [33]

    张万益, 聂凤军, 刘树文, 左力艳, 陕亮, 姚晓峰. 2013. 大兴安岭南段西坡金属矿床特征及成矿规律[J]. 中国地质, 40(5): 1583−1599. doi: 10.3969/j.issn.1000-3657.2013.05.022

    [34]

    张永强, 谈乐, 李小明. 2019. 陕西石泉–旬阳金矿带整装勘查区饶峰幅等7个图幅区1: 50 000水系沉积物测量原始数据集[J]. 中国地质, 46(S1): 46−54. doi: 10.12029/gc2019Z106

    [35]

    张运强, 陈海燕, 张立国, 陈超, 刘应龙, 何娇月, 康璇, 张金龙, 彭芊芃. 2015. 冀北新杖子地区水系沉积物地球化学特征及找矿预测[J]. 中国地质, 42(6): 1980−1988.

    [36]

    智云宝, 王增辉, 魏正宇, 赵西强. 2019. 1∶50 000山东毕郭幅地球化学数据集[J]. 中国地质, 46(S1): 84−92. doi: 10.12029/gc2019Z110

    [37]

    朱炳玉, 杨隆勃, 朱亿广, 刘家军, 马华东. 2011. 新疆金山金矿床构造控矿规律及找矿评价标志研究[J]. 中国地质, 38(1): 109−118. doi: 10.3969/j.issn.1000-3657.2011.01.012

    [38]

    左群超, 叶天竺, 冯艳芳. 2018. 中国陆域1∶25万分幅建造构造图空间数据库[J]. 中国地质, 45(S1): 1−26. doi: 10.12029/gc2018Z101

    [1]

    Chen Bailin, Li Zhongjian, Dong Cheng, Ding Shijiang, Shu Bin, Liao Xiangjun, Dong Faxian, Fu Yangrong. 2004. Ore-controlling structure and its control over gold mineralization in the Baolun gold deposit, Hainan[J]. Geology in China, 31(2): 139−146 (in Chinese with English abstract).

    [2]

    Fu Jianfei, Wang En’de, Xia Jianming, Men Yekai, Chen Huijun, You Xinwei, Cheng Lin. 2014. Element geochemical characteristics and sedimentary palaeoenvironment of the Yanqianshan iron deposit in Liaoning Province[J]. Geology in China, 41(6): 1929−1943 (in Chinese with English abstract).

    [3]

    Guo Fusheng, Wu Zhichun, Xie Caifu, Liu Linqing, Jiang Yongbiao, Shi Guo, Zhou Wanpeng. 2012. Some suggestions for the improvement of the regional geological mapping system and practical skills[J]. Geology in China, 39(1): 252−259 (in Chinese with English abstract).

    [4]

    Hong Xiuwei, Pang Hongwei, Liu Xuewen, LI Erfeng, Wang Wenqing, Wang Changfeng, Liu Tie. 2010. Geological characteristics of the Dataigou iron deposit in Benxi, Liaoning Province[J]. Geology in China, 37(5): 1426−1433 (in Chinese with English abstract).

    [5]

    Li Chaoling, Huang Yuneng, Zhang Kexin, Ye Tianzhu, Li Fengdan, Liu Chang, Long Baolin, Yu Qingwen, Zhang Shenghui, Tao Jixiong, Liu Xiuguo, Ge Mengchun, Lv Zhicheng, Zhu Xueli, Xu Kaifeng, Yang Donglai, Li Jingzhao, Chen Chunxiang. 2013. Database content and structure of solid mineral exploration[S]. Beijing: China Geological Survey. 1–319 (in Chinese).

    [6]

    Li Chaoling, Yang Donglai, Yu Qingwen. 2002. Digital geological survey and mapping techniques[J]. Geology in China, 2(2): 213−217 (in Chinese with English abstract).

    [7]

    Li Suimin, Wu Jingxia, Luan Wenlou, Wei Minghui, Chen Shuqing. 2009. The application of geochemical block method to gold resource assessment in northern Hebei Province[J]. Geology in China, 36(2): 444−449 (in Chinese with English abstract).

    [8]

    Li Suimin, Wei Minghui, Hao Huajin. 2014. The elimination of background influence in the delineation of geochemical anomalies: A case study of geochemical data from Zhangjiakou area[J]. Geology in China, 41(6): 2083−2090 (in Chinese with English abstract).

    [9]

    Liu Hong, Huang Hanxiao, Li Guangming, Xiao Wanfeng, Zhang Zhilin, Liu Bo, Ma Dongfang, Dong Lei, Ma Dong. 2015. Factor analysis in geochemical survey of the Shangxu gold deposit, northern Tibet[J]. Geology in China, 42(4): 1126−1136 (in Chinese with English abstract).

    [10]

    Liu Xun, You Guoqing. 2015. Tectonic regional subdivision of China in the light of plate theory[J]. Geology in China, 42(1): 1−17 (in Chinese with English abstract).

    [11]

    Niu Shuyin, Li Fengyou, Chen Huashan, Sun Aiqun, Wang Baode, Wang Jinzhong, Ma Baojun. 2012. The exploration and prognosis in the depth and the periphery of the Jinchangyu gold deposit in eastern Hebei[J]. Geology in China, 39(4): 999−1006 (in Chinese with English abstract).

    [12]

    Pan Guitang, Xiao Qinghui, Lu Songnian, Deng Jinfu, Feng Yimin, Zhang Kexin, Zhang Zhiyong, Wang Fangguo, Xing Guangfu, Hao Guojie, Feng Yanfang. 2009. Subdivision of tectonic units in China[J]. Geology in China, 36(1): 1−28 (in Chinese with English abstract).

    [13]

    Shi Shujuan, Wang Xueqiu, Gomg Jinzhong. 2011. Statistic relationship between geochemical anomalous areas and gold reserves: A case study of Hebei Province[J]. Geology in China, 38(6): 1562−1567 (in Chinese with English abstract).

    [14]

    Song Xianglong, Xiao Keyan, Ding Jianhua, Fan Jianfu, Li Nan. 2017. Dataset of Major Mineralization Belts of China's Key Solid Mineral Resources[J]. Geology in China, 44(S1): 72−81.

    [15]

    Sun Qizhen. 1994. Marginal mineralization and mineralization marginal effects[J]. Earth Science Frontiers, (4): 176−183 (in Chinese with English abstract).

    [16]

    Wang Denghong. 2016. A discussion on some problems concerning deep exploration of mineral resources in South China[J]. Geology in China, 43(5): 1585−1598 (in Chinese with English abstract).

    [17]

    Wang Laiyun, Sun Nianren, Zhong Liping. 2010. Regional metallogenic geological features of North Daxing'anling precious metals and non-ferrous metals and prospecting method[J]. Jilin Geology, 29(1): 36−40 (in Chinese).

    [18]

    Wang Lei, Hu Zhaoguo, Li Xiangmin, Yan Haizhong, Yang Chao. 2020. Geochemical characteristics of stream sediments and prediction of mining prospects in the Wulandaban—Zhazigou area, Danghe South Mountain, Gansu Province[J]. Geology in China, 47(2): 516−527 (in Chinese with English abstract).

    [19]

    Wang Lei, Yang Jianguo, Wang Xiaohong, Qi Qi, Li Wenming, Jiang Anding, Zhang Zhouyuan. 2016. Geochemical characteristics of stream sediments and prospecting direction in the Shijinpo-Nanjintan area of Beishan, Gansu Province[J]. Geology in China, 43(2): 585−593 (in Chinese with English abstract).

    [20]

    Wang Xinchun, Qi Fanyu, Li Xiaolei, Gao Xuezheng. 2016. Research on the geological data integration and service: A case study of geological work in the equipped exploration area[J]. Geology in China, 43(2): 691−697 (in Chinese with English abstract).

    [21]

    Wang Chenghui, Wang Denghong, Huang Fan, Xu Jue, Chen Zhenghui, Ying Lijuan, Liu Shanbao. 2012. The major gold concentration areas in China and their resource potentials[J]. Geology in China, 39(5): 1125−1142 (in Chinese with English abstract).

    [22]

    Wang Yanggang, Li Na, Xiang Yunchuan, Liu Guo, Yu Yan, Zhang Dake, He Cuiyun, He Xuezhou, Zhao Jun, Wu Wenjuan. 2015. The methods and techniques for the construction of the global mineral and resource database[J]. Geology in China, 42(1): 342−353 (in Chinese with English abstract).

    [23]

    Wang Dongbo, Jiang Shaoqing, Dong Fangliu. 2016. Geological exploration of the Rongna porphyry copper deposit in the Duolong ore concentration area, northern Tibet[J]. Geology in China, 43(5): 1599−1612 (in Chinese with English abstract).

    [24]

    Wei Shaogang, Song Yang, Tang Juxing, Gao Ke, Feng Jun, Li Yanbo, Hou Lin. 2016. Geochronology, geochemistry and petrogenesis of quartz diorite porphyrite from the Sena copper (gold) deposit, Tibet[J]. Geology in China, 43(6): 1894−1912 (in Chinese with English abstract).

    [25]

    Wu Yushi, Wang Haijain, Che Hailong, Zhao Hongxu, Ma Lulu. 2020. Primary Dataset of 1∶50 000 Stream Sediment Survey of Hunjiang City Map-sheet, Jilin Province[DB/OL]. Geoscientific Data & Discovery Publishing System. (2020-12-30). DOI: 10.35080/data.C.2020.P23.

    [26]

    Xi Xiaohuan, Li min. 2012. Regional geochemical exploration in China: from 1999 to 2009[J]. Geology in China, 39(2): 267−282 (in Chinese with English abstract).

    [27]

    Xiang Yunchuan, Mou Xuzan, Ren Tianxiang, Liu Rongmei, Wu Xuan. 2018. China Regional Geochemical Exploration Database[J]. Geology in China, 45(S1): 41−57.

    [28]

    Yang Jian, Tang Fawei, Wang Qiao, Wang Yonghua. 2015. Geochemistry and ore-prospecting targeting in Beiya area, Yunnan Province[J]. Geology in China, 42(6): 1989−1999 (in Chinese with English abstract).

    [29]

    Yuan Huixiang, Wang Yanggang, Ren Yongqiang, Wang Chunnv, Liu Na. 2015. Design and development of the information system for integrated exploration on ArcGIS[J]. Geology in China, 42(1): 354−364 (in Chinese with English abstract).

    [30]

    Zhao Wuqiang, Cui Sen, Zou Xianwu, Tang Chaoyang, Xia Jie, Jin Shichao. 2014. Geochemical characteristics of stream sediments and metallogenic prognosis of Heku area, Hunan Province[J]. Geology in China, 41(2): 638−647 (in Chinese with English abstract).

    [31]

    Zhang Jing, Chen Yuanrong, Xie Taoyuan, Li Fengyou, Yuan Yuhua, Zhao Jun, Song Yu, Zou Jie. 2010. A tentative discussion on the genesis, ore-controlling regularity and prospecting direction of the Tuanjiegou gold deposit[J]. Geology in China, 37(6): 1710−1719 (in Chinese with English abstract).

    [32]

    Zhang Jianghua, Wang Kuiying, Zhao Aning, Chen Huaqing, Ke Hailing, Liu Ruiping. 2013. Heavy metal characteristics of stream sediments in the Xiaoqinling gold ore district[J]. Geology in China, 40(2): 602−611 (in Chinese with English abstract).

    [33]

    Zhang Wanyi, Nie Fengjun, Liu Shuwen, Zuo Liyan, Shan Liang, Yao Xiaofeng. 2013. Characteristics and metallogenic regularities of ore deposits on the western slope of the southern section of the Da Hinggan Mountains metallogenic belt[J]. Geology in China, 40(5): 1583−1599 (in Chinese with English abstract).

    [34]

    Zhang Yongqiang, Tan Le, Li Xiaoming. 2019. The 1∶ 50 000 Original Measurement Dataset on Stream Sediments for 7 Map-sheets including the Raofeng Map in the Integrated Survey Area of the Shiquan-Xunyang Gold Ore Zone, Shanxi[J]. Geology in China, 46(S1): 60−71.

    [35]

    Zhang Yunqiang, Chen Haiyan, Zhang Liguo, Chen Chao, Liu Yinglong, He Jiaoyue, Kang Xuan, Zhang Jinlong, Peng Qianpeng. 2015. Geochemical characteristics of stream sediments and metallogenic prognosis of Xinzhangzi area, northern Hebei Province[J]. Geology in China, 42(6): 1980−1988 (in Chinese with English abstract).

    [36]

    Zhi Yunbao, Wang Zenghui, Wei Zhengyu, Zhao Xiqiang. 2019. Geochemical dataset of the 1∶50 000 Shandong Biguo map-sheet area[J]. Geology in China, 46(S1): 112−124.

    [37]

    Zhu Bingyu, Yang Longbo, Zhu Yiguang, Liu Jiajun, Ma Huadong. 2011. A study of tectonic control of mineralization and geological Indicators for ore-prospecting in the Jinshan (Gold Mountain) gold deposit, Xinjiang[J]. Geology in China, 38(1): 109−118 (in Chinese with English abstract).

    [38]

    Zuo Qunchao, Ye Tianzhu, Feng Yanfang. 2018. Spatial Database of Serial Suite-Tectonic Map-sheets of Mianland China(1∶250 000)[J]. Geology in China, 45(S1): 1−34.

  • 加载中

(4)

(18)

计量
  • 文章访问数:  1279
  • PDF下载数:  21
  • 施引文献:  0
出版历程
收稿日期:  2020-05-06
修回日期:  2020-06-27
刊出日期:  2020-12-30

目录