中国地质调查局 中国地质科学院主办
科学出版社出版

西大别地区吕王—高桥混杂岩带石墨赋矿岩系碎屑锆石U–Pb年龄:对中元古代海相沉积事件的约束

朱江, 陈超, 李占轲, 吴波, 王光洪, 彭练红. 2024. 西大别地区吕王—高桥混杂岩带石墨赋矿岩系碎屑锆石U–Pb年龄:对中元古代海相沉积事件的约束[J]. 中国地质, 51(5): 1735-1747. doi: 10.12029/gc20210107001
引用本文: 朱江, 陈超, 李占轲, 吴波, 王光洪, 彭练红. 2024. 西大别地区吕王—高桥混杂岩带石墨赋矿岩系碎屑锆石U–Pb年龄:对中元古代海相沉积事件的约束[J]. 中国地质, 51(5): 1735-1747. doi: 10.12029/gc20210107001
ZHU Jiang, CHEN Chao, LI Zhanke, WU Bo, WANG Guanghong, PENG Lianhong. 2024. Detrital zircon U–Pb age of graphite−hosting meta−sedimentary rocks in the Lüwang–Gaoqiao mélange belt, western Dabie area: Constraints on Mesoproterozoic marine sedimentary events[J]. Geology in China, 51(5): 1735-1747. doi: 10.12029/gc20210107001
Citation: ZHU Jiang, CHEN Chao, LI Zhanke, WU Bo, WANG Guanghong, PENG Lianhong. 2024. Detrital zircon U–Pb age of graphite−hosting meta−sedimentary rocks in the Lüwang–Gaoqiao mélange belt, western Dabie area: Constraints on Mesoproterozoic marine sedimentary events[J]. Geology in China, 51(5): 1735-1747. doi: 10.12029/gc20210107001

西大别地区吕王—高桥混杂岩带石墨赋矿岩系碎屑锆石U–Pb年龄:对中元古代海相沉积事件的约束

  • 基金项目: 国家自然科学基金项目(42172103)、湖北省自然科学基金项目(2023AFD206)、资源与生态环境地质湖北省重点实验室开放基金资助项目(HBREGKFJJ–202302)、地质过程与矿产资源国家重点实验室科技部专项经费(GPMR202424)联合资助。
详细信息
    作者简介: 朱江,男,1985年生,高级工程师,主要从事矿床学、地球化学研究;E-mail: zhujiang.01@foxmail.com
  • 中图分类号: P619.252

Detrital zircon U–Pb age of graphite−hosting meta−sedimentary rocks in the Lüwang–Gaoqiao mélange belt, western Dabie area: Constraints on Mesoproterozoic marine sedimentary events

  • Fund Project: Supported by the National Natural Science Foundation of China (No.42172103), Hubei Provincial Natural Science Foundation of China (No.2023AFD206), Open Fund of Hubei Key Laboratory of Resources and Eco−Environment Geology (No.HBREGKFJJ–202302), Most Special Fund from State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences (No.GPMR202424).
More Information
    Author Bio: ZHU Jiang, male, born in 1985, senior engineer, mainly engaged in the research of mineral deposit and geochemistry; E-mail: zhujiang.01@foxmail.com .
  • 研究目的

    扬子陆块北缘大别山地区古元古代—中元古代的物质记录有限,制约了前寒武纪地质构造演化认识。大别山核部吕王—高桥混杂岩带内“石墨片岩–石英岩夹大理岩”沉积岩系的年代学研究可为大别山地区中元古代古洋(海)盆演化提供新约束,对区域前寒武纪成矿与找矿提供科学指导。

    研究方法

    在开展1∶10000地质测量查明混杂岩带岩石组合特征的基础上,本文重点利用激光剥蚀电感耦合等离子体质谱方法,对赋石墨矿变沉积岩系的石英岩开展锆石原位U–Pb同位素测年。

    研究结果

    大别造山带核部发育中元古代“石墨片岩–石英岩夹大理岩”变沉积岩系,为一套浅海相沉积、成熟度高的砂岩。石英岩原岩的碎屑锆石年龄峰值主要为2.55 Ga、2.06 Ga、1.86 Ga及1.43 Ga,最年轻峰值年龄1.43 Ga约束了原岩沉积时代下限。这套变沉积岩原岩沉积时代为中元古代晚期,其沉积物源可能主要来自扬子陆块基底。

    结论

    吕王—高桥混杂岩带保留了大别山核部较早的海相沉积记录,并为区域石墨成矿提供了物质基础。该变沉积岩系原岩可能形成于中元古代哥伦比亚超大陆裂解期的扬子陆块边缘海盆地。

  • 加载中
  • 图 1  西大别地区大地构造位置图(a)和区域地质简图(b)(据Liu et al., 2004修改)

    Figure 1. 

    图 2  吕王—高桥混杂岩带及红马冲石墨矿区地质图

    Figure 2. 

    图 3  湖北省大悟县吕王—高桥混杂岩带剖面图

    Figure 3. 

    图 4  吕王—高桥混杂岩基质和岩块露头及镜下显微特征

    Figure 4. 

    图 5  红马冲石墨矿区矿化露头及赋矿变沉积岩特征

    Figure 5. 

    图 6  石墨赋矿石英岩代表性锆石阴极发光图像(a)、锆石稀土元素配分模式图(b)和锆石U–Pb年龄谐和图(c)

    Figure 6. 

    图 7  吕王—高桥混杂岩中石英岩的碎屑锆石207Pb/206Pb年龄频率直方图(a)及其与神龙架群(b)、宽坪群和二郎坪群(c)年龄谱系特征对比

    Figure 7. 

    表 1  吕王—高桥混杂岩带红马冲石墨矿赋矿石英岩LA–ICP–MS锆石U–Pb同位素测定结果

    Table 1.  LA–ICP–MS zircon isotopic U–Pb data of the graphite−bearing quartzite from the Hongmachong graphite deposit in the Lüwang–Gaoqiao mélange belt

    样品点号元素含量/10−6Th/U同位素比值同位素年龄/Ma
    PbThU207Pb/206Pb1σ207Pb/235U1σ206Pb/238U1σ207Pb/206Pb1σ207Pb/235U1σ206Pb/238U1σ
    TC32-Zr@014471743720.470.18380.002812.22480.19860.48060.0038268826262215253016
    TC32-Zr@025292384320.550.18390.002611.72440.16390.46060.0033268929258313244215
    TC32-Zr@0310945645850.960.17930.002511.79370.15150.47520.0031264618258812250614
    TC32-Zr@043071212640.460.18070.002812.10860.17930.48400.0040266125261314254517
    TC32-Zr@057563147590.410.17320.002810.34020.19850.42970.0052258928246618230423
    TC32-Zr@063571692580.660.17570.003111.04950.21040.45300.0050261330252718240922
    TC32-Zr@079343.252.40.820.17530.003911.97280.27320.49400.0062260937260221258827
    TC32-Zr@084452194010.550.16530.00259.41960.13150.41120.0029251126238013222113
    TC32-Zr@0979632611830.280.15890.00258.37900.15940.37840.0031244428227317206915
    TC32-Zr@104361964240.460.16710.002610.31980.16100.44540.0036252927246414237516
    TC32-Zr@118404067660.530.18010.002911.27650.17280.45190.0034265326254614240315
    TC32-Zr@126753875080.760.16060.00259.04760.15050.40630.0036246126234315219816
    TC32-Zr@133902314400.530.13390.00216.49150.09830.35040.0025215026204513193612
    TC32-Zr@145023145200.600.12710.00206.16620.10070.35070.0029205928200014193814
    TC32-Zr@1510785606120.910.20760.003113.57440.20300.47290.0032288724272014249614
    TC32-Zr@162581211940.620.16430.002810.45760.18760.46070.0045250228247617244320
    TC32-Zr@172912272660.850.11030.00194.76880.08320.31320.0026180331177915175613
    TC32-Zr@187354196410.650.16020.00228.63140.13510.38940.0038245823230014212018
    TC32-Zr@197326104421.380.11560.00185.06810.07570.31710.0022190028183113177611
    TC32-Zr@205022365020.470.15940.00239.33900.13830.42370.0032245025237214227715
    TC32-Zr@2110106327470.850.15480.00238.34790.12700.38980.0031240024227014212214
    TC32-Zr@223031552370.650.15920.00259.39660.14670.42730.0035244727237714229316
    TC32-Zr@235204034180.960.11590.00184.91370.09210.30610.0036189427180516172118
    TC32-Zr@244051792540.710.17040.002810.24230.16820.43480.0033256128245715232715
    TC32-Zr@255293347230.460.11400.00184.94200.07480.31370.0021186529180913175910
    TC32-Zr@262632003340.600.14770.00277.26310.18350.35390.0056232031214423195327
    TC32-Zr@279893905550.700.22050.003316.96690.25130.55640.0037298424293314285215
    TC32-Zr@287314575720.800.14290.00227.49390.11190.37940.0026226332217213207312
    TC32-Zr@295803543381.050.17400.002610.71210.19210.44500.0054259825249817237324
    TC32-Zr@306503163560.890.18640.002712.58100.17920.48790.0032271029264913256114
    TC32-Zr@3110554396020.730.23770.003317.51850.22970.53260.0029310522296413275212
    TC32-Zr@3266238810170.380.15340.00217.80440.11000.36750.0028238424220913201813
    TC32-Zr@33130287610500.830.15860.00208.05410.11460.36670.0031244321223713201414
    TC32-Zr@345575837670.760.09040.00152.79810.04600.22370.001714332713551213019
    TC32-Zr@352411462290.640.12870.00246.54330.12670.36730.0032208033205217201715
    TC32-Zr@366013906810.570.12930.00216.03150.09230.33720.0025208928198013187312
    TC32-Zr@377074173831.090.18160.002710.96450.19990.43570.0049273325252017233122
    TC32-Zr@384391685660.300.16740.00259.38990.13260.40560.0030253225237713219514
    TC32-Zr@394632244410.510.16570.00239.51310.13270.41470.0028251524238913223613
    TC32-Zr@4050297.413090.070.12220.00165.28610.07570.31210.0025198924186712175112
    TC32-Zr@414324435780.770.08940.00162.81850.04860.22790.0018141339136013132410
    TC32-Zr@424222816690.420.11300.00184.64460.07040.29720.0025184828175713167712
    TC32-Zr@434593533910.900.11360.00194.76520.07780.30350.0026185730177914170913
    TC32-Zr@445925849880.590.12520.00193.95710.06020.22870.0020203223162512132810
    TC32-Zr@4511356938990.770.16360.00258.48550.14810.37490.0043249323228416205220
    TC32-Zr@4645.318.065.90.270.15690.00727.87270.30140.36380.0093242380221734200044
    TC32-Zr@47118388310370.850.17770.00239.59340.11950.39000.0025263118239711212312
    TC32-Zr@486563708820.420.15400.00227.39970.14480.34670.0048239124216118191923
    TC32-Zr@49121212889271.390.18390.00309.12210.14880.35890.0036268822235015197717
    TC32-Zr@501400255612981.970.16490.00265.64730.12240.24690.0037250627192319142219
    TC32-Zr@511257161615471.040.18850.00267.92200.10500.30350.001827292022221217099
    TC32-Zr@5273511266711.680.20070.00329.25020.29400.33210.0091283227236329184944
    TC32-Zr@531202140614310.980.26670.004312.00930.19480.32460.0026328723260515181213
    TC32-Zr@5463791115450.590.11210.00153.69780.04730.23890.001718342015711013819
    下载: 导出CSV
  • [1]

    Chen Bailin, Li Songbin, Wang Yong, Chen Zhengle, Zhou Yonggui, Hao Ruixiang, Liu Mu. 2023. Geochemistry and geochronology of cumulated gabbro from Kaladawan area, Altun Mountains, NW China: Evidence for oceanic crust evolution[J]. Geology in China, 50(5): 1557−1572 (in Chinese with English abstract).

    [2]

    Chen W, Xu Z W, Chen M H, Yu Y. 2016. Multiple sources for the origin of the Early Cretaceous Xinxian granitic batholith and its tectonic implications for the western Dabie orogen, eastern China[J]. Mineralogy and Petrology, 110(1): 29−41.

    [3]

    Chen Z, Lu S, Li H, Li H, Xiang Z, Zhou H, Song B. 2006. Constraining the role of the Qinling orogen in the assembly and break−up of Rodinia: Tectonic implications for Neoproterozoic granite occurrences[J]. Journal of Asian Earth Sciences, 28(1): 99−115.

    [4]

    Deng Ganzhong, Li Xiongwei, Deng Zhe, Li Rong. 2013. Further discussion on stratigraphic sequence of Hong’an Group and relevant problems[J]. Resources Environment and Engineering, 27(2): 125−132 (in Chinese with English abstract).

    [5]

    Deng H, Peng S, Polat A, Kusky T, Jiang X, Han Q, Wang L, Huang Y, Wang J, Zeng W. 2017. Neoproterozoic IAT intrusion into Mesoproterozoic MOR Miaowan ophiolite, Yangtze Craton: Evidence for evolving tectonic settings[J]. Precambrian Research, 289: 75−94.

    [6]

    Geng Yuansheng, Kuang Hongwei, Liu Yongqing, Du Lilin. 2017. Subdivision and correlation of the Mesoproterozoic stratigraphy in the western and northern margins of Yangtze Block[J]. Acta Geologica Sinica, 91(10): 2151−2174 (in Chinese with English abstract).

    [7]

    Guo J L, Wu Y B, Gao S, Jin Z M, Zong K Q, Hu Z C, Chen K, Chen H H, Liu Y S. 2015. Episodic Paleoarchean–Paleoproterozoic (3.3–2.0 Ga) granitoid magmatism in Yangtze Craton, South China: Implications for late Archean tectonics[J]. Precambrian Research, 270: 246−266.

    [8]

    Hu J, Liu X C, Chen L Y, Qu W, Li H K, Geng J Z. 2013. A ~2.5 Ga magmatic event at the northern margin of the Yangtze craton: Evidence from U–Pb dating and Hf isotope analysis of zircons from the Douling Complex in the South Qinling orogen[J]. Chinese Science Bulletin, 58(28): 3564−3579.

    [9]

    Hu Z C, Gao S, Liu Y, Hu S, Chen H, Yuan H. 2008. Signal enhancement in laser ablation ICP–MS by addition of nitrogen in the Central Channel gas[J]. Journal of Analytical Atomic Spectrometry, 23(8): 1093.

    [10]

    Hu Z C, Liu Y S, Gao S, Xiao S, Zhao L, Günther D, Li M, Zhang W, Zong K. 2012. A “wire” signal smoothing device for laser ablation inductively coupled plasma mass spectrometry analysis[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 78: 50−57.

    [11]

    Huang L, Geng W, Sun Z L. 2018. Origin of the serpentinites in the Lichi mélange, eastern Taiwan, China: Implication from petrology and geochronology[J]. China Geology, 1(4): 477−484.

    [12]

    Jiang X, Peng S, Polat A, Kusky T, Wang L, Wu T, Lin M, Han Q. 2016. Geochemistry and geochronology of mylonitic metasedimentary rocks associated with the Proterozoic Miaowan Ophiolite Complex, Yangtze Craton, China: Implications for geodynamic events[J]. Precambrian Research, 279: 37−56.

    [13]

    Li Huaikun, Tian Hui, Zhou Hongying, Zhang Jian, Liu Huan, Geng Jianzhen, Ye Lijuan, Xiang Zhenqun, Qu Lesheng. 2016. Correlation between the Dagushi Group in the Dahongshan area and the Shennongjia Group in the Shennongjia area on the northern margin of the Yangtze Craton: Constraints from zircon U–Pb ages and Lu–Hf isotopic systematic[J]. Earth Science Frontiers, 23(6): 186−201 (in Chinese with English abstract).

    [14]

    Li Tingdong, Xiao Qinghui, Pan Guitang, Lu Songnian, Ding Xiaozhong, Liu Yong. 2019. A consideration about the development of ocean plate geology[J]. Earth Science, 44(5): 17−27 (in Chinese with English abstract).

    [15]

    Liu Hao, Xu Daliang, Wei Yunxu, Peng Lianhong, Deng Xin, Zhao Xiaoming, Chen Tielong, Ke Xianzhong. 2017. Zircon U–Pb age constraints on the chronostratigraphy of the Baizhuping Formation, northern Yangtze Block[J]. Journal of Stratigraphy, 41(3): 87−95 (in Chinese with English abstract).

    [16]

    Liu Xiaochun, Dong Shuwen, Li Sanzhong, Xue Huaimin, Liu Jianmin, Qu Wei. 2005. Timing of the Hong'an Group in Hubei: Constraints from U–Pb dating of metagranitic intrusions[J]. Geology in China, 32(1): 75−81 (in Chinese with English abstract).

    [17]

    Liu X C, Jahn B M, Liu D Y, Dong S W, Li S Z. 2004. SHRIMP U–Pb zircon dating of a metagabbro and eclogites from western Dabieshan (Hong’an Block), China, and its tectonic implications[J]. Tectonophysics, 394: 171−192.

    [18]

    Liu X C, Jahn B M, Li S Z, Liu Y S. 2013. U–Pb zircon age and geochemical constraints on tectonic evolution of the Paleozoic accretionary orogenic system in the Tongbai orogen, central China[J]. Tectonophysics, 599: 67−88.

    [19]

    Liu Y, Gao S, Hu Z, Gao C, Zong K, Wang D. 2010. Continental and oceanic crust recycling−induced melt−peridotite interactions in the Trans–North China orogen: U–Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths[J]. Journal of Petrology, 51(1/2): 537−571.

    [20]

    Ludwig K R. 2003. User’s Manual for Isoplot 3.00: A Geochronological Toolkit for Microsoft Excel[M]. Berkeley: Berkeley Geochronology Center.

    [21]

    Peng M, Wu Y B, Wang J, Jiao W F, Liu X C, Yang S H. 2009. Paleoproterozoic mafic dyke from Kongling terrain in the Yangtze Craton and its implication[J]. Chinese Science Bulletin, 54(6): 1098−1104.

    [22]

    Peng M, Wu Y B, Gao S, Zhang H F, Wang J, Liu X C, Gong H J, Zhou L, Hu Z C, Liu Y S, Yuan H L. 2012. Geochemistry, zircon U–Pb age and Hf isotope compositions of Paleoproterozoic aluminous A−type granites from the Kongling terrain, Yangtze Block: Constraints on petrogenesis and geologic implications[J]. Gondwana Research, 22(1): 140−151.

    [23]

    Qiu Xiaofei, Yang Hongmei, Lu Shansong, Zhang Liguo, Duan Ruichun, Du Guomin. 2016. Geochronology of the khondalite series in the Kongling Complex, Yangtze Craton and its geological implication[J]. Geotectonica et Metallogenia, 40(3): 549−558 (in Chinese with English abstract).

    [24]

    Wang J, Deng Q, Wang Z J, Qiu Y S, Duan T Z, Jiang X S, Yang Q X. 2013. New evidences for sedimentary attributes and timing of the "Macaoyuan conglomerates" on the northern margin of the Yangtze block in southern China[J]. Precambrian Research, 235: 58−70.

    [25]

    Wang Jing, Wu Yuanbao, Peng Min, Jiao Wenfang, Liu Xiaochi. 2009. Protolith age and Hf isotope compositions of eclogite in Hong'an area, western Dabie Mountains: Implication for crustal growth at the Late Mesoproterozoic in the north margin of the Yangtze Block[J]. Journal of Mineralogy and Petrology, 29(2): 108−114 (in Chinese with English abstract).

    [26]

    Wang Tao, Zhang Zongqing, Wang Xiaoxia, Wang Yanbin, Zhang Chengli. 2005. Neoproterozoic collisional deformation in the core of the Qinling Orogen and its age: Constrained by zircon SHRIMP dating of strongly deformed syn−collisional granites and weakly deformed granitic veins[J]. Acta Geologica Sinica, 79(2): 220−231 (in Chinese with English abstract).

    [27]

    Wang X L, Jiang S Y, Dai B Z. 2010. Melting of enriched Archean subcontinental lithospheric mantle: Evidence from the ca. 1760 Ma volcanic rocks of the Xiong'er Group, southern margin of the North China Craton[J]. Precambrian Research, 182: 204−216.

    [28]

    Wiedenbeck M, Allé P, Corfu F, Griffin W L, Spiegel W. 2007. Three natural zircon standards for U–Th–Pb, Lu–Hf, trace element and REE analyses[J]. Geostandards and Geoanalytical Research, 19(1): 1−23.

    [29]

    Wu Y B, Zheng Y F, Gao S, Jiao W F, Liu Y S. 2008. Zircon U–Pb age and trace element evidence for Paleoproterozoic granulite−facies metamorphism and Archean crustal rocks in the Dabie orogen[J]. Lithos, 101(3/4): 308−322.

    [30]

    Wu Y B, Zheng Y F. 2013. Tectonic evolution of a composite collision orogen: An overview on the Qinling–Tongbai–Hong'an–Dabie–Sulu orogenic belt in central China[J]. Gondwana Research, 23(4): 1402−1428.

    [31]

    Wu Y B, Zhou G Y, Gao S, Liu X C, Qin Z W, Wang H, Yang J Z, Yang S H. 2014. Petrogenesis of Neoarchean TTG rocks in the Yangtze Craton and its implication for the formation of Archean TTGs[J]. Precambrian Research, 254: 73−86.

    [32]

    Xiao Zhibin. 2012. Reseach of the Detrital Zircon from Mesoproterozoic Sedimentary Strata in the North Margin of Yangtze Craton, China[D]. Xi’an: Northwest University, 1–71 (in Chinese with English abstract).

    [33]

    Xu Daliang, Liu Hao, Wei Yunxu, Peng Lianhong, Deng Xin. 2016. Detrial zircon U–Pb dating of Zhengjiaya Formation from the Shengnongjia area in the northern Yangtze Block and its tectonic implications[J]. Acta Geologica Sinica, 90(10): 2648−2660 (in Chinese with English abstract).

    [34]

    Xu H J, Ma C Q, Ye K. 2007. Early Cretaceous granitoids and their implications for the collapse of the Dabie orogen, eastern China: SHRIMP zircon U–Pb dating and geochemistry[J]. Chemical Geology, 240(3/4): 238−259.

    [35]

    Xu Y, Zhang S, Griffin W L, Yang Y, Yang B, Luo Y, Zhu L, Afonso J C, Lei B. 2016. How did the Dabie orogen collapse? Insights from 3−D magnetotelluric imaging of profile data[J]. Journal of Geophysical Research, 121(7): 5169−5185.

    [36]

    Xu Yang, Yang Zhenning, Deng Xin, Wang Lingzhan, Liu Hao, Jin Xindaru, Zhang Weifeng, Wei Yunxu, Peng Lianhong. 2021. Identification of an Indosinian tectonic mélange belt in the Western Dabie orogenic belt and its geological significance[J]. Earth Science, 46(4): 1173−1198 (in Chinese with English abstract).

    [37]

    Yan Zhen, Wang Zongqi, Fu Changlei, Niu Manlan, Ji Wenhua, Li Rongshe, Qi Shengsheng, Mao Xiaochang. 2018. Characteristics and thematic geological mapping of mélanges[J]. Geological Bulletin of China, 37(2/3): 167−191 (in Chinese with English abstract).

    [38]

    Yang Y N, Wang X C, Li Q L, Li X H. 2016. Integrated in situ U–Pb age and Hf–O analyses of zircon from Suixian Group in northern Yangtze: New insights into the Neoproterozoic low–18O magmas in the South China Block[J]. Precambrian Research, 273: 151−164.

    [39]

    Yi Chengsheng. 2019. Mineral characteristics and metallogenic regularity of graphite ore in Hubei Province[J]. Journal of Hefei University of Technology (Natural Science), 42(3): 361−369 (in Chinese with English abstract).

    [40]

    Zhang Chao, Ma Changqian. 2008. Large–scale Late Mesozoic magmatism in the Dabie Mountain: Constraints from zircon U–Pb dating and Hf isotopes[J]. Journal of Mineralogy and Petrology, 28(4): 71−79 (in Chinese with English abstract).

    [41]

    Zhang Guowei, Zhang Benren, Yuan Xuecheng, Xiao Qinghui. 2001. Qinling Orogenic Belt and Continent Dynamics[M]. Beijing: Science Press, 1–855 (in Chinese).

    [42]

    Zhang Jinming, Chen Guangting, Cai Hangjia, Tian Chengxiu, Lei Xiaoqing. 2023. Geochemical characteristics and zircon U−Pb age of gabbros in the Zhaqiaohe ophiolite mélange, and its limitation on the ocean ridge environment[J]. Geology in China, 50(6): 1837−1847 (in Chinese with English abstract).

    [43]

    Zhao G C, Cawood P A. 2012. Precambrian geology of China[J]. Precambrian Research, 222/223: 13−54.

    [44]

    Zhong Zengqiu, Suo Shutian, Zhang Hongfei, Zhou Hanwen. 2001. Major constituents and texture of the Tongbai–Dabie collisional orogenic belt[J]. Earth Science, 26(6): 560−567 (in Chinese with English abstract).

    [45]

    Zhou Dingwu, Zhang Chengli, Hua Hong, Hu Jianmin. 1998. New knowledge about division and correlation of the Mid− and Neo−Proterozoic strata in the South Qinling[J]. Geological Journal of China Universities, 4(3): 350−357 (in Chinese with English abstract).

    [46]

    Zhu J, Wu B, Wang L, Peng S, Zhou H. 2019. Neoproterozoic bimodal volcanic rocks and granites in the western Dabie area, northern margin of Yangtze block, China: Implications for extension during the break−up of Rodinia[J]. International Geology Review, 61(11): 1370−1390.

    [47]

    Zhu Jiang, Qiu Xiaofei, Zhou Bao, Zhang Haijun, Wu Yue, Deng Xin. 2021. Neoproterozoic bimodal volcanic rocks from Dingyuan formation in western Dabie area, northern margin of Yangtze block, China: Geochemistry, petrogenesis and geological implications[J]. Earth Science, 46(4): 1311−1327 (in Chinese with English abstract).

    [48]

    陈柏林, 李松彬, 王永, 陈正乐, 周永贵, 郝瑞祥, 刘牧. 2023. 阿尔金山喀腊大湾地区堆晶辉长岩地球化学、年代学: 洋壳演化证据[J]. 中国地质, 50(5): 1557−1572.

    [49]

    邓乾忠, 李雄伟, 邓喆, 黎蓉. 2013. 再论红安群地层序列与有关问题[J]. 资源环境与工程, 27(2): 125−132. doi: 10.3969/j.issn.1671-1211.2013.02.004

    [50]

    耿元生, 旷红伟, 柳永清, 杜利林. 2017. 扬子地块西、北缘中元古代地层的划分与对比[J]. 地质学报, 91(10): 2151−2174. doi: 10.3969/j.issn.0001-5717.2017.10.001

    [51]

    李怀坤, 田辉, 周红英, 张健, 刘欢, 耿建珍, 叶丽娟, 相振群, 瞿乐生. 2016. 扬子克拉通北缘大洪山地区打鼓石群与神农架地区神农架群的对比: 锆石SHRIMP U–Pb年龄及Hf同位素证据[J]. 地学前缘, 23(6): 186−201.

    [52]

    李廷栋, 肖庆辉, 潘桂棠, 陆松年, 丁孝忠, 刘勇. 2019. 关于发展洋板块地质学的思考[J]. 地球科学, 44(5): 17−27.

    [53]

    刘浩, 徐大良, 魏运许, 彭练红, 邓新, 赵小明, 陈铁龙, 柯贤忠. 2017. 扬子陆核区白竹坪火山岩建造形成时代的重新厘定—来自LA–ICP–MS锆石U–Pb年代学的证据[J]. 地层学杂志, 41(3): 87−95.

    [54]

    刘晓春, 董树文, 李三忠, 薛怀民, 刘建民, 曲玮. 2005. 湖北红安群的时代: 变质花岗质侵入体U–Pb定年提供的制约[J]. 中国地质, 32(1): 75−81. doi: 10.3969/j.issn.1000-3657.2005.01.010

    [55]

    邱啸飞, 杨红梅, 卢山松, 张利国, 段瑞春, 杜国民. 2016. 扬子克拉通崆岭杂岩孔兹岩系同位素年代学研究及其地质意义[J]. 大地构造与成矿学, 40(3): 549−558.

    [56]

    汪晶, 吴元保, 彭敏, 焦文放, 刘小驰. 2009. 西大别红安地区榴辉岩原岩年龄及Hf同位素组成: 对扬子板块北缘中元古代晚期地壳生长作用的显示[J]. 矿物岩石, 29(2): 108−114. doi: 10.3969/j.issn.1001-6872.2009.02.017

    [57]

    王涛, 张宗清, 王晓霞, 王彦斌, 张成立. 2005. 秦岭造山带核部新元古代碰撞变形及其时代—强变形同碰撞花岗岩与弱变形脉体锆石SHRIMP年龄限定[J]. 地质学报, 79(2): 220−231. doi: 10.3321/j.issn:0001-5717.2005.02.008

    [58]

    肖志斌. 2012. 中元古代扬子北缘神龙架地区沉积岩碎屑锆石研究[D]. 西安: 西北大学, 1–71.

    [59]

    徐大良, 刘浩, 魏运许, 彭练红, 邓新. 2016. 扬子北缘神农架地区郑家垭组碎屑锆石年代学及其构造意义[J]. 地质学报, 90(10): 2648−2660. doi: 10.3969/j.issn.0001-5717.2016.10.008

    [60]

    徐扬, 杨振宁, 邓新, 王令占, 刘浩, 金鑫镖, 张维峰, 魏运许, 彭练红, 黄海永. 2021. 西大别南缘印支期吕王—高桥—永佳河构造混杂岩带的厘定及其构造意义[J]. 地球科学, 46(4): 1173−1198.

    [61]

    闫臻, 王宗起, 付长垒, 牛漫兰, 计文化, 李荣社, 祁生胜, 毛晓长. 2018. 混杂岩基本特征与专题地质填图[J]. 地质通报, 37(2/3): 167−191. doi: 10.3969/j.issn.1671-2552.2018.02.001

    [62]

    易承生. 2019. 湖北省石墨矿矿产特征及成矿规律[J]. 合肥工业大学学报(自然科学版), 42(3): 361−369.

    [63]

    张超, 马昌前. 2008. 大别山晚中生代巨量岩浆活动的启动: 花岗岩锆石U–Pb年龄和Hf同位素制约[J]. 矿物岩石, 28(4): 71−79. doi: 10.3969/j.issn.1001-6872.2008.04.013

    [64]

    张国伟, 张本仁, 袁学诚, 肖庆辉. 2001. 秦岭造山带与大陆动力学[M]. 北京: 科学出版社, 1–855.

    [65]

    张金明, 陈光庭, 才航加, 田成秀, 雷晓清. 2023. 青海扎巧合蛇绿混杂岩中辉长岩地球化学、锆石U−Pb年龄及对洋脊环境的限定[J]. 中国地质, 50(6): 1837−1847.

    [66]

    钟增球, 索书田, 张宏飞, 周汉文. 2001. 桐柏—大别碰撞造山带的基本组成与结构[J]. 地球科学, 26(6): 560−567. doi: 10.3321/j.issn:1000-2383.2001.06.002

    [67]

    周鼎武, 张成立, 华洪, 胡健民. 1998. 南秦岭中、新元古代地层划分对比新认识[J]. 高校地质学报, 4(3): 350−357.

    [68]

    朱江, 邱啸飞, 周豹, 张海军, 吴越, 邓新. 2021. 扬子陆块北缘西大别地区新元古界定远组双峰式火山岩地球化学特征、成因及其地质意义[J]. 地球科学, 46(4): 1311−1327.

  • 加载中

(7)

(1)

计量
  • 文章访问数:  306
  • PDF下载数:  0
  • 施引文献:  0
出版历程
收稿日期:  2021-01-07
修回日期:  2022-01-08
刊出日期:  2024-09-25

目录