Detrital zircon U–Pb age of graphite−hosting meta−sedimentary rocks in the Lüwang–Gaoqiao mélange belt, western Dabie area: Constraints on Mesoproterozoic marine sedimentary events
-
摘要:
研究目的 扬子陆块北缘大别山地区古元古代—中元古代的物质记录有限,制约了前寒武纪地质构造演化认识。大别山核部吕王—高桥混杂岩带内“石墨片岩–石英岩夹大理岩”沉积岩系的年代学研究可为大别山地区中元古代古洋(海)盆演化提供新约束,对区域前寒武纪成矿与找矿提供科学指导。
研究方法 在开展1∶10000地质测量查明混杂岩带岩石组合特征的基础上,本文重点利用激光剥蚀电感耦合等离子体质谱方法,对赋石墨矿变沉积岩系的石英岩开展锆石原位U–Pb同位素测年。
研究结果 大别造山带核部发育中元古代“石墨片岩–石英岩夹大理岩”变沉积岩系,为一套浅海相沉积、成熟度高的砂岩。石英岩原岩的碎屑锆石年龄峰值主要为2.55 Ga、2.06 Ga、1.86 Ga及1.43 Ga,最年轻峰值年龄1.43 Ga约束了原岩沉积时代下限。这套变沉积岩原岩沉积时代为中元古代晚期,其沉积物源可能主要来自扬子陆块基底。
结论 吕王—高桥混杂岩带保留了大别山核部较早的海相沉积记录,并为区域石墨成矿提供了物质基础。该变沉积岩系原岩可能形成于中元古代哥伦比亚超大陆裂解期的扬子陆块边缘海盆地。
Abstract:This paper is the result of geological survey engineering.
Objective To better understand the Paleo–Mesoproterozoic tectonic evolution of the Dabie orogen in the northern margin of Yangtze Block, we demonstrated the geological and geochronological characteristics for sedimentary rocks in the Lüwang–Gaoqiao mélange.
Methods Geological mapping for the mélange was conducted. LA–ICP–MS zircon U–Pb isotopic analyses were carried out on the graphite−bearing quartzite.
Results The graphite−bearing sedimentary rocks in Lüwang–Gaoqiao mélange are dominated by sandstones with high maturity, siliceous argillaceous rock, and carbonaceous. U–Pb dating reveals that the graphite−bearing quartzite has original deposition age of ~1.43 Ga, displaying detrital zircon age peaks at 2.55 Ga, 2.06 Ga, 1.86 Ga and 1.43 Ga. The sedimentary materials mainly came from the basement of the Yangtze Block.
Conclusions The Mesoproterozoic clastic sedimentary rocks and carbonates from the Lüwang–Gaoqiao mélange were formed in a continental margin setting. They recorded an extensional regime for the Dabie orogen in the northern margin of Yangtze Block, during the break−up of the Columbia supercontinent.
-
-
图 1 西大别地区大地构造位置图(a)和区域地质简图(b)(据Liu et al., 2004修改)
Figure 1.
表 1 吕王—高桥混杂岩带红马冲石墨矿赋矿石英岩LA–ICP–MS锆石U–Pb同位素测定结果
Table 1. LA–ICP–MS zircon isotopic U–Pb data of the graphite−bearing quartzite from the Hongmachong graphite deposit in the Lüwang–Gaoqiao mélange belt
样品点号 元素含量/10−6 Th/U 同位素比值 同位素年龄/Ma Pb Th U 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ TC32-Zr@01 447 174 372 0.47 0.1838 0.0028 12.2248 0.1986 0.4806 0.0038 2688 26 2622 15 2530 16 TC32-Zr@02 529 238 432 0.55 0.1839 0.0026 11.7244 0.1639 0.4606 0.0033 2689 29 2583 13 2442 15 TC32-Zr@03 1094 564 585 0.96 0.1793 0.0025 11.7937 0.1515 0.4752 0.0031 2646 18 2588 12 2506 14 TC32-Zr@04 307 121 264 0.46 0.1807 0.0028 12.1086 0.1793 0.4840 0.0040 2661 25 2613 14 2545 17 TC32-Zr@05 756 314 759 0.41 0.1732 0.0028 10.3402 0.1985 0.4297 0.0052 2589 28 2466 18 2304 23 TC32-Zr@06 357 169 258 0.66 0.1757 0.0031 11.0495 0.2104 0.4530 0.0050 2613 30 2527 18 2409 22 TC32-Zr@07 93 43.2 52.4 0.82 0.1753 0.0039 11.9728 0.2732 0.4940 0.0062 2609 37 2602 21 2588 27 TC32-Zr@08 445 219 401 0.55 0.1653 0.0025 9.4196 0.1315 0.4112 0.0029 2511 26 2380 13 2221 13 TC32-Zr@09 796 326 1183 0.28 0.1589 0.0025 8.3790 0.1594 0.3784 0.0031 2444 28 2273 17 2069 15 TC32-Zr@10 436 196 424 0.46 0.1671 0.0026 10.3198 0.1610 0.4454 0.0036 2529 27 2464 14 2375 16 TC32-Zr@11 840 406 766 0.53 0.1801 0.0029 11.2765 0.1728 0.4519 0.0034 2653 26 2546 14 2403 15 TC32-Zr@12 675 387 508 0.76 0.1606 0.0025 9.0476 0.1505 0.4063 0.0036 2461 26 2343 15 2198 16 TC32-Zr@13 390 231 440 0.53 0.1339 0.0021 6.4915 0.0983 0.3504 0.0025 2150 26 2045 13 1936 12 TC32-Zr@14 502 314 520 0.60 0.1271 0.0020 6.1662 0.1007 0.3507 0.0029 2059 28 2000 14 1938 14 TC32-Zr@15 1078 560 612 0.91 0.2076 0.0031 13.5744 0.2030 0.4729 0.0032 2887 24 2720 14 2496 14 TC32-Zr@16 258 121 194 0.62 0.1643 0.0028 10.4576 0.1876 0.4607 0.0045 2502 28 2476 17 2443 20 TC32-Zr@17 291 227 266 0.85 0.1103 0.0019 4.7688 0.0832 0.3132 0.0026 1803 31 1779 15 1756 13 TC32-Zr@18 735 419 641 0.65 0.1602 0.0022 8.6314 0.1351 0.3894 0.0038 2458 23 2300 14 2120 18 TC32-Zr@19 732 610 442 1.38 0.1156 0.0018 5.0681 0.0757 0.3171 0.0022 1900 28 1831 13 1776 11 TC32-Zr@20 502 236 502 0.47 0.1594 0.0023 9.3390 0.1383 0.4237 0.0032 2450 25 2372 14 2277 15 TC32-Zr@21 1010 632 747 0.85 0.1548 0.0023 8.3479 0.1270 0.3898 0.0031 2400 24 2270 14 2122 14 TC32-Zr@22 303 155 237 0.65 0.1592 0.0025 9.3966 0.1467 0.4273 0.0035 2447 27 2377 14 2293 16 TC32-Zr@23 520 403 418 0.96 0.1159 0.0018 4.9137 0.0921 0.3061 0.0036 1894 27 1805 16 1721 18 TC32-Zr@24 405 179 254 0.71 0.1704 0.0028 10.2423 0.1682 0.4348 0.0033 2561 28 2457 15 2327 15 TC32-Zr@25 529 334 723 0.46 0.1140 0.0018 4.9420 0.0748 0.3137 0.0021 1865 29 1809 13 1759 10 TC32-Zr@26 263 200 334 0.60 0.1477 0.0027 7.2631 0.1835 0.3539 0.0056 2320 31 2144 23 1953 27 TC32-Zr@27 989 390 555 0.70 0.2205 0.0033 16.9669 0.2513 0.5564 0.0037 2984 24 2933 14 2852 15 TC32-Zr@28 731 457 572 0.80 0.1429 0.0022 7.4939 0.1119 0.3794 0.0026 2263 32 2172 13 2073 12 TC32-Zr@29 580 354 338 1.05 0.1740 0.0026 10.7121 0.1921 0.4450 0.0054 2598 25 2498 17 2373 24 TC32-Zr@30 650 316 356 0.89 0.1864 0.0027 12.5810 0.1792 0.4879 0.0032 2710 29 2649 13 2561 14 TC32-Zr@31 1055 439 602 0.73 0.2377 0.0033 17.5185 0.2297 0.5326 0.0029 3105 22 2964 13 2752 12 TC32-Zr@32 662 388 1017 0.38 0.1534 0.0021 7.8044 0.1100 0.3675 0.0028 2384 24 2209 13 2018 13 TC32-Zr@33 1302 876 1050 0.83 0.1586 0.0020 8.0541 0.1146 0.3667 0.0031 2443 21 2237 13 2014 14 TC32-Zr@34 557 583 767 0.76 0.0904 0.0015 2.7981 0.0460 0.2237 0.0017 1433 27 1355 12 1301 9 TC32-Zr@35 241 146 229 0.64 0.1287 0.0024 6.5433 0.1267 0.3673 0.0032 2080 33 2052 17 2017 15 TC32-Zr@36 601 390 681 0.57 0.1293 0.0021 6.0315 0.0923 0.3372 0.0025 2089 28 1980 13 1873 12 TC32-Zr@37 707 417 383 1.09 0.1816 0.0027 10.9645 0.1999 0.4357 0.0049 2733 25 2520 17 2331 22 TC32-Zr@38 439 168 566 0.30 0.1674 0.0025 9.3899 0.1326 0.4056 0.0030 2532 25 2377 13 2195 14 TC32-Zr@39 463 224 441 0.51 0.1657 0.0023 9.5131 0.1327 0.4147 0.0028 2515 24 2389 13 2236 13 TC32-Zr@40 502 97.4 1309 0.07 0.1222 0.0016 5.2861 0.0757 0.3121 0.0025 1989 24 1867 12 1751 12 TC32-Zr@41 432 443 578 0.77 0.0894 0.0016 2.8185 0.0486 0.2279 0.0018 1413 39 1360 13 1324 10 TC32-Zr@42 422 281 669 0.42 0.1130 0.0018 4.6446 0.0704 0.2972 0.0025 1848 28 1757 13 1677 12 TC32-Zr@43 459 353 391 0.90 0.1136 0.0019 4.7652 0.0778 0.3035 0.0026 1857 30 1779 14 1709 13 TC32-Zr@44 592 584 988 0.59 0.1252 0.0019 3.9571 0.0602 0.2287 0.0020 2032 23 1625 12 1328 10 TC32-Zr@45 1135 693 899 0.77 0.1636 0.0025 8.4855 0.1481 0.3749 0.0043 2493 23 2284 16 2052 20 TC32-Zr@46 45.3 18.0 65.9 0.27 0.1569 0.0072 7.8727 0.3014 0.3638 0.0093 2423 80 2217 34 2000 44 TC32-Zr@47 1183 883 1037 0.85 0.1777 0.0023 9.5934 0.1195 0.3900 0.0025 2631 18 2397 11 2123 12 TC32-Zr@48 656 370 882 0.42 0.1540 0.0022 7.3997 0.1448 0.3467 0.0048 2391 24 2161 18 1919 23 TC32-Zr@49 1212 1288 927 1.39 0.1839 0.0030 9.1221 0.1488 0.3589 0.0036 2688 22 2350 15 1977 17 TC32-Zr@50 1400 2556 1298 1.97 0.1649 0.0026 5.6473 0.1224 0.2469 0.0037 2506 27 1923 19 1422 19 TC32-Zr@51 1257 1616 1547 1.04 0.1885 0.0026 7.9220 0.1050 0.3035 0.0018 2729 20 2222 12 1709 9 TC32-Zr@52 735 1126 671 1.68 0.2007 0.0032 9.2502 0.2940 0.3321 0.0091 2832 27 2363 29 1849 44 TC32-Zr@53 1202 1406 1431 0.98 0.2667 0.0043 12.0093 0.1948 0.3246 0.0026 3287 23 2605 15 1812 13 TC32-Zr@54 637 911 1545 0.59 0.1121 0.0015 3.6978 0.0473 0.2389 0.0017 1834 20 1571 10 1381 9 -
[1] Chen Bailin, Li Songbin, Wang Yong, Chen Zhengle, Zhou Yonggui, Hao Ruixiang, Liu Mu. 2023. Geochemistry and geochronology of cumulated gabbro from Kaladawan area, Altun Mountains, NW China: Evidence for oceanic crust evolution[J]. Geology in China, 50(5): 1557−1572 (in Chinese with English abstract).
[2] Chen W, Xu Z W, Chen M H, Yu Y. 2016. Multiple sources for the origin of the Early Cretaceous Xinxian granitic batholith and its tectonic implications for the western Dabie orogen, eastern China[J]. Mineralogy and Petrology, 110(1): 29−41.
[3] Chen Z, Lu S, Li H, Li H, Xiang Z, Zhou H, Song B. 2006. Constraining the role of the Qinling orogen in the assembly and break−up of Rodinia: Tectonic implications for Neoproterozoic granite occurrences[J]. Journal of Asian Earth Sciences, 28(1): 99−115.
[4] Deng Ganzhong, Li Xiongwei, Deng Zhe, Li Rong. 2013. Further discussion on stratigraphic sequence of Hong’an Group and relevant problems[J]. Resources Environment and Engineering, 27(2): 125−132 (in Chinese with English abstract).
[5] Deng H, Peng S, Polat A, Kusky T, Jiang X, Han Q, Wang L, Huang Y, Wang J, Zeng W. 2017. Neoproterozoic IAT intrusion into Mesoproterozoic MOR Miaowan ophiolite, Yangtze Craton: Evidence for evolving tectonic settings[J]. Precambrian Research, 289: 75−94.
[6] Geng Yuansheng, Kuang Hongwei, Liu Yongqing, Du Lilin. 2017. Subdivision and correlation of the Mesoproterozoic stratigraphy in the western and northern margins of Yangtze Block[J]. Acta Geologica Sinica, 91(10): 2151−2174 (in Chinese with English abstract).
[7] Guo J L, Wu Y B, Gao S, Jin Z M, Zong K Q, Hu Z C, Chen K, Chen H H, Liu Y S. 2015. Episodic Paleoarchean–Paleoproterozoic (3.3–2.0 Ga) granitoid magmatism in Yangtze Craton, South China: Implications for late Archean tectonics[J]. Precambrian Research, 270: 246−266.
[8] Hu J, Liu X C, Chen L Y, Qu W, Li H K, Geng J Z. 2013. A ~2.5 Ga magmatic event at the northern margin of the Yangtze craton: Evidence from U–Pb dating and Hf isotope analysis of zircons from the Douling Complex in the South Qinling orogen[J]. Chinese Science Bulletin, 58(28): 3564−3579.
[9] Hu Z C, Gao S, Liu Y, Hu S, Chen H, Yuan H. 2008. Signal enhancement in laser ablation ICP–MS by addition of nitrogen in the Central Channel gas[J]. Journal of Analytical Atomic Spectrometry, 23(8): 1093.
[10] Hu Z C, Liu Y S, Gao S, Xiao S, Zhao L, Günther D, Li M, Zhang W, Zong K. 2012. A “wire” signal smoothing device for laser ablation inductively coupled plasma mass spectrometry analysis[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 78: 50−57.
[11] Huang L, Geng W, Sun Z L. 2018. Origin of the serpentinites in the Lichi mélange, eastern Taiwan, China: Implication from petrology and geochronology[J]. China Geology, 1(4): 477−484.
[12] Jiang X, Peng S, Polat A, Kusky T, Wang L, Wu T, Lin M, Han Q. 2016. Geochemistry and geochronology of mylonitic metasedimentary rocks associated with the Proterozoic Miaowan Ophiolite Complex, Yangtze Craton, China: Implications for geodynamic events[J]. Precambrian Research, 279: 37−56.
[13] Li Huaikun, Tian Hui, Zhou Hongying, Zhang Jian, Liu Huan, Geng Jianzhen, Ye Lijuan, Xiang Zhenqun, Qu Lesheng. 2016. Correlation between the Dagushi Group in the Dahongshan area and the Shennongjia Group in the Shennongjia area on the northern margin of the Yangtze Craton: Constraints from zircon U–Pb ages and Lu–Hf isotopic systematic[J]. Earth Science Frontiers, 23(6): 186−201 (in Chinese with English abstract).
[14] Li Tingdong, Xiao Qinghui, Pan Guitang, Lu Songnian, Ding Xiaozhong, Liu Yong. 2019. A consideration about the development of ocean plate geology[J]. Earth Science, 44(5): 17−27 (in Chinese with English abstract).
[15] Liu Hao, Xu Daliang, Wei Yunxu, Peng Lianhong, Deng Xin, Zhao Xiaoming, Chen Tielong, Ke Xianzhong. 2017. Zircon U–Pb age constraints on the chronostratigraphy of the Baizhuping Formation, northern Yangtze Block[J]. Journal of Stratigraphy, 41(3): 87−95 (in Chinese with English abstract).
[16] Liu Xiaochun, Dong Shuwen, Li Sanzhong, Xue Huaimin, Liu Jianmin, Qu Wei. 2005. Timing of the Hong'an Group in Hubei: Constraints from U–Pb dating of metagranitic intrusions[J]. Geology in China, 32(1): 75−81 (in Chinese with English abstract).
[17] Liu X C, Jahn B M, Liu D Y, Dong S W, Li S Z. 2004. SHRIMP U–Pb zircon dating of a metagabbro and eclogites from western Dabieshan (Hong’an Block), China, and its tectonic implications[J]. Tectonophysics, 394: 171−192.
[18] Liu X C, Jahn B M, Li S Z, Liu Y S. 2013. U–Pb zircon age and geochemical constraints on tectonic evolution of the Paleozoic accretionary orogenic system in the Tongbai orogen, central China[J]. Tectonophysics, 599: 67−88.
[19] Liu Y, Gao S, Hu Z, Gao C, Zong K, Wang D. 2010. Continental and oceanic crust recycling−induced melt−peridotite interactions in the Trans–North China orogen: U–Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths[J]. Journal of Petrology, 51(1/2): 537−571.
[20] Ludwig K R. 2003. User’s Manual for Isoplot 3.00: A Geochronological Toolkit for Microsoft Excel[M]. Berkeley: Berkeley Geochronology Center.
[21] Peng M, Wu Y B, Wang J, Jiao W F, Liu X C, Yang S H. 2009. Paleoproterozoic mafic dyke from Kongling terrain in the Yangtze Craton and its implication[J]. Chinese Science Bulletin, 54(6): 1098−1104.
[22] Peng M, Wu Y B, Gao S, Zhang H F, Wang J, Liu X C, Gong H J, Zhou L, Hu Z C, Liu Y S, Yuan H L. 2012. Geochemistry, zircon U–Pb age and Hf isotope compositions of Paleoproterozoic aluminous A−type granites from the Kongling terrain, Yangtze Block: Constraints on petrogenesis and geologic implications[J]. Gondwana Research, 22(1): 140−151.
[23] Qiu Xiaofei, Yang Hongmei, Lu Shansong, Zhang Liguo, Duan Ruichun, Du Guomin. 2016. Geochronology of the khondalite series in the Kongling Complex, Yangtze Craton and its geological implication[J]. Geotectonica et Metallogenia, 40(3): 549−558 (in Chinese with English abstract).
[24] Wang J, Deng Q, Wang Z J, Qiu Y S, Duan T Z, Jiang X S, Yang Q X. 2013. New evidences for sedimentary attributes and timing of the "Macaoyuan conglomerates" on the northern margin of the Yangtze block in southern China[J]. Precambrian Research, 235: 58−70.
[25] Wang Jing, Wu Yuanbao, Peng Min, Jiao Wenfang, Liu Xiaochi. 2009. Protolith age and Hf isotope compositions of eclogite in Hong'an area, western Dabie Mountains: Implication for crustal growth at the Late Mesoproterozoic in the north margin of the Yangtze Block[J]. Journal of Mineralogy and Petrology, 29(2): 108−114 (in Chinese with English abstract).
[26] Wang Tao, Zhang Zongqing, Wang Xiaoxia, Wang Yanbin, Zhang Chengli. 2005. Neoproterozoic collisional deformation in the core of the Qinling Orogen and its age: Constrained by zircon SHRIMP dating of strongly deformed syn−collisional granites and weakly deformed granitic veins[J]. Acta Geologica Sinica, 79(2): 220−231 (in Chinese with English abstract).
[27] Wang X L, Jiang S Y, Dai B Z. 2010. Melting of enriched Archean subcontinental lithospheric mantle: Evidence from the ca. 1760 Ma volcanic rocks of the Xiong'er Group, southern margin of the North China Craton[J]. Precambrian Research, 182: 204−216.
[28] Wiedenbeck M, Allé P, Corfu F, Griffin W L, Spiegel W. 2007. Three natural zircon standards for U–Th–Pb, Lu–Hf, trace element and REE analyses[J]. Geostandards and Geoanalytical Research, 19(1): 1−23.
[29] Wu Y B, Zheng Y F, Gao S, Jiao W F, Liu Y S. 2008. Zircon U–Pb age and trace element evidence for Paleoproterozoic granulite−facies metamorphism and Archean crustal rocks in the Dabie orogen[J]. Lithos, 101(3/4): 308−322.
[30] Wu Y B, Zheng Y F. 2013. Tectonic evolution of a composite collision orogen: An overview on the Qinling–Tongbai–Hong'an–Dabie–Sulu orogenic belt in central China[J]. Gondwana Research, 23(4): 1402−1428.
[31] Wu Y B, Zhou G Y, Gao S, Liu X C, Qin Z W, Wang H, Yang J Z, Yang S H. 2014. Petrogenesis of Neoarchean TTG rocks in the Yangtze Craton and its implication for the formation of Archean TTGs[J]. Precambrian Research, 254: 73−86.
[32] Xiao Zhibin. 2012. Reseach of the Detrital Zircon from Mesoproterozoic Sedimentary Strata in the North Margin of Yangtze Craton, China[D]. Xi’an: Northwest University, 1–71 (in Chinese with English abstract).
[33] Xu Daliang, Liu Hao, Wei Yunxu, Peng Lianhong, Deng Xin. 2016. Detrial zircon U–Pb dating of Zhengjiaya Formation from the Shengnongjia area in the northern Yangtze Block and its tectonic implications[J]. Acta Geologica Sinica, 90(10): 2648−2660 (in Chinese with English abstract).
[34] Xu H J, Ma C Q, Ye K. 2007. Early Cretaceous granitoids and their implications for the collapse of the Dabie orogen, eastern China: SHRIMP zircon U–Pb dating and geochemistry[J]. Chemical Geology, 240(3/4): 238−259.
[35] Xu Y, Zhang S, Griffin W L, Yang Y, Yang B, Luo Y, Zhu L, Afonso J C, Lei B. 2016. How did the Dabie orogen collapse? Insights from 3−D magnetotelluric imaging of profile data[J]. Journal of Geophysical Research, 121(7): 5169−5185.
[36] Xu Yang, Yang Zhenning, Deng Xin, Wang Lingzhan, Liu Hao, Jin Xindaru, Zhang Weifeng, Wei Yunxu, Peng Lianhong. 2021. Identification of an Indosinian tectonic mélange belt in the Western Dabie orogenic belt and its geological significance[J]. Earth Science, 46(4): 1173−1198 (in Chinese with English abstract).
[37] Yan Zhen, Wang Zongqi, Fu Changlei, Niu Manlan, Ji Wenhua, Li Rongshe, Qi Shengsheng, Mao Xiaochang. 2018. Characteristics and thematic geological mapping of mélanges[J]. Geological Bulletin of China, 37(2/3): 167−191 (in Chinese with English abstract).
[38] Yang Y N, Wang X C, Li Q L, Li X H. 2016. Integrated in situ U–Pb age and Hf–O analyses of zircon from Suixian Group in northern Yangtze: New insights into the Neoproterozoic low–18O magmas in the South China Block[J]. Precambrian Research, 273: 151−164.
[39] Yi Chengsheng. 2019. Mineral characteristics and metallogenic regularity of graphite ore in Hubei Province[J]. Journal of Hefei University of Technology (Natural Science), 42(3): 361−369 (in Chinese with English abstract).
[40] Zhang Chao, Ma Changqian. 2008. Large–scale Late Mesozoic magmatism in the Dabie Mountain: Constraints from zircon U–Pb dating and Hf isotopes[J]. Journal of Mineralogy and Petrology, 28(4): 71−79 (in Chinese with English abstract).
[41] Zhang Guowei, Zhang Benren, Yuan Xuecheng, Xiao Qinghui. 2001. Qinling Orogenic Belt and Continent Dynamics[M]. Beijing: Science Press, 1–855 (in Chinese).
[42] Zhang Jinming, Chen Guangting, Cai Hangjia, Tian Chengxiu, Lei Xiaoqing. 2023. Geochemical characteristics and zircon U−Pb age of gabbros in the Zhaqiaohe ophiolite mélange, and its limitation on the ocean ridge environment[J]. Geology in China, 50(6): 1837−1847 (in Chinese with English abstract).
[43] Zhao G C, Cawood P A. 2012. Precambrian geology of China[J]. Precambrian Research, 222/223: 13−54.
[44] Zhong Zengqiu, Suo Shutian, Zhang Hongfei, Zhou Hanwen. 2001. Major constituents and texture of the Tongbai–Dabie collisional orogenic belt[J]. Earth Science, 26(6): 560−567 (in Chinese with English abstract).
[45] Zhou Dingwu, Zhang Chengli, Hua Hong, Hu Jianmin. 1998. New knowledge about division and correlation of the Mid− and Neo−Proterozoic strata in the South Qinling[J]. Geological Journal of China Universities, 4(3): 350−357 (in Chinese with English abstract).
[46] Zhu J, Wu B, Wang L, Peng S, Zhou H. 2019. Neoproterozoic bimodal volcanic rocks and granites in the western Dabie area, northern margin of Yangtze block, China: Implications for extension during the break−up of Rodinia[J]. International Geology Review, 61(11): 1370−1390.
[47] Zhu Jiang, Qiu Xiaofei, Zhou Bao, Zhang Haijun, Wu Yue, Deng Xin. 2021. Neoproterozoic bimodal volcanic rocks from Dingyuan formation in western Dabie area, northern margin of Yangtze block, China: Geochemistry, petrogenesis and geological implications[J]. Earth Science, 46(4): 1311−1327 (in Chinese with English abstract).
[48] 陈柏林, 李松彬, 王永, 陈正乐, 周永贵, 郝瑞祥, 刘牧. 2023. 阿尔金山喀腊大湾地区堆晶辉长岩地球化学、年代学: 洋壳演化证据[J]. 中国地质, 50(5): 1557−1572.
[49] 邓乾忠, 李雄伟, 邓喆, 黎蓉. 2013. 再论红安群地层序列与有关问题[J]. 资源环境与工程, 27(2): 125−132. doi: 10.3969/j.issn.1671-1211.2013.02.004
[50] 耿元生, 旷红伟, 柳永清, 杜利林. 2017. 扬子地块西、北缘中元古代地层的划分与对比[J]. 地质学报, 91(10): 2151−2174. doi: 10.3969/j.issn.0001-5717.2017.10.001
[51] 李怀坤, 田辉, 周红英, 张健, 刘欢, 耿建珍, 叶丽娟, 相振群, 瞿乐生. 2016. 扬子克拉通北缘大洪山地区打鼓石群与神农架地区神农架群的对比: 锆石SHRIMP U–Pb年龄及Hf同位素证据[J]. 地学前缘, 23(6): 186−201.
[52] 李廷栋, 肖庆辉, 潘桂棠, 陆松年, 丁孝忠, 刘勇. 2019. 关于发展洋板块地质学的思考[J]. 地球科学, 44(5): 17−27.
[53] 刘浩, 徐大良, 魏运许, 彭练红, 邓新, 赵小明, 陈铁龙, 柯贤忠. 2017. 扬子陆核区白竹坪火山岩建造形成时代的重新厘定—来自LA–ICP–MS锆石U–Pb年代学的证据[J]. 地层学杂志, 41(3): 87−95.
[54] 刘晓春, 董树文, 李三忠, 薛怀民, 刘建民, 曲玮. 2005. 湖北红安群的时代: 变质花岗质侵入体U–Pb定年提供的制约[J]. 中国地质, 32(1): 75−81. doi: 10.3969/j.issn.1000-3657.2005.01.010
[55] 邱啸飞, 杨红梅, 卢山松, 张利国, 段瑞春, 杜国民. 2016. 扬子克拉通崆岭杂岩孔兹岩系同位素年代学研究及其地质意义[J]. 大地构造与成矿学, 40(3): 549−558.
[56] 汪晶, 吴元保, 彭敏, 焦文放, 刘小驰. 2009. 西大别红安地区榴辉岩原岩年龄及Hf同位素组成: 对扬子板块北缘中元古代晚期地壳生长作用的显示[J]. 矿物岩石, 29(2): 108−114. doi: 10.3969/j.issn.1001-6872.2009.02.017
[57] 王涛, 张宗清, 王晓霞, 王彦斌, 张成立. 2005. 秦岭造山带核部新元古代碰撞变形及其时代—强变形同碰撞花岗岩与弱变形脉体锆石SHRIMP年龄限定[J]. 地质学报, 79(2): 220−231. doi: 10.3321/j.issn:0001-5717.2005.02.008
[58] 肖志斌. 2012. 中元古代扬子北缘神龙架地区沉积岩碎屑锆石研究[D]. 西安: 西北大学, 1–71.
[59] 徐大良, 刘浩, 魏运许, 彭练红, 邓新. 2016. 扬子北缘神农架地区郑家垭组碎屑锆石年代学及其构造意义[J]. 地质学报, 90(10): 2648−2660. doi: 10.3969/j.issn.0001-5717.2016.10.008
[60] 徐扬, 杨振宁, 邓新, 王令占, 刘浩, 金鑫镖, 张维峰, 魏运许, 彭练红, 黄海永. 2021. 西大别南缘印支期吕王—高桥—永佳河构造混杂岩带的厘定及其构造意义[J]. 地球科学, 46(4): 1173−1198.
[61] 闫臻, 王宗起, 付长垒, 牛漫兰, 计文化, 李荣社, 祁生胜, 毛晓长. 2018. 混杂岩基本特征与专题地质填图[J]. 地质通报, 37(2/3): 167−191. doi: 10.3969/j.issn.1671-2552.2018.02.001
[62] 易承生. 2019. 湖北省石墨矿矿产特征及成矿规律[J]. 合肥工业大学学报(自然科学版), 42(3): 361−369.
[63] 张超, 马昌前. 2008. 大别山晚中生代巨量岩浆活动的启动: 花岗岩锆石U–Pb年龄和Hf同位素制约[J]. 矿物岩石, 28(4): 71−79. doi: 10.3969/j.issn.1001-6872.2008.04.013
[64] 张国伟, 张本仁, 袁学诚, 肖庆辉. 2001. 秦岭造山带与大陆动力学[M]. 北京: 科学出版社, 1–855.
[65] 张金明, 陈光庭, 才航加, 田成秀, 雷晓清. 2023. 青海扎巧合蛇绿混杂岩中辉长岩地球化学、锆石U−Pb年龄及对洋脊环境的限定[J]. 中国地质, 50(6): 1837−1847.
[66] 钟增球, 索书田, 张宏飞, 周汉文. 2001. 桐柏—大别碰撞造山带的基本组成与结构[J]. 地球科学, 26(6): 560−567. doi: 10.3321/j.issn:1000-2383.2001.06.002
[67] 周鼎武, 张成立, 华洪, 胡健民. 1998. 南秦岭中、新元古代地层划分对比新认识[J]. 高校地质学报, 4(3): 350−357.
[68] 朱江, 邱啸飞, 周豹, 张海军, 吴越, 邓新. 2021. 扬子陆块北缘西大别地区新元古界定远组双峰式火山岩地球化学特征、成因及其地质意义[J]. 地球科学, 46(4): 1311−1327.
-