Zircon U–Pb age, Hf isotopic characteristics and crustal extension of the gabbro in the Yagan Cu–Ni–Co deposit, Alxa Left Banner, Inner Mongolia
-
摘要:
研究目的 阿拉善左旗亚干铜镍钴矿床是内蒙古西部典型硫化物矿床,发育于超基性—中基性岩浆岩带,辉长岩为成矿母岩,正确认识该岩体的岩浆活动与成矿规律及构造背景成为亟待解决的地质问题。
研究方法 本文采集相关样品,对亚干地区出露的辉长岩开展了岩相学、岩石地球化学及锆石U–Pb年代学和Hf同位素分析研究。
研究结果 亚干辉长岩具有高Al2O3(15.99%~17.47%)、亚碱性(K2O+Na2O=4.94%~5.86%)、低TiO2(0.81%~1.12%)、低P2O5(0.14%~0.21%)、富MgO(3.18%~5.64%)、低K2O(1.14%~2.05%)特征,属钙碱性系列。稀土总量(ΣREE)为71.43×10−6~94.22×10−6,呈轻稀土相对富集、重稀土亏损的右倾配分模式,明显亏损高场强元素Nb、P、Ta,富集不相容元素U、Sr,表明亚干辉长岩来源于岩石圈地幔,岩浆后期经历了结晶分异作用。亚干辉长岩锆石U–Pb加权平均年龄为(268.8±3.1)Ma,限定其成岩时代属中二叠世。锆石εHf(t)值介于–7.1~2.9,二阶段模式年龄介于1272~2177 Ma。
结论 区域地质资料及地球化学特征表明,亚干辉长岩原始岩浆在运移过程中可能受到部分地壳物质的交代混染作用,形成构造背景可能为晚古生代后碰撞伸展环境。亚干地区位于珠斯楞—杭乌拉构造带,自石炭纪开始向南俯冲,从被动大陆边缘转为主动大陆边缘。此外,亚干辉长岩的侵位时代限定了该区域碰撞闭合时间,为该区铜镍钴矿研究提供了新的制约。
Abstract:This paper is the result of mineral exploration engineering.
Objective The copper–nickel–cobalt deposit in the Alxa Left Banner is a typical sulfide deposit in western Inner Mongolia, developed in the ultrabasic−medium basic magmatic rock zone. The gabbro is an ore–forming rock, and recognizing the magmatic activity, metallogenic regularity and tectonic background have become an urgent geological problem.
Methods Related samples were collected to study petrography, petrogeochemistry, zircon U–Pb chronology and Hf isotope.
Results Geochemical characteristics shows that the Yagan gabbro has the characteristics of high Al2O3 (15.99%–17.47%), sub−alkaline (K2O+Na2O=4.94%–5.86%), low TiO2 (0.81%–1.12%), low P2O5 (0.14%–0.21%), high MgO (3.18%–5.64%), low K2O (1.14%–2.05%), indicating of the calcium alkaline series. The total amount of rare earth (ΣREE) is 71.43×10−6–94.22×10−6, presents right–inclined distribution model, the light rare earth is relatively enriched and the heavy rare earth is depleted. The high field strength elements (Nb, P, Ta) are obviously depleted, incompatible elements (U, Sr) are enriched, suggested that the Yagan gabbro originated from the lithospheric mantle and experienced crystallization differentiation in the late magmatic stage. The zircon U–Pb weighted average age of the Yagan gabbro is (268.8±3.1) Ma, indicating the age of diagenesis belongs to Middle Permian. The εHf(t) values is −7.1–2.9 and two staged Hf model age is 1272–2177 Ma.
Conclusions Regional geological data and geochemical characteristics indicate that the Yagan gabbro original magma may be confused by some crustal materials during the migration process. The formation tectonic background may be the post–collision and extension environment in the Late Paleozoic. In addition, the emplacement age of Yagan gabbro limited the collision closing time, which provides new constraints for the study of Cu–Ni–Co deposits in this region.
-
Key words:
- Cu–Ni–Co deposit /
- zircon U–Pb age /
- petrogeochemistry /
- mineral exploration engineering /
- Yagan /
- Alxa Left Banner /
- Inner Mongolia
-
-
图 2 亚干铜镍钴矿区ZP4勘查线剖面图
1 Figure 2.
图 6 岩石碱性−亚碱性及拉斑−钙碱性系列分类图解a—SiO2–(Na2O+K2O)图解;b—AFM图解(据Wilson, 1989)
Figure 6.
图 7 亚干铜镍钴矿辉长岩球粒陨石标准化稀土配分曲线(a)和原始地幔标准化微量元素蛛网图(b)(标准化数值据Sun and McDonough, 1989)
Figure 7.
图 10 亚干铜镍钴矿辉长岩Ba/Nb–Ba/La图解(据 Weaver, 1991)(a)与Nb/Y–Rb/Y图解(b)
Figure 10.
图 11 亚干铜镍钴矿辉长岩Ti/Y−Zr/Y图解(据Pearce et al., 1977)、Y−Ni图解(据Capedri et al., 1980)、Ta–Th图解(据Wood et al., 1979)和Th–Hf–Ta图解(据Wood, 1980)
Figure 11.
图 12 阿拉善地块北缘晚古生代构造演化图(据宋嘉佳, 2017)
Figure 12.
表 1 亚干铜镍钴矿辉长岩LA–MC–ICP–MS锆石U–Pb分析结果
Table 1. La–MC–ICP–MS zircon U–Pb analytical data of the gabbro in the Yagan Cu–Ni–Co deposit
测点号 含量/10−6 同位素比值 年龄/Ma Pb Th U 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 232Th/238U 1σ 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 1 21 276 440 0.0526 0.0011 0.3059 0.0075 0.0421 0.0008 0.6276 0.0033 313 50 271 7 266 5 2 32 539 629 0.0520 0.0011 0.3007 0.0072 0.0419 0.0008 0.8570 0.0041 287 47 267 6 265 5 3 10 91 242 0.0525 0.0017 0.2965 0.0091 0.0410 0.0007 0.3775 0.0018 306 76 264 8 259 5 4 29 411 620 0.0523 0.0010 0.2976 0.0065 0.0412 0.0007 0.6634 0.0509 300 43 265 6 261 4 5 28 410 610 0.0512 0.0011 0.2893 0.0067 0.0410 0.0007 0.6716 0.0040 249 50 258 6 259 5 6 30 380 664 0.0519 0.0012 0.2922 0.0064 0.0408 0.0007 0.5716 0.0039 280 51 260 6 258 5 7 48 670 1041 0.0519 0.0012 0.2986 0.0085 0.0417 0.0007 0.6437 0.0028 282 52 265 8 263 5 8 37 538 786 0.0503 0.0011 0.2869 0.0063 0.0414 0.0007 0.6840 0.0143 209 52 256 6 261 5 9 6 66 126 0.0520 0.0016 0.3092 0.0098 0.0431 0.0008 0.5245 0.0072 285 70 274 9 272 5 10 17 261 347 0.0527 0.0016 0.3053 0.0086 0.0420 0.0007 0.7526 0.0119 316 70 271 8 265 5 11 9 105 199 0.0519 0.0019 0.3086 0.0110 0.0431 0.0008 0.5299 0.0042 282 83 273 10 272 5 12 44 699 847 0.0512 0.0009 0.3136 0.0063 0.0444 0.0008 0.8248 0.0091 251 42 277 6 280 5 13 16 177 353 0.0523 0.0019 0.3119 0.0106 0.0432 0.0008 0.5028 0.0469 300 81 276 9 273 5 14 38 671 755 0.0525 0.0019 0.3098 0.0105 0.0428 0.0008 0.8885 0.0218 306 82 274 9 270 5 15 11 137 236 0.0529 0.0013 0.3225 0.0097 0.0442 0.0008 0.5825 0.0033 324 58 284 9 279 5 16 93 2044 1563 0.0525 0.0008 0.3191 0.0074 0.0441 0.0009 1.3075 0.0068 309 36 281 6 278 6 17 12 132 262 0.0524 0.0014 0.3097 0.0087 0.0429 0.0008 0.5030 0.0030 303 62 274 8 271 5 18 26 328 558 0.0515 0.0015 0.3059 0.0076 0.0431 0.0008 0.5877 0.0047 262 69 271 7 272 5 19 40 666 795 0.0509 0.0024 0.3002 0.0074 0.0428 0.0008 0.8372 0.0049 237 109 267 7 270 5 20 10 117 222 0.0523 0.0013 0.3165 0.0084 0.0439 0.0009 0.5268 0.0155 297 58 279 7 277 5 21 46 584 979 0.0498 0.0008 0.2939 0.0062 0.0428 0.0008 0.5970 0.0033 185 39 262 6 270 5 22 40 736 737 0.0520 0.0009 0.3216 0.0070 0.0449 0.0008 0.9989 0.0408 284 40 283 6 283 5 23 45 793 841 0.0521 0.0009 0.3149 0.0072 0.0439 0.0009 0.9434 0.0082 288 40 278 6 277 5 24 25 333 505 0.0521 0.0011 0.3231 0.0077 0.0450 0.0008 0.6595 0.0212 290 47 284 7 284 5 25 7 70 145 0.0549 0.0016 0.3294 0.0097 0.0435 0.0008 0.4841 0.0024 409 64 289 8 275 5 26 9 86 202 0.0522 0.0015 0.3021 0.0084 0.0420 0.0007 0.4239 0.0052 293 65 268 7 265 5 27 11 108 245 0.0525 0.0014 0.2923 0.0079 0.0404 0.0007 0.4412 0.0021 308 59 260 7 255 4 表 2 锆石Hf同位素组成分析
Table 2. Zircon Hf isotopic compositions
测点号 176Yb/177Hf 2σ 176Lu/177Hf 2σ 176Hf/177Hf 2σ 年龄/Ma εHf(t) TDM1/Ma TDM2/Ma fLu/Hf 15YG.1.1 0.0296 0.0008 0.0010 0.0000 0.282706 0.000016 266 −2.3 774 1751 −0.97 15YG.1.2 0.0485 0.0007 0.0017 0.0000 0.282665 0.000017 265 −3.8 848 1880 −0.95 15YG.1.3 0.0826 0.0003 0.0029 0.0000 0.282575 0.000024 259 −7.0 1009 2167 −0.91 15YG.1.5 0.0616 0.0007 0.0021 0.0000 0.282694 0.000022 261 −2.8 814 1787 −0.94 15YG.1.6 0.0163 0.0010 0.0006 0.0000 0.282597 0.000071 259 −6.2 919 2099 −0.98 15YG.1.7 0.0656 0.0020 0.0024 0.0000 0.282764 0.000025 258 −0.3 718 1564 −0.93 15YG.1.8 0.0283 0.0004 0.0009 0.0000 0.282654 0.000027 263 −4.2 845 1915 −0.97 15YG.1.9 0.0371 0.0011 0.0013 0.0000 0.282670 0.000021 261 −3.6 831 1864 −0.96 15YG.1.10 0.0583 0.0005 0.0022 0.0000 0.282728 0.000031 272 −1.6 768 1680 −0.93 15YG.1.11 0.0881 0.0030 0.0028 0.0001 0.282748 0.000036 265 −0.8 751 1614 −0.91 15YG.1.12 0.0373 0.0005 0.0013 0.0000 0.282682 0.000033 272 −3.2 814 1825 −0.96 15YG.1.13 0.1233 0.0022 0.0040 0.0001 0.282852 0.000036 280 2.8 616 1281 −0.88 15YG.1.15 0.0742 0.0027 0.0024 0.0001 0.282821 0.000044 273 1.7 635 1382 −0.93 15YG.1.16 0.0592 0.0003 0.0019 0.0000 0.282670 0.000042 270 −3.6 845 1863 −0.94 15YG.1.17 0.0355 0.0005 0.0011 0.0000 0.282668 0.000037 279 −3.7 830 1870 −0.97 15YG.1.18 0.0932 0.0003 0.0030 0.0000 0.282855 0.000041 278 2.9 596 1272 −0.91 15YG.1.19 0.1020 0.0005 0.0038 0.0001 0.282814 0.000034 271 1.5 673 1404 −0.88 15YG.1.20 0.0869 0.0004 0.0030 0.0000 0.282797 0.000038 272 0.9 683 1460 −0.91 15YG.1.21 0.0409 0.0007 0.0012 0.0000 0.282572 0.000034 270 −7.1 970 2177 −0.96 15YG.1.22 0.0505 0.0005 0.0017 0.0000 0.282658 0.000030 277 −4.0 858 1902 −0.95 15YG.1.23 0.0609 0.0029 0.0019 0.0001 0.282778 0.000031 270 0.2 688 1518 −0.94 15YG.1.24 0.0645 0.0005 0.0020 0.0000 0.282777 0.000029 283 0.2 693 1523 −0.94 15YG.1.25 0.0455 0.0003 0.0016 0.0000 0.282734 0.000028 277 −1.3 746 1660 −0.95 15YG.1.26 0.1029 0.0005 0.0032 0.0000 0.282676 0.000032 284 −3.4 866 1846 −0.91 15YG.1.27 0.1823 0.0008 0.0052 0.0000 0.282765 0.000033 275 −0.2 777 1561 −0.84 表 3 亚干铜镍钴矿辉长岩主量元素(%)、稀土元素和微量元素(10−6)分析结果
Table 3. Major (%), rare earth and trace (10−6) element contents of the gabbro in the Yagan Cu–Ni–Co deposit
样号 15YG-2 15YG-3 15YG-4 15YG-6 15YG-7 15YG-8 15YG-9 15YG-10 15YG-11 SiO2 52.89 53.68 55.93 52.18 57.56 51.88 56.15 53.92 53.44 TiO2 1.12 1.08 0.83 0.81 0.95 0.96 0.91 0.90 0.82 Al2O3 16.17 15.99 16.65 17.21 16.93 17.47 17.09 17.40 16.84 Fe2O3 6.53 5.93 3.72 3.32 4.11 4.74 4.02 3.98 3.62 FeO 5.02 4.90 4.37 5.32 3.95 4.83 4.28 4.50 4.86 TFeO 10.90 10.24 7.72 8.31 7.65 9.10 7.90 8.08 8.12 MnO 0.17 0.16 0.15 0.18 0.13 0.18 0.15 0.16 0.17 MgO 4.19 3.98 4.28 5.64 3.18 4.85 3.65 4.23 5.00 CaO 6.74 7.14 6.85 8.18 6.18 8.34 6.72 6.76 7.24 Na2O 3.29 3.46 4.03 3.39 3.98 3.80 3.99 4.57 3.91 K2O 2.05 1.87 1.46 1.66 1.40 1.14 1.27 1.29 1.77 P2O5 0.18 0.18 0.16 0.14 0.21 0.17 0.20 0.20 0.14 烧失量 1.25 1.16 1.16 1.52 1.11 1.21 1.15 1.72 1.74 A/NK 2.12 2.07 2.03 2.33 2.10 2.33 2.15 1.95 2.02 A/CNK 0.81 0.77 0.80 0.77 0.88 0.77 0.85 0.82 0.78 Mg# 59.79 59.14 63.57 65.38 58.92 64.15 60.31 62.61 64.70 K2O+Na2O 5.34 5.33 5.49 5.05 5.38 4.94 5.26 5.86 5.68 K2O/Na2O 0.62 0.54 0.36 0.49 0.35 0.30 0.32 0.28 0.45 σ 2.88 2.66 2.33 2.78 1.99 2.75 2.10 3.14 3.09 TFeO/MgO 2.60 2.57 1.80 1.47 2.41 1.88 2.16 1.91 1.62 La 11.2 15.4 13.8 11.8 14.0 11.8 13.5 14.6 11.5 Ce 24.6 34.5 30.9 26.4 32.3 25.9 30.8 31.9 25.6 Pr 3.52 4.49 4.09 3.58 4.22 3.51 4.2 4.31 3.39 Nd 16.1 18.9 17.4 15.3 18.5 15.6 18.5 18.6 14.4 Sm 3.84 4.18 3.8 3.45 4.25 3.59 4.3 4.16 3.22 Eu 1.1 1.23 1.13 1.14 1.21 1.13 1.19 1.16 1.09 Gd 3.68 4.03 3.63 3.38 4.08 3.53 3.96 3.94 3.2 Tb 0.67 0.72 0.64 0.6 0.72 0.63 0.72 0.71 0.58 Dy 4.02 4.19 3.71 3.47 4.22 3.67 4.23 4.13 3.3 Ho 0.81 0.85 0.75 0.7 0.86 0.74 0.85 0.82 0.66 Er 2.34 2.48 2.2 2.04 2.48 2.18 2.48 2.38 1.96 Tm 0.35 0.38 0.35 0.31 0.38 0.33 0.37 0.36 0.3 Yb 2.26 2.48 2.23 2.02 2.46 2.14 2.45 2.35 1.92 Lu 0.36 0.39 0.35 0.31 0.39 0.33 0.38 0.37 0.31 ΣREE 74.85 94.22 84.98 74.5 90.07 75.08 87.93 89.79 71.43 LREE 60.36 78.7 71.12 61.67 74.48 61.53 72.49 74.73 59.2 HREE 14.49 15.52 13.86 12.83 15.59 13.55 15.44 15.06 12.23 LREE/HREE 4.17 5.07 5.13 4.81 4.78 4.54 4.69 4.96 4.84 δEu 0.88 0.90 0.92 1.01 0.88 0.96 0.87 0.86 1.03 δCe 0.94 0.99 0.98 0.97 1.00 0.96 0.98 0.96 0.98 (La/Yb)N 3.34 4.19 4.17 3.94 3.84 3.72 3.71 4.19 4.04 Rb 60.1 41.9 32.4 46.8 39.9 27.3 27.4 39.6 39.8 Ba 423 422 448 427 543 380 499 331 517 Th 3.56 4.21 3.16 2.56 4.72 1.76 3.22 3.15 3.20 U 1.22 2.19 1.25 1.16 2.07 1.05 1.30 1.16 1.37 Nb 3.35 4.45 3.81 2.88 5.00 3.18 4.25 4.14 3.05 Ta 0.22 0.37 0.28 0.22 0.41 0.23 0.33 0.31 0.26 Sr 440 353 424 416 536 393 395 500 400 Zr 106 92.6 94.3 63.3 141 91.7 132 134 81.2 Hf 3.12 2.95 2.79 2.10 4.04 2.71 3.65 3.66 2.56 Y 19.9 20.9 18.8 17.2 20.9 18.1 20.6 20.3 16.2 Cr 6.14 9.75 42.2 94.2 5.93 48.7 21.3 28.2 46.2 Co 26.8 26.6 22.5 27.6 18.0 26.5 20.4 24.2 24.4 Ni 3.94 4.73 8.69 19.6 3.28 11.6 6.35 10.4 14.8 Sc 22.9 23.8 21.5 22.8 13.9 15.4 14.8 12.4 16.5 V 340 333 211 222 201 255 204 204 218 Pb 7.60 7.34 9.06 6.50 10.0 9.09 9.17 7.51 7.72 Cu 56.2 37.3 19.5 26.2 22.1 24.9 23.0 32.4 23.2 Zn 92.2 84.4 77.2 80.8 75.7 86.9 78.9 75.3 83.4 Cs 2.07 2.10 1.22 1.65 1.20 1.02 0.96 1.05 1.26 注: Mg#=100×Mg2+/(Mg2++Fe2+);σ=[ω(K2O+Na2O)]2/[ω(SiO2)–43]。 -
[1] Anderson D L. 1994. Komatites and picrites evidence that the plume source is depleted[J]. Earth and Planetary Science Letters, 128(3/4): 303−311.
[2] Bouvier A, Vervoort J D, Patchett P J. 2008. The Lu–Hf and Sm–Nd isotopic composition of CHUR: Constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets[J]. Earth and Planetary Science Letters, 273(1/2): 48−57.
[3] Capedri S, Venturelli G, bocchi G, Dostal J, Garuti G, Rossi A. 1980. The geochemistry and petrogenesis of an ophiolitic sequence from Pindos, Greece[J]. Contributions to Mineralogy and Petrology, 74: 189−200. doi: 10.1007/BF01132004
[4] Chen Changhong. 2015. Genesis and prospecting criteria of Cu–Ni–Co deposits in Inner Mongolia area[J]. Innovation and Application of Science and Technology, (36): 167 (in Chinese).
[5] Cheng Xianyu, Zhang Tianfu, Cheng Yinhang, Wang Shaoyi, Tian Jian. 2008. Paleosedimentary environment evolution of Zhiluo Formation in Tarangaole area, northern margin of the Ordos Basin: Evidence from geochemical characteristics[J]. North China Geology, 44(2): 1−3 (in Chinese with English abstract).
[6] Cheng Yinhang, Zhang Tianfu, Li Yanfeng, Li Min, Niu Wenchao, Teng Xuejian, Duan Lianfeng, Liu Yang, Du Yelong, Hu Xiaojia. 2016. Discovery of the Early Permian ultramatic rock in Dong Ujimqi, Inner Mongolia and its tectonic implications[J]. Acta Geologica Sinica, 90(1): 115−125 (in Chinese with English abstract).
[7] Condie X C. 1982. Plate Tectonic and Crustal Evolution[M]. New York: Pergamon Press.
[8] Duan L A, Wei Y F, Liu Q Y, Yang X Y. 2020. Discovery of the Dahongshan ultra–large crystalline graphite deposit, Urad Zhongqi of Inner Mongolia, China[J]. China Geology, 3: 182−183. doi: 10.31035/cg2020019
[9] Duan Ming, Xi Aihua, Sun Guosheng, Xie Yu, Sima Xianzhang, Wei Jialin, Zhang Feng, Feng Xiaoxi, Zeng Wei. 2016. Geochemical characteristics of Chonggenshan ultrabasic rocks of Dong Ujimqin in Inner Mongolia[J]. Global Geology, 35(3): 653−665 (in Chinese with English abstract).
[10] Feng J Y, Xiao W J, Windley B, Han C M, Wan B, Zhang J E, Ao S J, Zhang Z Y, Lin L N. 2013. Field geology, geochronology and geochemistry of mafic–ultramafic rocks from Alxa, China: Implications for Late Permian accretionary tectonics in the southern Altaids[J]. Journal of Asian Earth Sciences, 78: 114−142. doi: 10.1016/j.jseaes.2013.01.020
[11] Geng Jianzhen, Li Huaikun, Zhang Jian, Zhou Hongying, Li Huimin. 2011. Zircon Hf isotope analysis by means of LA–MC–ICP–MS[J]. Geological Bulletin of China, 30(10): 1508−1513.
[12] Geng Yuansheng, Zhou Xiwen. 2012. Early Permian magmatic events in the Alxa metamorphic basement: Evidence from geochronology[J]. Acta Petrologica Sinica, 28(9): 2667−2685 (in Chinese with English abstract).
[13] Griffin W L, Pearson N J, Elusive E. 2000. The Hf isotopes composition of carbonic mantle: LA–MC–ICP–MS analysis of zircon megacrysts in kimberlites[J]. Geochimica et Cosmochimica Acta, 64(1): 133−147. doi: 10.1016/S0016-7037(99)00343-9
[14] Griffin W L, Belousova E A, Shee S R. 2004. Crustal evolution in the northern Yilarm Craton: U–Pb and Hf isotope evidence from detrital zircons[J]. Precambrian Research, 131(3/4): 231−282.
[15] Hanchar J M, Miller C F. 1993. Zircon zonation patterns as revealed by cathodoluminescence and backscattered electron images: Implications for interpretation of complex crustal histories[J]. Chemical Geology, 110(1/3): 1−13.
[16] He J Z, Fan Z G, Xiong S Q, Ge T F, Huang X Z, Wang S X. 2021. Geophysical prospecting of copper–nickel deposits in Beishan rift zone, Xinjiang[J]. China Geology, 1: 126−146.
[17] Hofmann A W. 1997. Mantle Geochemistry: The message from oceanic volcanism[J]. Nature, 385: 219−229. doi: 10.1038/385219a0
[18] Hong Dawei, Huang Huaizeng, Xiao Yijun, Xu Haiming, Jin Manyuan. 1994. The Permian alkaline granites in central Inner Mongolia and their geodynamic significance[J]. Acta Geologica Sinica, 68(3): 219−230 (in Chinese with English abstract).
[19] Jiang Sihong, Nie Fengjun, Liu Yan, Wang Xinliang. 2003. Geochemical features and origin of the gabbros in the Xiaonanshan Pt–Cu–Ni deposit, Inner Mongolia[J]. Acta Geoscientica Sinica, 24(2): 121−126 (in Chinese with English abstract).
[20] Li Huaikun, Geng Jianzhen, Geng Shuang, Zhang Yongqing, Li Huimin. 2009. LA–MC–ICPMS determination of zircon U–Pb isotopic age by laser ablation multi–receiver plasma mass spectrometry[J]. Journal of Mineralogy, 29(S1): 600−601 (in Chinese).
[21] Li Junjian. 2006. Inner Mongolia Alxa Block Regional Metallogenic System[D]. Beijing: China University of Geosciences (Beijing), 1–193 (in Chinese with English abstract).
[22] Li Zhidan, Duo Xingfang, Li Xiaoguang, Zhang Feng, Zhang Jian, Chen Junqiang, Wang Jiaying, Wen Sibo. 2020. Geochemical characteristics, zircon U–Pb age and Hf isotope of the gabbro in the Huanghuatan Cu–Ni deposit, Darhan Maminggan Joint Banner, Inner Monglia[J]. Geological Bulletin of China, 39(4): 491−502 (in Chinese with English abstract).
[23] Li Zhidan, Wang Jiaying, Wen Sibo, Chen Junqiang, Duan Ming, Zhang Feng, Wei Jialin, Xie Yu. 2015. LA–ICP–MS zircon U–Pb age of ultrabasic–basic rocks and geological characteristics of the Urad middle banner deposit, Inner Mongolia[J]. Journal of Mineralogy, 35(S1): 130−131 (in Chinese).
[24] Li Tong, Rao Jilong. 1963. Average composition of magmatic rocks in China[J]. Journal of Geology, 43(3): 271−280 (in Chinese).
[25] Liu Q, Zhao G C, Han Y G, Eizenhöfer P, Zhu Y L, Hou W Z, Zhang X R. 2017. Timing of the final closure of the Paleo–Asian Ocean in the Alxa terrane: Constraints from geochronology and geochemistry of Late Carboniferous to Permian gabbros and diorites[J]. Lithos, 274–275: 19–30.
[26] Ma Shiwei, Zhou Zhiguang, Liu Changfeng, Li Ruijie, Lai Lin, Zhang Xuebin, Meng Yuanku. 2016. Petrogenesis and tectonic significance of the Late Carboniferous quartz diorite in Xi Ujimqin Banner, Inner Mongolia[J]. Geology in China, 43(6): 1932−1946 (in Chinese with English abstract).
[27] Niu Wenchao, Xin Houtian, Duan Lianfeng, Zhang Guozhen, Ren Bangfang, Zhang Yong. 2020. Geochemical characteristics, zircon U–Pb age of SSZ ophiolite in the Baiheshan area of the Beishan orogenic belt, Inner Mongolia, and its indication for the evolution of the Paleo–Asian Ocean[J]. Geological Bulletin of China, 39(9): 1317−1329 (in Chinese with English abstract).
[28] Pearce T H, Gorman B E, Birkett T C. 1977. The relationship between major element chemistry and tectonic environment of basic and intermediate volcanic rocks[J]. Earth and Planetary Science Letters, 36(1): 121−132. doi: 10.1016/0012-821X(77)90193-5
[29] Peng R M, Li C S, Zhai Y S, Ripley E M. 2017. Geochronology, petrology and geochemistry of the Beiligaimiao magmatic sulfide deposit in a Paleozoic active continental margin, North China[J]. Ore Geology Reviews, 90: 607−617. doi: 10.1016/j.oregeorev.2017.05.004
[30] Ran Hao, Zhang Weijie, Liu Zhibo. 2012. Geochemical characteristics and LA–ICP–MS zircon U–Pb dating of the Late Permian monzogranite in Hanggale, Alax Right Banner, Inner Mongolia[J]. Geological Bulletin of China, 31(10): 1565−1575 (in Chinese with English abstract).
[31] Shao Ji’an. 1991. Crustal Evolution of the Middle Section of the Northern Margin of the China–North Korea Plate[M]. Beijing: Peking University Press, 1–135 (in Chinese).
[32] Shi G Z, Wang H, Liu E T, Huang C Y, Zhao J X, Song G Z, Liang C. 2018. Sr–Nd–Pb isotope systematics of the Permian volcanic rocks in the northern margin of the Alxa Block (the Shalazhashan Belt) and comparisons with the nearby regions: Implications for a Permian rift setting?[J]. Journal of Geodynamics, 115: 43−56. doi: 10.1016/j.jog.2018.01.007
[33] Shi Xingjun, Tong Ying, Wang Tao, Zhang Jianjun, Zhang Zhaochong, Zhang Lei, Guo Lei, Zeng Tao, Geng Jianzhen. 2012. LA–ICP–MS zircon U–Pb age and geochemistry of the Early Permian Halinudeng granite in northern Alxa area, western Inner Mongolia[J]. Geological Bulletin of China, 31(5): 662−670 (in Chinese with English abstract).
[34] Sun S S, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes[J]. Geological Society, London, Special Publications, 42(1): 313–345.
[35] Song Jiajia. 2017. Characteristics of Late Paleozoic Granite around the Ya Gan Fault Zone in Northern Alxa Block[D]. Beijing: China University of Geosciences (Beijing), 1–82 (in Chinese with English abstract).
[36] Tang K D. 1990. Tectonic development of Paleozoic fold belts at the north margin of the Sino–Korean Carbon[J]. Tectonics, 9(2): 249−260. doi: 10.1029/TC009i002p00249
[37] Taylor S R, McLennan S M. 1985. The Continental Crust: It's Composition and Evolution[M]. London: Blackwell, 57–72.
[38] Thompson R N, Morrison M A. 1988. Asthenospheric and lower−lithospheric mantle contributions to continental extensional magmatism: An example from the British Tertiary province[J]. Chemical Geology, 68: 1−15. doi: 10.1016/0009-2541(88)90082-4
[39] Tian Jian, Teng Xuejian, Xin Houtian, Duan Xiaolong, Cheng Xianyu, Zhang Yong, Ren Bangfang. 2020. Structure, composition and ages of ophiolitic mélanges in the Baiyunshan area, Beishan Orogenic Belt[J]. Acta Petrologica Sinica, 36(12): 3741−3756 (in Chinese with English abstract). doi: 10.18654/1000-0569/2020.12.11
[40] Wang Minfang, Xia Qinlin, Xiao Fan, Wang Xinqing, Yang Wusheng, Jiang Chuling. 2012. Rock geochemistry and platinum group elements characteristics of Tudun Cu–Ni sulfide deposit in East Tianshan Mountains of Xinjiang and their metallogenic implications[J]. Mineral Deposits, 31(6): 1195−1208 (in Chinese with English abstract).
[41] Wang Qian. 2010. Discussion on the Diagenesis and Source of Mafic–Ultramafic Intrusions in the Area of Wengeng, Wulatezhongqi, Inner Mongolia[D]. Beijing: China University of Geosciences (Beijing), 1–58 (in Chinese with English abstract).
[42] Wang Tao, Zheng Yadong, Liu Shuwen, Li Tianbin, Ma Mingbo. 2002. Mylonitic potassic granitoids from the Yagan metamorphic core complex on Sino–Mongolian border: A mark of transition from contractile to extensional tectonic regime[J]. Acta Petorlogica Sinica, 18(2): 177−186 (in Chinese with English abstract).
[43] Wang Tingyin, Zhang Mingjie, Wang Jinrong, Gao Junping. 1998. The characteristics and tectonic implications of the thrust belt in Eugerwusu, China[J]. Scientia Geologica Sinica, 33(4): 385−394 (in Chinese with English abstract).
[44] Wang Z T, Zhang Y S, Shi L Z, Peng Y, Gui B L. 2020. New zircon U–Pb geochronological and geochemical data reveals the earliest Cretaceous tectonic shift event in the Lanqi Basin, Inner Mongolia, northern China[J]. China Geology, 3: 186−192. doi: 10.31035/cg2020011
[45] Weaver B L. 1991. The origin of ocean island basalt end–member composition: Trace element and isotope constrains[J]. Earth and Planetary Science Letters, 104: 381−397. doi: 10.1016/0012-821X(91)90217-6
[46] Wilson M. 1989. Igneous Petrogenesis[M]. London: Unwin Hyman, 1–464.
[47] Wood D A, Joron J–L, Treuil M, Norry M, Tarney J. 1979. Elemental and Sr isotope variations in basic lavas from Iceland and the surrounding ocean floor[J]. Contributions to Mineralogy and Petrology, 70: 319−339. doi: 10.1007/BF00375360
[48] Wood D A. 1980. The application of a Th−Hf−Ta diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary Volcanic Yrovince[J]. Earth and Planetary Science Letters, 50(1): 1−30. doi: 10.1016/0012-821X(80)90115-6
[49] Xiao Wenjiao, Song Dongfang, Windley B F, Li Jiliang, Han Chunming, Wan Bo, Zhang Jien, Ao Songjian, Zhang Zhiyong. 2019. Research progresses of the accretionary processes and metallogenesis of the Central Asian Orogenic Belt[J]. Science China Earth Sciences, 49(10): 1512−1545 (in Chinese with English abstract).
[50] Xu Dongzhuo, Zhang Weijie, Zhou Haitao, Sun Qikai. 2014. Characteristics, zircon dating and tectonic significance of the gabbros along the north–central segments of the Alxa Block, Inner Mongolia[J]. Geological Bulletin of China, 33(5): 661−671 (in Chinese with English abstract).
[51] Yang Lidong. 2012. Geological characteristics and prospecting potential of Yagan polymetallic deposit in Alashan Zuoqi, Inner Mongolia[J]. Inner Mongolia Science Technology and Economy, (22): 59−60 (in Chinese).
[52] Yu J H, Xu X S, O’Reilly Y S. 2003. Granulite xenoliths from Cenozoic basalts in SE China provide geochemical fingerprints to distinguish lower crust terranes from the North and South China tectonic blocks[J]. Lithos, 67: 77−102. doi: 10.1016/S0024-4937(02)00253-0
[53] Zhang C, Wang S B, Yu R A, Ma D Q, Wang M M, Zuo Z F, Tu J R. 2024. Geochemical and detrital zircon U–Pb geochronology of the Qigequan Formation in the Yuejin 2 area: Implications for tectonics and uranium sources[J]. Lithos, 482/483: 107674.
[54] Zhang Chao, Qi Xuexiang, Tang Guanzong, Zhao Yuhao, Ji Fengbao. 2014. Geochemistry and zircon U–Pb dating for the alkaline porphyries and its constraint on the mineralization in Chang’an Cu–Mo–Au ore concentration region, Ailaoshan orogenic belt, western Yunnan[J]. Acta Petrologica Sinica, 30(8): 2204−2216.
[55] Zhang Chao, Qi Xuexiang, Wang Shanbo, Yu Rengan, Cheng Yinhang, Zhang Guozhen, Zeng Hui, Li Jianguo, Li Zhidan, Ao Cong. 2020. Geochemical characteristics and genesis of skarns in the Tongchang Cu–Mo deposit, Yunnan Province[J]. Geology and Exploration, 56(5): 19−32 (in Chinese with English abstract).
[56] Zhang Chao, Si Qinghong, Yu Reng'an, Wang Shanbo, Cheng Yinhang, Yu Hang, Feng Ping, Shi Guangshun, Ao Cong, Li Zhidan, Gao Xuefeng. 2023. Analysis of the relationship between sedimentary characteristics and uranium deposits from the Neogene Shizigou Formation in Huatugou area, Northwest Qaidam Basin[J]. Geology in China, 50(5): 1327–1342 (in Chinese with English abstract).
[57] Zhang Jianjun, Wang Tao, Zhang Zhaochong, Tong Ying, Zhang Lei, Shi Xingjun, Guo Lei, Li Shan, Zeng Tao. 2012. Magma mixing origin of Yamatu granite in Nuoergong–Langshan Area, western part of the northern margin of North China Craton: Petrological and geochemical evidences[J]. Geological Review, 58(1): 53−66 (in Chinese with English abstract).
[58] Zhang Lei, Shi Xingjun, Zhang Jianjun, Yang Qidi, Tong Ying, Wang Tao. 2013. LA–ICP–MS zircon U–Pb age and geochemical characteristics of the Taohaotuoxiquan gabbro in northern Alxa, Inner Monglia[J]. Geological Bulletin of China, 32(10): 1536−1547 (in Chinese with English abstract).
[59] Zhang Shuanhong, Zhao Yue, Liu Jianmin, Hu Jianmin, Song Biao, Liu Jian, Wu Hai. 2010. Magmatic activity times, characteristics and tectonic setting of northern margin of North China Block in late Paleozoic to Early Mesozoic[J]. Acta Petrologica et Mineralogica, 29(6): 824−842 (in Chinese with English abstract).
[60] Zhang Shanming, He Zhongyin, Zhao Pengbin, Hu Erhong, Wang Yanan, Zhou Yanbo. 2010. Zircon U–Pb chronology and geochemistry of the Wuliji intrusions in the northern Alxa Block: Constraints on the tectonic evolution of the southern Altaids[J]. Earth Science, 44(11): 1842−1874 (in Chinese with English abstract).
[61] Zhang Wen, Wu Tairan, Feng Jicheng, Zheng Rongguo, He Yuankai. 2013. Time constraints for the closing of the Paleo–Asian Ocean in the Northern Alxa Region: Evidence from Wuliji granites[J]. Science China (Earth Sciences), 43(8): 1299−1311 (in Chinese with English abstract).
[62] Zhang Yongmei, Zhang Huafeng, Zhou Zhiguang, Liu Wencan. 2008. Petrogenesis and its tectonic significance of damiao granite, Siziwangqi, Inner Mongolia[J]. Journal of Mineralogy and Petrology, 28(2): 28−38 (in Chinese with English abstract).
[63] Zhang Z W, Wang Y L, Wang C Y, Qian B, Li W Y, Zhang J W, You M X. 2019. Mafic–ultramafic magma activity and copper–nickel sulfide metallogeny during Paleozoic in the Eastern Kunlun Orogenic Belt, Qinghai Province, China[J]. China Geology, 4: 467−477.
[64] Zhang Zongqing. 2003. Age and Geochemistry of Baiyun Obo Ore Deposit[M]. Beijing: Geological Publishing House (in Chinese with English abstract).
[65] Zhao Lei, Wu Tairan, Luo Hongling, He Yuankai. 2008. Petrology, geochemistry and tectonic implications of the Wengeng gabbros in Wulatezhongqi area, Inner Mongolia[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 44(2): 201−211 (in Chinese with English abstract).
[66] Zhao Lei, Wu Tairan, Luo Hongling. 2011. SHRIMP U–Pb dating, geochemistry and tectonic implications of the Beiqigetao gabbrosin Urad Zhongqi area, Inner Mongolia[J]. Acta Petrologica Sinica, 27(10): 3071−3082 (in Chinese with English abstract).
[67] Zhao Ligang, Wang Wenlong, Gao Xuesheng, Wang Shuqing, Xu Yawen, Hu Xiaojia. 2024. Inspiration from the age of Baoerhantu Group and metamorphic zircon age of middle early middle Triassic in the northern Damao Banner, Inner Mongolia[J]. North China Geology, 47(2): 1−15, 37 (in Chinese with English abstract).
[68] Zhao Zhenhua. 2010. Trace element geochemistry of accessory minerals and its applications in petrogenesis and metallogenesis[J]. Earth Science Frontiers, 17(1): 267−286 (in Chinese with English abstract).
[69] Zheng Rongguo, Wu Tairan, Zhang Wen, Feng Jicheng, Xu Cao, Meng Qingpeng, Zhang Zhaoyu. 2013. Geochronology and geochemistry of the Yagan granite in the northern margin of the Alxa block: Constraints on the tectonic evolution of the southern Altaids[J]. Acta Petrologica Sinica, 29(8): 2665−2675 (in Chinese with English abstract).
[70] Zheng Yadong, Zhang Qing. 2013. The Yagan metamorphic core complex and extensional detachment fault in Inner Mongolia[J]. Acta Geological Sinica, 67(4): 301−309 (in Chinese with English abstract).
[71] Zhu Dicheng, Mo Xuanxue, Wang Liquan, Zhao Zhidan, Liao Zhongli. 2008. Hotspot–ridge interaction for the evolution of Neo–Tethys: Insights from the Late Jurassic–Early Cretaceous magmatism in southern Tibet[J]. Acta Petrological Sinica, 24(2): 225−237 (in Chinese with English abstract).
[72] Zuo L Y, Pei R F, Wang H F. 2019. Re–Os age report of pyrrhotite in the Dhi Samir lamprophyre–type copper–nickel sulfide[J]. China Geology, 2: 238−239.
[73] 陈长虹. 2015. 内蒙古自治区亚干地区铜镍钴矿床成因及找矿标志[J]. 科技创新与应用, (36): 167.
[74] 程先钰, 张天福, 程银行, 王少轶, 田健. 2021. 鄂尔多斯盆地北缘塔然高勒地区直罗组古沉积环境演化——来自地球化学特征的证据[J]. 华北地质, 44(2): 1−3.
[75] 程银行, 张天福, 李艳锋, 李敏, 牛文超, 滕学建, 段连峰, 刘洋, 杜叶龙, 胡晓佳. 2016. 内蒙古东乌旗早二叠世超镁铁岩的发现及其构造意义[J]. 地质学报, 90(1): 115−125. doi: 10.3969/j.issn.0001-5717.2016.01.007
[76] 段明, 郗爱华, 孙国胜, 谢瑜, 司马献章, 魏佳林, 张锋, 冯晓曦, 曾威. 2016. 内蒙古东乌旗地区崇根山岩块超基性岩地球化学特征[J]. 世界地质, 35(3): 653−665. doi: 10.3969/j.issn.1004-5589.2016.03.006
[77] 耿建珍, 李怀坤, 张健, 周红英, 李惠民. 2011. 锆石Hf 同位素组成的LA–MC–ICP–MS测定[J]. 地质通报, 30(10): 1508−1513. doi: 10.3969/j.issn.1671-2552.2011.10.004
[78] 洪大卫, 黄怀曾, 肖宜君, 徐海明, 靳满元. 1994. 内蒙古中部二叠纪碱性花岗岩及其地球动力学意义[J]. 地质学报, 68(3): 219−230. doi: 10.3321/j.issn:0001-5717.1994.03.001
[79] 江思宏, 聂凤军, 刘妍, 王新亮. 2003. 内蒙古小南山铂–铜–镍矿区辉长岩地球化学特征及成因[J]. 地球学报, 24(2): 121−126.
[80] 李怀坤, 耿建珍, 郝爽, 张永清, 李惠民. 2009. 用激光烧蚀多接收器等离子体质谱仪(LA–MC–ICPMS)测定锆石U–Pb同位素年龄的研究[J]. 矿物学报, 29(S1): 600−601.
[81] 李俊建. 2006. 内蒙古阿拉善地块区域成矿系统[D]. 北京: 中国地质大学(北京), 1–193.
[82] 李志丹, 朵兴芳, 李效广, 张锋, 张健, 陈军强, 王佳营, 文思博. 2020. 内蒙古达茂旗黄花滩铜镍矿辉长岩LA–ICP–MS锆石U–Pb年龄、地球化学和Hf同位素特征[J]. 地质通报, 39(4): 491−502. doi: 10.12097/j.issn.1671-2552.2020.04.008
[83] 李志丹, 王佳营, 文思博, 陈军强, 段明, 张锋, 魏佳林, 谢瑜. 2015. 内蒙古乌拉特中旗克布镍矿地质特征及超基性—基性岩LA–ICP–MS锆石U–Pb年龄[J]. 矿物学报, 35(S1): 130−131.
[84] 黎彤, 饶纪龙. 1963. 中国岩浆岩的平均成分[J]. 地质学报, 43(3): 271−280.
[85] 马士委, 周志广, 柳长峰, 李瑞杰, 来林, 张学斌, 孟元库. 2016. 内蒙古西乌旗地区晚石炭世石英闪长岩的岩石成因及构造意义[J]. 中国地质, 43(6): 1932−1946. doi: 10.12029/gc20160606
[86] 牛文超, 辛后田, 段连峰, 赵泽霖, 张国震, 任邦方, 张永. 2020. 内蒙古北山造山带百合山SSZ型蛇绿岩地球化学特征、锆石U–Pb年龄及其对古亚洲洋演化的指示[J]. 地质通报, 39(9): 1317−1329.
[87] 冉皞, 张维杰, 刘治博. 2012. 内蒙古阿拉善右旗杭嘎勒晚二叠世二长花岗岩地球化学特征和LA–ICP–MS锆石U–Pb定年[J]. 地质通报, 31(10): 1565−1575. doi: 10.3969/j.issn.1671-2552.2012.10.003
[88] 邵济安. 1991. 中朝板块北缘中段地壳演化[M]. 北京: 北京大学出版社, 1–135.
[89] 史兴俊, 童英, 王涛, 张建军, 张招崇, 张磊, 郭磊, 曾涛, 耿建珍. 2012. 内蒙古西部阿拉善地区哈里努登花岗岩LA–ICP–MS锆石U–Pb年龄和地球化学特征[J]. 地质通报, 31(5): 662−670. doi: 10.3969/j.issn.1671-2552.2012.05.003
[90] 宋嘉佳. 2017. 阿拉善地块北部雅干断裂带周缘晚古生代花岗岩体特征[D]. 北京: 中国地质大学(北京), 1–82.
[91] 田健, 滕学建, 辛后田, 段霄龙, 程先钰, 张永, 任邦方. 2020. 北山造山带白云山地区蛇绿混杂岩结构、组成特征与形成时代[J]. 岩石学报, 36(12): 3741−3756. doi: 10.18654/1000-0569/2020.12.11
[92] 王敏芳, 夏庆霖, 肖凡, 汪新庆, 杨武胜, 姜楚灵. 2012. 新疆东天山土墩铜镍硫化物矿床岩石地球化学和铂族元素特征及其对成矿的指示意义[J]. 矿床地质, 31(6): 1195−1208. doi: 10.3969/j.issn.0258-7106.2012.06.006
[93] 王倩. 2010. 内蒙古乌拉特中旗温根A区镁铁—超镁铁质岩体成因及岩浆源区讨论[D]. 北京: 中国地质大学(北京), 1–58.
[94] 王涛, 郑亚东, 刘树文, 李天斌, 马铭波. 2002. 中蒙边界亚干变质核杂岩糜棱状钾质花岗岩——早中生代收缩与伸展构造体制的转换标志[J]. 岩石学报, 18(2): 177−186. doi: 10.3321/j.issn:1000-0569.2002.02.005
[95] 王廷印, 张铭杰, 王金荣, 高军平. 1998. 恩格尔乌苏冲断带特征及大地构造意义[J]. 地质科学, 33(4): 385−394. doi: 10.3321/j.issn:0563-5020.1998.04.001
[96] 肖文交, 宋东方, Windley B F., 李继亮, 韩春明, 万博, 张继恩, 敖松坚, 张志勇. 2019. 中亚增生造山过程与成矿作用研究进展[J]. 中国科学: 地球科学, 49(10): 1512−1545.
[97] 徐东卓, 张维杰, 周海涛, 孙启凯. 2014. 内蒙古阿拉善地块中北部地区辉长岩岩体特征、锆石定年及其构造意义[J]. 地质通报, 33(5): 661−671. doi: 10.3969/j.issn.1671-2552.2014.05.007
[98] 杨立东. 2012. 内蒙古阿拉善左旗亚干多金属矿地质特征及找矿前景[J]. 内蒙古科技与经济, (22): 59−60. doi: 10.3969/j.issn.1007-6921.2012.01.030
[99] 张超, 戚学祥, 唐贯宗, 赵宇浩, 吉凤宝. 2014. 滇西哀牢山构造带长安铜钼金矿集区碱性斑岩岩石地球化学、锆石U–Pb定年及其对成矿作用的约束[J]. 岩石学报, 30(8): 2204−2216.
[100] 张超, 戚学祥, 王善博, 俞礽安, 程银行, 张国震, 曾辉, 李建国, 李志丹, 奥琮. 2020. 云南金平铜厂Cu–Mo矿床矽卡岩地球化学特征及成因[J]. 地质与勘探, 56(5): 19−32.
[101] 张超, 司庆红, 俞礽安, 王善博, 程银行, 于航, 冯平, 石广顺, 奥琮, 李志丹, 高雪峰. 2023. 柴西北缘花土沟地区新近系狮子沟组沉积特征与砂岩型铀矿关系分析[J]. 中国地质, 50(5): 1327–1342.
[102] 张建军, 王涛, 张招崇, 童英, 张磊, 史兴俊, 郭磊, 李舢, 曾涛. 2012. 华北地块北缘西段巴音诺尔公—狼山地区牙马图岩体的岩浆混合成因——岩相学和元素地球化学证据[J]. 地质论评, 58(1): 53−66. doi: 10.3969/j.issn.0371-5736.2012.01.005
[103] 张磊, 史兴俊, 张建军, 杨奇荻, 童英, 王涛. 2013. 内蒙古阿拉善北部陶豪托西圈辉长岩LA–ICP–MS锆石U–Pb年龄和地球化学特征[J]. 地质通报, 32(10): 1536−1547. doi: 10.3969/j.issn.1671-2552.2013.10.005
[104] 张拴宏, 赵越, 刘建民, 胡健民, 宋彪, 刘健, 吴海. 2010. 华北地块北缘晚古生代—早中生代岩浆活动期次特征及构造背景[J]. 岩石矿物学杂志, 29(6): 824−842. doi: 10.3969/j.issn.1000-6524.2010.06.017
[105] 张善明, 贺中银, 赵鹏彬, 胡二红, 王亚楠, 周彦波. 2019. 阿拉善地块北缘乌力吉岩体锆石U–Pb年代学、地球化学及其对区域构造演化的制约[J]. 地球科学, 44(11): 1842−1874.
[106] 张文, 吴泰然, 冯继承, 郑荣国, 贺元凯. 2013. 阿拉善地块北缘古大洋闭合的时间制约: 来自乌力吉花岗岩体的证据[J]. 中国科学: 地球科学, 43(8): 1299−1311.
[107] 张宗清. 2003. 白云鄂博矿床年龄和地球化学[M]. 北京: 地质出版社.
[108] 章永梅, 张华锋, 周志广, 刘文灿. 2008. 内蒙古四子王旗大庙花岗岩体的成因与构造意义[J]. 矿物岩石, 28(2): 28−38. doi: 10.3969/j.issn.1001-6872.2008.02.006
[109] 赵磊, 吴泰然, 罗红玲, 贺元凯. 2008. 内蒙古乌拉特中旗温更辉长岩类的岩石学、地球化学特征及其构造意义[J]. 北京大学学报(自然科学版), 44(2): 201−211.
[110] 赵磊, 吴泰然, 罗红玲. 2011. 内蒙古乌拉特中旗北七哥陶辉长岩SHRIMP锆石U–Pb年龄、地球化学特征及其地质意义[J]. 岩石学报, 27(10): 3071−3082.
[111] 赵利刚, 王文龙, 高学生, 王树庆, 徐雅雯, 胡晓佳. 2024. 内蒙古达茂旗北部包尔汉图群时代及中早—中三叠世变质锆石年龄的启示[J]. 华北地质, 47(2): 1−15, 37.
[112] 赵振华. 2010. 副矿物微量元素地球化学特征在成岩成矿作用研究中的应用[J]. 地学前缘, 17(1): 267−286.
[113] 郑荣国, 吴泰然, 张文, 冯继承, 徐操, 孟庆鹏, 张昭昱. 2013. 阿拉善地块北缘雅干花岗岩体地球化学、地质年代学及其对区域构造演化制约[J]. 岩石学报, 29(8): 2665−2675.
[114] 郑亚东, 张青. 1993. 内蒙古亚干变质核杂岩与伸展拆离断层[J]. 地质学报, 67(4): 301−309.
[115] 朱弟成, 莫宣学, 王立全, 赵志丹, 廖忠礼. 2008. 新特提斯演化的热点与洋脊相互作用: 西藏南部晚侏罗世—早白垩世岩浆作用推论[J]. 岩石学报, 24(2): 225−237.
-