中国地质调查局 中国地质科学院主办
科学出版社出版

淮河流域高砷地下水的形成演化过程及其环境健康风险

许乃政, 龚建师, 檀梦皎, 叶永红, 周锴锷, 朱春芳, 束龙仓, 孟丹. 2021. 淮河流域高砷地下水的形成演化过程及其环境健康风险[J]. 中国地质, 48(5): 1418-1428. doi: 10.12029/gc20210508
引用本文: 许乃政, 龚建师, 檀梦皎, 叶永红, 周锴锷, 朱春芳, 束龙仓, 孟丹. 2021. 淮河流域高砷地下水的形成演化过程及其环境健康风险[J]. 中国地质, 48(5): 1418-1428. doi: 10.12029/gc20210508
XU Naizheng, GONG Jianshi, TAN Mengjiao, YE Yonghong, ZHOU Kaie, ZHU Chunfang, SHU Longcang, MENG Dan. 2021. Hydrogeochemical processes and potential exposure risk of high-arsenic groundwater in Huaihe River Basin, China[J]. Geology in China, 48(5): 1418-1428. doi: 10.12029/gc20210508
Citation: XU Naizheng, GONG Jianshi, TAN Mengjiao, YE Yonghong, ZHOU Kaie, ZHU Chunfang, SHU Longcang, MENG Dan. 2021. Hydrogeochemical processes and potential exposure risk of high-arsenic groundwater in Huaihe River Basin, China[J]. Geology in China, 48(5): 1418-1428. doi: 10.12029/gc20210508

淮河流域高砷地下水的形成演化过程及其环境健康风险

  • 基金项目:
    中国地质调查项目(DD20190354)和江苏省自然科学基金(BK20151093)联合资助
详细信息
    作者简介: 许乃政, 男, 1971年生, 研究员, 主要从事环境科学研究; E-mail: xzzz100@sina.com
    通讯作者: 龚建师, 男, 1981年生, 高级工程师, 主要从事水文地质学研究; E-mail: 593591934@qq.com
  • 中图分类号: X53

Hydrogeochemical processes and potential exposure risk of high-arsenic groundwater in Huaihe River Basin, China

  • Fund Project: Supported by the project of China Geological Survey (No. DD20190354) and Natural Science Foundation of Jiangsu Provinc(No. BK20151093)
More Information
    Author Bio: XU Naizheng, male, born in 1971, researcher, engaged in the study of environmental science; E-mail: xzzz100@sina.com .
    Corresponding author: GONG Jianshi, male, born in 1981, senior engineer, mainly engaged in hydrogeological investigation and research; E-mail: 593591934@qq.com
  • 砷(As)有确定的环境健康风险,饮用高砷地下水是人类遭受As暴露风险的主要途径,研究As在地下水中的分布、迁移、富集规律是世界范围的一个重要环境公共卫生问题。淮河流域是中国新发现的高砷地下水分布区域,本次以流域内典型高砷地下水域为天然实验场,通过分析地下水水文地球化学数据,解析高砷地下水的形成演化过程,追溯砷污染物的来源及溶出释放过程,评估其潜在污染风险。结果表明:As、F是影响研究区水质的主要无机化学物质,浓度分别为(5.75±5.42)μg/L、(1.29±0.40)mg/L,超过世界卫生组织饮用水推荐准则值的测试样品比例分别为23%、31%,呈现高暴露污染风险。根据水化学图解与矿物饱和指数计算,研究区地下水受蒸发作用、岩盐溶解、水岩相互作用等过程的共同影响。高砷地下水总碱度主要分布在400~700 mg/L,化学类型主要为HCO3-Na型,高砷地下水更大程度受到蒸发作用、阳离子交换作用的影响。高砷地下水的As可能源自含水层原生砷的溶出释放,含砷矿物氧化溶解与还原活化可能是高砷地下水形成的主要机制。

  • 加载中
  • 图 1  淮河流域安徽太和县地质背景、采样部署及水文地质剖面

    Figure 1. 

    图 2  淮河流域安徽太和县高砷地下水总碱度图解

    Figure 2. 

    图 3  淮河平原安徽太和县地下水piper图

    Figure 3. 

    图 4  淮河流域安徽太和县地下水Cl/Br比值与Cl相关图

    Figure 4. 

    图 5  淮河流域安徽太和县高砷地下水Ca/Na-Mg/Na、HCO3/Na-Ca/Na图解

    Figure 5. 

    图 6  淮河流域安徽太和县高砷地下水Na-Cl图解

    Figure 6. 

    表 1  淮河流域安徽太和县地下水化学测试分析(2019年6月、9月采样)

    Table 1.  Chemical assay data of groundwater quality in Taihe County of Anhui Province in Huaihe River Basin (sampled in June and September 2019)

    下载: 导出CSV

    表 2  安徽太和县地下水化学统计分析与评价

    Table 2.  Statistics and evaluation of groundwater chemistry of Taihe Conty, Anhui Province in Huaihe River Basin

    下载: 导出CSV

    表 3  淮河流域安徽太和县地下水矿物饱和指数

    Table 3.  Saturation indices of groundwater in Taihe County of Anhui Province, the Huaihe River Basin

    下载: 导出CSV
  • Cao Hailong, Xie Xianjun, Wang Yanxin, Pi Kunfu, Li Junxia, Zhan Hongbin, Liu Peng. 2018. Predicting the risk of groundwater arsenic contamination in drinking water wells[J]. Journal of Hydrology, 560: 318-325. doi: 10.1016/j.jhydrol.2018.03.007

    Cartwright I, Weaver T, Fifield L. 2006. Cl/Br ratios and environmental isotopes as indicators of recharge variability and groundwater flow: An example from the southeast Murray Basin, Australia[J]. Chemical Geology, 231: 38-56. doi: 10.1016/j.chemgeo.2005.12.009

    Chen Ying, Sun Yingjie, Wang Fangfang, Wang Yanan, Lu Mou, Zhang Dalei. 2013. Research on arsenic contents and its speciation distribution in sediments of northern suburb water source field in Zhengzhou[J]. Journal of Qingdao Technological University, 34 (5): 55-60 (in Chinese with English abstract).

    Deng Yamin, Wang Yanxin, Ma Teng. 2009. Isotope and minor element geochemistry of high arsenic groundwater from Hangjinhouqi, the Hetao Plain, Inner Mongolia[J]. Applied Geochemistry, 24: 587-599. doi: 10.1016/j.apgeochem.2008.12.018

    Duan Yanhua, Gan Yiqun, Wang Yanxin, Liu Chongxuan, Yu Kai, Deng Yamin, Zhao Ke, Dong Chuangju. 2017. Arsenic speciation in aquifer sediment under varying groundwaterregime and redox conditions at Jianghan Plain of Central China[J]. Science of the Total Environment, 607-608: 992-1000. doi: 10.1016/j.scitotenv.2017.07.011

    Gao Cunrong, Liu Wenbo, Liu Bin, Li Jinfeng, Li Fei. 2010. Modes of occurrence of arsenic in Quaternary sediments of the Hetao Plain[J]. Geology in China 37(3): 760-770(in Chinese with English abstract).

    Gao Yanyan, Qian Hui, Huo Henchen, Chen Jie, Wang Haike. 2020. Assessing natural background levels in shallow groundwater in a large semiarid drainage Basin[J]. Journal of Hydrology, 584: 124638. doi: 10.1016/j.jhydrol.2020.124638

    Garbinski L, Rosen B, Chen J. 2019. Pathways of arsenic uptake and efflux[J]. Environment International, 126: 585-597. doi: 10.1016/j.envint.2019.02.058

    Gillispie E, Matteson A, Duckworth O, Neumann R, Phen N, Polizzotto M. 2019. Chemical variability of sediment and groundwater in a Pleistocene aquifer of Cambodia: Implications for arsenic pollution potential[J]. Geochimica et Cosmochimica Acta 245: 441-458. doi: 10.1016/j.gca.2018.11.008

    Gupta P K, Joshi P, Jahangeer. 2017. In-situ observation and transport modelling of arsenic in Gangetic plain, India[J]. Emerging Contaminants 3: 138-143. doi: 10.1016/j.emcon.2018.03.001

    Han D M, Song X F, Currell M J, Yang J L, Xiao G Q. 2014. Chemical and isotopic constraints on evolution of groundwater salinization in the coastal plain aquifer of Laizhou Bay, China[J]. Journal of Hydrology, 508: 12-27. doi: 10.1016/j.jhydrol.2013.10.040

    Han Ying, Zhang Hongmin, Zhang Yongfeng, Zhang Xin. 2017. Distribution regularity origin and quality division of high arsenic, fluorine and iodine contents in groundwater in Datong basin[J]. Geological survey of China, 4(1): 57-68 (in Chinese with English abstract).

    Hu Yihong, Zhou Lei, Li Xin, Xu Fandi, Wang Lin, Mo Dongzhi, Zhou Liang, Wang Xin. 2015. Arsenic contamination in Shimen Realgar mine Ⅰ: As spatial distribution, chemical fractionations and leaching[J]. Journal of Agro-Environment Sciences, 4(8): 1515-1521 (in Chinese with English abstract).

    Li Bin, Zhao Chanjuan, Li Peiyao, Yuan Yan. 2013. BCR speciation analysis of arsenic in contaminated soil in arsenic mining area. Journal of Yunnan University for Nationalities[J]. Natural Science 22(5): 330-333 (in Chinese with English abstract).

    Li Guoli, Zhou Kaie, Zhang Qing, Yuan Hongwu. 2018. The application of a joint numerical simulation system of surface water and groundwater in optimized management of Fuyang water resources[J]. East China Geology, 9(3): 234-240 (in Chinese with English abstract).

    Li Mengying, Liu Yonggen, Hou Lei, Zheng Yi, Qi Danhui, Zhao Rong, Ren Wei. 2018. Effects and concentration prediction of environmental al factors on the speciation of arsenic in the sediments of Yangzonghai lakeside wetland[J]. Research of Environmental Sciences, 31(9): 1554-1563 (in Chinese with English abstract).

    Li Yongfang, Da Wang Da, Liu Yuyan, Zheng Quanmei, Sun Guifan. 2017. A predictive risk model of groundwater arsenic contamination in China applied to the Huai River Basin, with a focus on the region's cluster of elevated cancer mortalities[J]. Applied Geochemistry, 77: 178-183. doi: 10.1016/j.apgeochem.2016.05.003

    Liu Jiangtao, Cai Wutian, Cao Yueting, Cai Yuemei, Biao Chao, Lu Shuigao, Chen Yuanming. 2018. Hydrochemical characteristics of groundwater and the origin in alluvial-proluvial fan of Qinhe River[J]. Environmental Science 39(12): 5428-5439 (in Chinese with English abstract).

    MLR(Ministry of Land and Resources, PRC) and Ministy of water Resources. 2017. GB/T 14848-2017 Quality standard for ground water[S] (in Chinese).

    Shahid N M, Niazi K, Dumat C, Naidu R, Khalid S, Rahman M, Bibi I. 2018. A meta-analysis of the distribution, sources and health risks of arsenic-contaminated groundwater in Pakistan[J]. Environmental Pollution, 242(A): 307-319.

    Stopelli E, Duyen V T, Mai T T. 2020. Spatial and temporal evolution of groundwater arsenic contamination in the Red River delta, Vietnam: Interplay of mobilisation and retardation processes[J]. Science of the Total Environment, 717: 1-13.

    Taheri M, Gharaie M, Mehrzad J, Afshari R, Datta. 2017. Hydrogeochemical and isotopic evaluation of arsenic contaminated waters in an argillic alteration zone[J]. Journal of Geochemical Exploration, 175: 1-10. doi: 10.1016/j.gexplo.2016.12.005

    Tang Jie, Lin Nianfeng, Bian Jianmin, Liu Wuzhou, Zhang Zhenlin. 1996. Environmental geochemistry of arsenic in the area of arsenic poisoning in Hetao Plain, Inner Mongolia[J]. Hydrogeology Engineering Geology, (1): 49-54 (in Chinese with English abstract).

    Wang Jingshan, Zhao Lunshan, Wu Yuebin. 1998. Environmental geochemistry of arsenic in arsenism area of Shanyin and Yingxian, Shanxi Province[J]. Geoscience, 12 (2): 243-248 (in Chinese with English abstract).

    WHO (World Health Organization). 2011. Guidelines for Drinking-Water Quality (Fourth edition)[M]. The World Health Organization, Geneva, Switzerland, 1-564.

    Xie Xianjun, Wang Yanxin, Su Chunli, Li Chunxia, Li Mengdi. 2012. Influence of irrigation practices on arsenic mobilization: Evidence from isotope composition and Cl/Br ratios in groundwater from Datong Basin, northern China[J]. Journal of Hydrology, 424-425: 37-47. doi: 10.1016/j.jhydrol.2011.12.017

    Xing Lina, Guo Huamin, Zhan Yanhong. 2013. Groundwater hydrochemical characteristics and processes along flow paths in the North China Plain[J]. Journal of Asian Earth Sciences, 70-71: 250-264. doi: 10.1016/j.jseaes.2013.03.017

    Yang Qingchun, Li Zijun, Ma Hongyun, Wang Luchen, Martín J D. 2016. Identification of the hydrogeochemical processes and assessment of groundwater quality using classic integrated geochemical methods in the Southeastern part of Ordos basin, China[J]. Environmental Pollution, 218: 879-888. doi: 10.1016/j.envpol.2016.08.017

    Zhang Fucun, Wen Dongguang, Guo Jianqiang, Zhang Eryong, Hao Aibing, An Yonghui. 2010. Research progress and prospect of geological environment in main endemic areas of China[J]. Geology in China, 37 (3): 551-562 (in Chinese with English abstract).

    Zhang Kexin, Pan Guitang, He Wenhong, Xiao Qinghui, Xu Yadong. 2015. New division of tectonic-strata super region in China[J]. Earth Science, 40 (2): 206-233 (in Chinese with English abstract). http://qikan.cqvip.com/Qikan/Article/Detail?id=6100196938

    Zhang Liankai, Qin Xiaoqun, Tang Jiansheng, Liu Wen, Yang Hui. 2017. Review of arsenic geochemical characteristics and its significance on arsenic pollution studies in karst groundwater, Southwest China[J]. Applied Geochemistry, 77: 80-88. doi: 10.1016/j.apgeochem.2016.05.014

    Zhu Bingqi, Yang Xiaoping, Rioual Patrick, Qin Xiaoguang, Liu Ziting, Xiong Heigang, Yu Jingjie. 2011. The Hydrogeochemistry of three watersheds (the Erlqis, Zhungarer and Yili) in northern Xinjiang, NW China[J]. Applied Geochemistry 26: 1535-1548. doi: 10.1016/j.apgeochem.2011.06.018

    陈英, 孙英杰, 王芳芳, 王亚楠, 吕谋, 张大磊. 2013. 郑州北郊水源地沉积物中砷的含量及形态分布研究[J]. 青岛理工大学学报, 34(5): 55-60. doi: 10.3969/j.issn.1673-4602.2013.05.011

    高存荣, 刘文波, 刘滨, 李金凤, 李飞. 2010. 河套平原第四纪沉积物中砷的赋存形态分析[J]. 中国地质, 37(3): 760-770. http://geochina.cgs.gov.cn/geochina/ch/reader/view_abstract.aspx?file_no=20100331&flag=1

    韩颖, 张宏民, 张永峰, 张欣. 2017. 大同盆地地下水高砷、氟、碘分布规律与成因分析及质量区划[J]. 中国地质调查, 4(1): 57-68. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDC201701009.htm

    胡毅鸿, 周蕾, 李欣, 徐凡迪, 王霖, 莫冬至, 周亮, 王欣. 2015. 石门雄黄矿区As污染研究Ⅰ- As空间分布、化学形态与酸雨溶出特性[J]. 农业环境科学学报, 34(8): 1515-1521. https://www.cnki.com.cn/Article/CJFDTOTAL-NHBH201508012.htm

    李彬, 赵婵娟, 李佩瑶, 袁燕. 2013. 砷矿区受污染土壤中As赋存形态分析[J]. 云南民族大学学报(自然科学版), 22(5): 330-333. doi: 10.3969/j.issn.1672-8513.2013.05.006

    李国礼, 周锴锷, 张庆, 袁红武. 2018. 地表水与地下水联合数值模拟系统在阜阳市水资源优化管理中的应用[J]. 华东地质, 39(3): 234-240. https://www.cnki.com.cn/Article/CJFDTOTAL-HSDZ201803010.htm

    李梦莹, 刘云根, 侯磊, 郑毅, 齐丹卉, 赵蓉, 任伟. 2018. 阳宗海湖滨湿地环境因素对沉积物砷赋存形态的影响及浓度水平预测[J]. 环境科学研究, 31(9): 1554-1563. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKX201809008.htm

    刘江涛, 蔡五田, 曹月婷, 蔡月梅, 边超, 吕永高, 陈远铭. 2018. 沁河冲洪积扇地下水水化学特征及成因分析[J]. 环境科学, 39(12): 5428-5439. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201812016.htm

    汤杰, 林年丰, 卞建民, 刘五洲, 张振林. 1996. 内蒙河套平原砷中毒病区砷的环境地球化学研究[J]. 水文地质工程地质, (1): 49-54. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG601.015.htm

    王敬华, 赵伦山, 吴悦斌. 1998. 山西山阴、应县一带砷中毒区砷的环境地球化学研究[J]. 现代地质12(2): 243-248. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ802.014.htm

    张福存, 文冬光, 郭建强, 张二勇, 郝爱兵, 安永会. 2010. 中国主要地方病区地质环境研究进展与展望[J]. 中国地质, 37(3): 551-562. http://geochina.cgs.gov.cn/geochina/ch/reader/view_abstract.aspx?file_no=20100301&flag=1

    张克信, 潘桂棠, 何卫红. 肖庆辉, 徐亚东. 2015. 中国构造-地层大区划分新方案[J]. 地球科学——中国地质大学学报, 40(2): 206-233. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201502003.htm

    中华人民共和国国土资源部和水利部. 2017. GB/T 14848-2017地下水质量标准[S].

  • 加载中

(6)

(3)

计量
  • 文章访问数:  1964
  • PDF下载数:  18
  • 施引文献:  0
出版历程
收稿日期:  2021-03-31
修回日期:  2021-07-05
刊出日期:  2021-10-25

目录