中国地质调查局 中国地质科学院主办
科学出版社出版

塔北跃满区块一间房组碳酸盐岩断控型储层特征及其分布规律

吴昌达, 赵学钦, 邬光辉, 李飞, 张红敏, 胡泽祥, 李松. 2024. 塔北跃满区块一间房组碳酸盐岩断控型储层特征及其分布规律[J]. 中国地质, 51(3): 762-779. doi: 10.12029/gc20210515002
引用本文: 吴昌达, 赵学钦, 邬光辉, 李飞, 张红敏, 胡泽祥, 李松. 2024. 塔北跃满区块一间房组碳酸盐岩断控型储层特征及其分布规律[J]. 中国地质, 51(3): 762-779. doi: 10.12029/gc20210515002
WU Changda, ZHAO Xueqin, WU Guanghui, LI Fei, ZHANG Hongmin, HU Zexiang, LI Song. 2024. Characteristics and distribution of fault−controlled carbonate reservoirs in Yijianfang Formation of Yueman area, northern Tarim Basin[J]. Geology in China, 51(3): 762-779. doi: 10.12029/gc20210515002
Citation: WU Changda, ZHAO Xueqin, WU Guanghui, LI Fei, ZHANG Hongmin, HU Zexiang, LI Song. 2024. Characteristics and distribution of fault−controlled carbonate reservoirs in Yijianfang Formation of Yueman area, northern Tarim Basin[J]. Geology in China, 51(3): 762-779. doi: 10.12029/gc20210515002

塔北跃满区块一间房组碳酸盐岩断控型储层特征及其分布规律

  • 基金项目: 国家自然科学基金项目(41672206)资助。
详细信息
    作者简介: 吴昌达,男,1996年生,硕士生,主要从事构造地质研究;E-mail:1754908572@qq.com
    通讯作者: 赵学钦,男,1977年生,博士,副教授,主要从事构造地质和石油地质相关研究;E-mail:zxqch@sina.com
  • 中图分类号: P618.13

Characteristics and distribution of fault−controlled carbonate reservoirs in Yijianfang Formation of Yueman area, northern Tarim Basin

  • Fund Project: Supported by National Natural Science Foundation of China (No. 41672206).
More Information
    Author Bio: WU Changda, male, born in 1996, master candidate, engaged in the study of structural geology; E−mail: 1754908572@qq.com .
    Corresponding author: ZHAO Xueqin, male, born in 1977, doctor, associate professor, engaged in the study of structural geology and petroleum geology; E−mail: zxqch@sina.com.
  • 研究目的

    跃满区块位于塔里木盆地哈拉哈塘油田塔里木河南岸地区,其奥陶系一间房组碳酸盐岩储层发育。勘探开发成果显示,该区高产井主要沿区内4条走滑断裂分布,并且沿断裂带表现出油气产量差异,具有较强的非均质性,储层受断裂控制明显,因此明确该类断控型储层特征及分布规律对油气勘探和开发具有重要意义。

    研究方法

    论文综合利用钻测井数据与岩心分析,结合三维地震资料,分析储层岩石学特征、储层类型及其发育规律,探讨优质储层与区内走滑断裂的耦合关系,以明确该类断控型储层的分布规律。

    研究结果

    区内一间房组储集岩类型以生屑灰岩、砂屑灰岩、颗粒灰岩、泥晶灰岩为主,孔隙度与渗透率均较低。根据储集空间类型,储层可分为洞穴型储层、裂缝−孔洞型储层、裂缝型储层与孔洞型储层4类,洞穴型储层垂向上沿主干断层呈串珠状发育,裂缝−孔洞型、裂缝型与孔洞型储层沿断裂带状发育。

    结论

    走滑断裂的分段性控制着优质储层的分布,断裂马尾段、斜列段和叠覆段储层发育最佳,分支断层斜交段发育一般,线性段则发育较差,在此基础上,高能相带叠加区相对非叠加区储层发育更佳。

  • 加载中
  • 图 1  跃满区块构造位置图

    Figure 1. 

    图 2  跃满地区奥陶系一间房组储层岩性(染色铸体薄片)

    Figure 2. 

    图 3  跃满地区奥陶系一间房组储层类型(岩心)

    Figure 3. 

    图 4  跃满3井过井地震剖面及洞穴型储层模式图

    Figure 4. 

    图 5  跃满地区储层连井对比图

    Figure 5. 

    图 6  跃满地区奥陶系缝洞带划分平面图 1

    Figure 6. 

    图 7  塔北至塔中地区(a,据Wu et al., 2021修改)跃满区块(b)走滑断裂体系纲要图

    Figure 7. 

    图 8  跃满1−3—跃满102断裂带平面图及典型地震剖面

    Figure 8. 

    图 9  跃满601—跃满2−1断裂带平面图及典型地震剖面

    Figure 9. 

    图 10  跃满704—跃满3−3断裂带平面图及典型地震剖面

    Figure 10. 

    图 11  跃满区块各段钻井储层统计图

    Figure 11. 

    图 12  跃满区块地震剖面(a)及沉积相图(b)

    Figure 12. 

    表 1  跃满区块漏失统计

    Table 1.  Lost circulation statistics in Yueman area

    序号 井号 放空长/m 漏失量/m3 序号 井号 放空长/m 漏失量/m3
    1 跃满1 1.92 355 18 跃满5−4X 6.39 659
    2 跃满10 0 506.12 19 跃满5−5 1.85 148.4
    3 跃满1−1 0 535.7 20 跃满601 0 373.7
    4 跃满1−3 0.12 118.24 21 跃满6C 0 215.5
    5 跃满1−5 0.76 0 22 跃满701 0 260.4
    6 跃满2−2C 0 1200 23 跃满701−H1 1.11 1494.4
    7 跃满2−4X 1.41 2049 24 跃满702 0 133.2
    8 跃满3 0 253.4 25 跃满703 2.72 252.2
    9 跃满3−1 1.49 307.1 26 跃满7−1X 0 1558.11
    10 跃满3−2C 0 1063.2 27 跃满7−2X 0.34 1527.19
    11 跃满3−3 0.93 348.5 28 跃满7JS 19.1 3231.33
    12 跃满3−5 0.74 114.6 29 跃满8 4.02 773.5
    13 跃满3−5C 8 1064.6 30 跃满801 2.79 1389.18
    14 跃满3−6X 0.96 241.6 31 跃满801−H6 2.59 549.4
    15 跃满3−7X 0 9.9 32 跃满802 1.45 329.7
    16 跃满4 0 43.8 33 跃满8−1 6.34 286.2
    17 跃满5−3 0 269.4 34 跃满9 9.25 811
    下载: 导出CSV

    表 2  跃满区块钻井储层统计(跃满1−3—跃满102)

    Table 2.  Reservoir statistics of drilling in Yueman area (Yueman 1−3−Yueman 102)

    分段 井号 顶深/m 底深/m 层厚/m 类型 顶深/m 底深/m 层厚/m 类型
    马尾段 跃满1−3 7209 7224 15 7282 7290 8
    7270 7276 6
    跃满1−1 7217 7223 6 7227.5 7238 10.5
    7223 7227.5 4.5
    跃满1−5 7226 7232 6 7287 7289.5 2.5
    7255 7261.5 6.5 7295.5 7298.5 3
    7275.5 7278 2.5 7301.5 7303.5 2
    7282.5 7285.5 3
    跃满1 7259.5 7265.5 6 7268.5 7277 8.5 III
    7265.5 7268.5 3 II
    跃满1−4 7297 7301 4 7303.5 7307 3.5
    跃满9 7586.8 7588.9 2.1 7591 7598 7
    跃满1−8 7302.5 7305 2.5 7343.5 7350 6.5
    7311 7317.5 6.5
    跃满102 7282 7297 15 7300.5 7306 5.5
    7297 7300.5 3.5 7306 7312.5 6.5
    下载: 导出CSV

    表 4  跃满区块钻井储层统计(跃满704—跃满3−3)

    Table 4.  Reservoir statistics of drilling in Yueman area (Yueman 704−Yueman 3−3)

    分段 井号 顶深/m 底深/m 层厚/m 类型 顶深/m 底深/m 层厚/m 类型
    斜列段 跃满704 7307.5 7311 3.5 7364 7370.5 6.5
    7338.5 7340 1.5 7370.5 7378 7.5
    7340 7344.5 4.5
    跃满703 7277.9 7289.7 11.8 7298 7300.92 2.92
    线性段 跃满701 7315.7 7321.5 5.8
    斜列段 跃满7 7234 7242.5 8.5 7265.5 7270.5 5
    7242.5 7248.5 6 II 7270.5 7275 4.5
    7257 7263 6
    跃满3−1 7224 7229 5 7244 7246.5 2.5
    7234.5 7242.5 8 7246.5 7251 4.5
    7242.5 7244 1.5
    分支断层
    斜交段
    跃满3 7189.5 7198.5 9 7219.4 7223.2 3.8
    7209 7216 7
    跃满3−5 7167.7 7171 3.3 7197.88 7206.96 9.08
    7173.8 7180.9 7.1 7206.96 7212.04 5.08
    7184.04 7197.88 13.84 7212.04 7220 7.96
    跃满3−3 7158.62 7159.55 0.93
    下载: 导出CSV

    表 3  跃满区块钻井储层统计(跃满601—跃满2−1)

    Table 3.  Reservoir statistics of drilling in Yueman area (Yueman 601−Yueman 2−1)

    分段 井号 顶深/m 底深/m 层厚/m 类型 顶深/m 底深/m 层厚/m 类型
    线性段 跃满601 7313 7320 7 7372.5 7379 6.5
    叠覆段 跃满6 7294 7296.28 2.28 7302.04 7304 1.96
    7296.28 7300.6 4.32 7304 7306 2
    7300.6 7302.04 1.44 7308 7310.7 2.7
    跃满5−2 7277 7279 2 7301.5 7304 2.5
    7284 7290.5 6.5 7313 7315 2
    7290.5 7295 4.5 7318 7319.5 1.5
    斜列段 跃满5 7272.5 7276.5 4 7280 7281.5 1.5
    7276.5 7280 3.5 7281.5 7289 7.5
    跃满5−3 7258.5 7271 12.5 7279 7292 13
    跃满5−1 7248.5 7253 4.5 7263 7269.5 6.5
    7253 7255 2 7269.5 7277.5 8
    7255 7258.5 3.5 7280.5 7282.5 2
    叠覆段 跃满2−3X 7274 7301.5 27.5 7319 7323 4
    7313 7316 3 7323 7326.5 3.5
    跃满2 7200.5 7212.5 12 7245 7263 18 III
    7221 7233.5 12.5 7263 7273 10
    7233.5 7245 11.5
    跃满2−1 7304.5 7315.5 11 7329.76 7334.44 4.68
    7315.5 7325 9.5 7338 7341 3
    下载: 导出CSV
  • [1]

    Dan Y, Zou H, Liang B, Zhang Q Y, Cao J W, Li J R, Hao Y Z. 2016. Restoration of multistage paleogeomorphology during Caledonian Period and paleokarst cavernous reservoir prediction in Halahatang area, northern Tarim Basin[J]. Oil & Gas Geology, 37(3): 304−312.

    [2]

    Deng Shang, Liu Yuqing, Liu Jun, Han Jun, Wang Bin, Zhao Rui. 2021. Structural styles and evolution models of intracratonic strike−slip faults and the implications for reservoir exploration and appraisal: A case study of the Shunbei Area, Tarim Basin[J]. Geotectonica et Metallogenia, 45(6): 1111−1126 (in Chinese with English abstract).

    [3]

    Ding Zhiwen, Wang Rujun, Chen Fangfang, Yang Jianping, Zhu Zhongqian, Yang Zhimin, Sun Xiaohui, Xian Bo, Li Erpeng, Shi Tao, Zuo Chao, Li Yang. 2020. Origin, hydrocarbon accumulation and oil−gas enrichment of fault−karst carbonate reservoirs: A case study of Ordovician carbonate reservoirs in South Tahe area of Halahatang oilfield, Tarim Basin[J]. Petroleum Exploration and Development, 47(2): 286−296 (in Chinese with English abstract).

    [4]

    Gao Da, Wang Mingmin, Tao Ye, Huang Lili, Sun Chuanyan, Huang Xinmiao, Wu Jianwei. 2022. Control of sea level changes on high−frequency sequence and sedimentary evolution of Lianglitage Formation in the Tazhong Area[J]. Geology in China, 49(6): 1936−1950 (in Chinese with English abstract).

    [5]

    Han X Y, Deng S, Tang L J, Cao Z C. 2017. Geometry, kinematics and displacement characteristics of strike−slip faults in the northern slope of Tazhong uplift in Tarim Basin: A study based on 3D seismic data[J]. Marine and Petroleum Geology, 88: 410−427.

    [6]

    He Zhiliang, Jin Xiaohui, Wo Yujin, Li Huili, Bai Zhenrui, Jiao Cunli, Zhang Zhongpei. 2016. Hydrocarbon accumulation characteristics and exploration domains of ultra−deep marine carbonates in China[J]. China Petroleum Exploration, 21(1): 3−14 (in Chinese with English abstract).

    [7]

    Jiao F Z. 2018. Significance and prospect of ultra−deep carbonate fault−karst reservoirs in Shunbei area, Tarim Basin[J]. Oil & Gas Geology, 39(2): 207−216.

    [8]

    Liang Chengpeng, Dan Yong, Xu Shenglin, Li Fuxiang, Pang Chunyu, Wei Jiaqi. 2019. Interlayer karst reservoir characteristics and development controlling factors of Ordovician in the Xinken area, Tarim basin[J]. Carsologica Sinica, 38(3): 427−437 (in Chinese with English abstract).

    [9]

    Liang T, Jones B. 2014. Deciphering the impact of sea−level changes and tectonic movement on erosional sequence boundaries in carbonate successions: A case study from Tertiary strata on Grand Cayman and Cayman Brac, British West Indies[J]. Sedimentary Geology, 305: 17−34.

    [10]

    Liao Tao. Hou Jiagen. Chen Lixin. Ma Ke, Yang Wenming, Dong Yue, Bai Xiaojia. 2016. Fault controlling on non−exposed karst fracture−vug reservoirs of the Ordovician in Halahatang Oilfield, northern Tarim Basin[J]. Journal of Palaeogeography, 18(2): 221−235 (in Chinese with English abstract).

    [11]

    Ma Debo, Cui Wenjuan, Tao Xiaowan, Dong Hongkui, Xu Zhaohui, Li Tingting, Chen Xiuyan. 2020. Structural characteristics and evolution proccess of faults in the Lunnan low uplift, Tabei Uplift in the Tarim Basin, NW China[J]. Natural Gas Geoscience, 31(5): 647−657 (in Chinese with English abstract).

    [12]

    Ni Xinfeng, Zhang Lijuan, Shen Anjiang, Pang Wenqing, Qiao Zhanfeng. 2009. Paleo−karstification types, karstification periods and superimposition relationship of Ordovician carbonates in northern Tarim Basin[J]. Geology in China, 36(6): 1312−1321 (in Chinese with English abstract).

    [13]

    Nie Qilian, Wang Shenjian, Tong Kailian, Duan Jie, Sun Qingli. 2015. The Research of Seismic Geomorphology on High−energy Ooliti Beach of Feixianguan Formation in the central of Sichuan Basin[J]. Chinese Journal of Engineering Geophysics, 12(5): 621−626 (in Chinese with English abstract).

    [14]

    Ning Chaozhong, Hu Suyun, Pan Wenqing, Yao Zixiu, Li Yong, Yuan Wenfang. 2020. Characterization of paleo−topography and karst caves in Ordovician Lianglitage Formation, Halahatang oilfield, Tarim Basin[J]. Oil & Gas Geology, 41(5): 985−995, 1047 (in Chinese with English abstract).

    [15]

    Niu Jun, Huang Wenhui, Liang Fei, Wang Wenyong, Wan Huan, You Shenggang, Zhang Yamei. 2017. Buried Palaeokarst characteristics and favorable reservoir distribution of Ordovician carbonate rock in Yubei area[J]. Journal of Northeast Petroleum University, 41(6): 74−84,95,124−125 (in Chinese with English abstract).

    [16]

    Shen Anjiang, Chen Yana, Meng Shaoxing, Zheng Jianfeng, Qiao Zhanfeng, Ni Xinfeng, Zhang Jianyong, Wu Xingning. 2019. The research progress of marine carbonate reservoirs in China and its significance for oil and gas exploration[J]. Marine Origin Petroleum Geology, 24(4): 1−14 (in Chinese with English abstract).

    [17]

    Sun Dong, Yang Lisha, Wang Hongbin, Zheng Duoming, Sun Qinhua, Li Guohui, Dai Dongdong, Fang Qifei. 2015. Strike−slip fault system in Halahatang Area of Tarim Basin and its control on reservoirs of Ordovician marine carbonate rock[J]. Natural Gas Geoscience, 26(S1): 80−87 (in Chinese with English abstract).

    [18]

    Tang L J, Qi L X, Qiu H J, Yun L, Li M, Xie D Q, Yang Y, Wan G M. 2012. Poly−phase differential fault movement and hydrocarbon accumulation of the Tarim Basin, NW China[J]. Acta Petrologica Sinica, 28(8): 2569−2583.

    [19]

    Wang W Y, Pang X Q, Chen Z X, Chen D X, Wang Y P, Yang X, Luo B, Zhang W, Zhang X W, Li C R, Wang Q F, Li C J. 2021. Quantitative evaluation of transport efficiency of fault−reservoir composite migration pathway systems in carbonate petroliferous basins[J]. Energy, 222(1): 119983.

    [20]

    Wang Xinxin, Cui Deyu, Sun Chonghao, Zhang Sheng, Fang Lu, Zhang Min. 2019. Characteristics of Strikes−slip fault and its controlling on oil in block A of the Halahatang oilfield, Tarim Basin[J]. Journal of Geomechanics, 25(6): 1058−1067 (in Chinese with English abstract).

    [21]

    Wu Guanghui, Cheng Lifang, Liu Yukui, Wang Hai, Qu Tailai, Gao Li. 2011. Strike−slip fault system of the Cambrian−Ordovician and its oil−controlling effect in Tarim Basin[J]. Xinjinag Petroleum Geology, 32(3): 239−243 (in Chinese with English abstract).

    [22]

    Wu G H, Gao L H, Zhang Y T, Ning C Z, Xie E. 2018. Fracture attributes in reservoir−scale carbonate fault damage zones and implications for damage zone width and growth in the deep subsurface[J]. Journal of Structural Geology, 118: 181−193.

    [23]

    Wu G H, Ma B S, Han J F, Guan B Z, Chen X, Yang P, Xie Z. 2021. Origin and growth mechanisms of strike−slip faults in the central Tarim cratonic basin, NW China[J]. Petroleum Exploration and Development, 45(3): 595−607.

    [24]

    Yang H J, Hao F, Han J F, Cai Z X, Gu Q Y. 2007. Fault systems and multiple oil−gas accumulation play of the Lunnan lower uplift, Tarm Basin[J]. Chinese Journal of Geology, (4): 795−811.

    [25]

    Zeng H L, Zhao W Z, Xu Z H, Fu Q L, Hu S Y, Wang Z C, Li B H. 2018. Carbonate seismic sedimentology: A case study of Cambrian Longwangmiao Formation, Gaoshiti−Moxi area, Sichuan Basin, China[J]. Petroleum Exploration and Development Online, 45(5): 830−839.

    [26]

    Zhai Guangming, He Wenyuan. 2004. An important petroleum exploration region in Tarim Basin[J]. Acta Petrolei Sinica, 25(1): 7(in Chinese with English abstract).

    [27]

    Zhang Xuefeng, Li Ming, Chen Zhiyong, Jiang Hua, Tang Junwei, Liu Bo, Gao Jixian, He Yunlan. 2012. Characteristics and karstification of the Ordovician carbonate reservoir, Halahatang area, northern Tarim Basin[J]. Acta Petrologica Sinica, 28(3): 815−826 (in Chinese with English abstract).

    [28]

    Zhao Xueqin, Yang Haijun, Ma Qin, Zhou Chenggang, Sun Chonghao, Cai Quan, Sun Shiyong. 2015. Syn−sedimentary corrosion mode of carbonate reef−banks in the middle Ordovician Yijianfang Formation within the western Tabei uplift of Tarim Basin[J]. Geology in China, 42(6): 1811−1821 (in Chinese with English abstract).

    [29]

    Zheng Jian, Wang Zhenyu, Yang Haijun, Sun Chonghao, Zhang Yunfeng, Chen Jingshan. 2015. Buried karstification period and contribution to reservoirs of Ordovician Yingshan Formation in Tazhong Area[J]. Geoscience, 29(3): 665−674 (in Chinese with English abstract).

    [30]

    Zhu Guangyou, Yang Haijun, Zhu Yongfeng, Gu Lijing, Lu Yuhong, Su Jin, Zhang Baoshou, Fan Qiuhai. 2011. Study on petroleum geological characteristics and accumulation of carbonate reservoirs in Hanilcatam area, Tarim basin[J]. Acta Petrologica Sinica, 27(3): 827−844 (in Chinese with English abstract).

    [31]

    邓尚, 刘雨晴, 刘军, 韩俊, 王斌, 赵锐. 2021. 克拉通盆地内部走滑断裂发育、演化特征及其石油地质意义: 以塔里木盆地顺北地区为例[J]. 大地构造与成矿学, 45(6): 1111−1126.

    [32]

    丁志文, 汪如军, 陈方方, 阳建平, 朱忠谦, 杨志敏, 孙晓辉, 鲜波, 李二鹏, 史涛, 左超, 李阳. 2020. 断溶体油气藏成因、成藏及油气富集规律——以塔里木盆地哈拉哈塘油田塔河南岸地区奥陶系为例[J]. 石油勘探与开发, 47(2): 286−296. doi: 10.11698/PED.2020.02.07

    [33]

    高达, 王明敏, 陶叶, 黄理力, 孙春燕, 黄鑫淼, 武建伟. 2022. 塔中地区良里塔格组海平面变化对高频层序和沉积演化的控制[J]. 中国地质, 49(6): 1936−1950. doi: 10.12029/gc20220617

    [34]

    何治亮, 金晓辉, 沃玉进, 李慧莉, 白振瑞, 焦存礼, 张仲培. 2016. 中国海相超深层碳酸盐岩油气成藏特点及勘探领域[J]. 中国石油勘探, 21(1): 3−14.

    [35]

    梁乘鹏, 淡永, 徐胜林, 李富祥, 庞春雨, 魏家琦. 2019. 塔里木盆地新垦地区奥陶系层间岩溶储层形成机制与控制因素[J]. 中国岩溶, 38(3): 427−437. doi: 10.11932/karst20190301

    [36]

    廖涛, 侯加根, 陈利新, 马克, 杨文明, 董越, 白晓佳. 2016. 断裂对塔北地区哈拉哈塘油田奥陶系非暴露岩溶缝洞型储集层的控制作用[J]. 古地理学报, 18(2): 221−235. doi: 10.7605/gdlxb.2016.02.017

    [37]

    马德波, 崔文娟, 陶小晚, 董洪奎, 徐兆辉, 李婷婷, 陈秀艳. 2020. 塔北隆起轮南低凸起断裂构造特征与形成演化[J]. 天然气地球科学, 31(5): 647−657. doi: 10.11764/j.issn.1672-1926.2020.04.014

    [38]

    倪新锋, 张丽娟, 沈安江, 潘文庆, 乔占峰. 2009. 塔北地区奥陶系碳酸盐岩古岩溶类型、期次及叠合关系[J]. 中国地质, 36(6): 1312−1321. doi: 10.3969/j.issn.1000-3657.2009.06.012

    [39]

    聂杞连, 王身建, 佟恺林, 段杰, 孙庆莉. 2015. 川中地区飞仙关组高能鲕滩储层的地震地貌学研究[J]. 工程地球物理学报, 12(5): 621−626. doi: 10.3969/j.issn.1672-7940.2015.05.009

    [40]

    宁超众, 胡素云, 潘文庆, 姚子修, 李勇, 袁文芳. 2020. 塔里木盆地哈拉哈塘地区奥陶系良里塔格组古地貌与岩溶洞穴特征[J]. 石油与天然气地质, 41(5): 985−995,1047. doi: 10.11743/ogg20200509

    [41]

    牛君, 黄文辉, 梁飞, 王文勇, 万欢, 游声刚, 张亚美. 2017. 玉北地区奥陶系碳酸盐岩埋藏型岩溶发育特征及有利储层分布[J]. 东北石油大学学报, 41(6): 74−84,95,124−125. doi: 10.3969/j.issn.2095-4107.2017.06.009

    [42]

    沈安江, 陈娅娜, 蒙绍兴, 郑剑锋, 乔占峰, 倪新锋, 张建勇, 吴兴宁. 2019. 中国海相碳酸盐岩储层研究进展及油气勘探意义[J]. 海相油气地质, 24(4): 1−14. doi: 10.3969/j.issn.1672-9854.2019.04.001

    [43]

    孙东, 杨丽莎, 王宏斌, 郑多明, 孙勤华, 李国会, 代冬冬, 房启飞. 2015. 塔里木盆地哈拉哈塘地区走滑断裂体系对奥陶系海相碳酸盐岩储层的控制作用[J]. 天然气地球科学, 26(S1): 80−87. doi: 10.11764/j.issn.1672-1926.2015.S1.0080

    [44]

    王新新, 崔德育, 孙崇浩, 张晟, 房璐, 张敏. 2019. 哈拉哈塘油田A地区断裂特征及其控油作用[J]. 地质力学学报, 25(6): 1058−1067. doi: 10.12090/j.issn.1006-6616.2019.25.06.088

    [45]

    邬光辉, 成丽芳, 刘玉魁, 汪海, 曲泰来, 高力. 2011. 塔里木盆地寒武—奥陶系走滑断裂系统特征及其控油作用[J]. 新疆石油地质, 32(3): 239−243.

    [46]

    翟光明, 何文渊. 2004. 塔里木盆地石油勘探实现突破的重要方向[J]. 石油学报, 25(1): 7. doi: 10.7623/syxb200401001

    [47]

    张学丰, 李明, 陈志勇, 姜华, 唐俊伟, 刘波, 高计县, 赫云兰. 2012. 塔北哈拉哈塘奥陶系碳酸盐岩岩溶储层发育特征及主要岩溶期次[J]. 岩石学报, 28(3): 815−826.

    [48]

    赵学钦, 杨海军, 马青, 周成刚, 孙崇浩, 蔡泉, 孙仕勇. 2015. 塔北西部一间房组碳酸盐岩礁滩体同生期暴露溶蚀作用模式[J]. 中国地质, 42(6): 1811−1821.

    [49]

    郑剑, 王振宇, 杨海军, 孙崇浩, 张云峰, 陈景山. 2015. 塔中地区奥陶系鹰山组埋藏岩溶期次及其对储层的贡献[J]. 现代地质, 29(3): 665−674. doi: 10.3969/j.issn.1000-8527.2015.03.018

    [50]

    朱光有, 杨海军, 朱永峰, 顾礼敬, 卢玉红, 苏劲, 张宝收, 范秋海. 2011. 塔里木盆地哈拉哈塘地区碳酸盐岩油气地质特征与富集成藏研究[J]. 岩石学报, 27(3): 827−844.

  • 加载中

(12)

(4)

计量
  • 文章访问数:  96
  • PDF下载数:  6
  • 施引文献:  0
出版历程
收稿日期:  2021-05-15
修回日期:  2021-07-17
刊出日期:  2024-05-25

目录