Natural radioactive level and ecological health assessment of coal-bearing strata in the East China
-
摘要:
本次研究基于地表γ辐射剂量率、氡放射性测量及238U、232Th、226Ra、40K放射性核素测试,识别华东地区含煤岩系的放射性异常地层,评价区域典型煤矿区空气、固体、水体、植物介质的天然放射性水平。结果显示:赋存于石炭系、二叠系的普通煤田与赋存于寒武系的石煤矿区呈现显著差异的天然放射性水平。普通煤田矿区地表γ辐射剂量率、氡放射性测量值总体上处于本底水平范围,矿区固体介质、水体、植物样品核素含量处于正常水平,不存在放射性污染。华东地区石煤分布带,属于放射性γ辐射高背景区,石煤矿区的原煤、煤矸石、土壤、岩石等固体介质的238U、226Ra核素富集明显,并显示更为显著的空间变异性。区域石煤条带监测矿区居民源于γ外照射引起的吸收剂量均超过国际标准限值1 mSv/a,总有效剂量均超过了2 mSv/a,地下水总α、总β浓度为限值的10~30倍,放射性污染不容忽视。华东地区石煤矿区公众所受辐射剂量较高,矿区的地下水、建材、植物等介质已经出现零星的放射性污染,应加强石煤矿区放射性环境监测,及时采取适当的控制措施。
Abstract:Based on the measurement of γ radiation dose rate, radon radioactivity and 238U, 232Th, 226Ra, 40K radionuclide testing, the radioactive anomalies of coal-bearing strata in East China were identified to evaluate the specific activities of natural radio-nuclides in air, solid, water and plant in the typical area of the regional coal-bearing occurrences. The results show that there are significant differences in natural radioactivity between the Carboniferous-Permian common coalfields and the Cambrian stone coal occurrences. The γ radiation dose rate and radon radioactivity measured on the surface of ordinary coal mining area are generally in the background level range, and the nuclide content of solid medium, water body and plant samples in the mining area is in the normal level, and there is no radioactive pollution. The stone coal distribution zone in East China belongs to the high background region of radioactive γ radiation, and the 238U and 226Ra obviously are accumulated in coal, coal gangue, soil, rock, and the spatial distribution of these natural radionuclides shows significant variability. In the monitoring area, the effective dose of γ radiation exceeds the international limit value of 1 mSv/a, the total effective dose exceeded 2 mSv/a, and total α and total β concentrations of the groundwater are 10~30 times of the limit values. The γ radiation shows higher background value in the stone coal-bearing area, and radioactive pollution cannot be ignored. The public in the stone coal area of the East China is subjected to higher radiation dose, and groundwater, building material and plant have been contaminated by radioactive pollution sporadically. It is necessary to strengthen monitoring of radioactive environment and take appropriate control measures.
-
-
表 1 华东地区放射性核素实验分析与放射性野外监测技术参数
Table 1. Measurement techniques for laboratory analyses and radioactivity survey parameters of the coal-bearing strata in the East China
表 2 华东地区含煤岩系固体介质中天然放射性核素均值比活度
Table 2. The specific activities of natural radio-nuclides in solid media of coal-bearing strata in the East China
表 3 华东地区含煤岩系水体介质样品天然放射性核素活度
Table 3. The specific activities of natural radio-nuclides in water media of coal-bearing strata in the East China
表 4 华东地区含煤岩系植物样品天然放射性核素活度浓度
Table 4. The specific activities of natural radio-nuclides in plant sample of coal-bearing strata in the East China
表 5 华东地区含煤岩系地表γ外照射、氡放射性监测及有效剂量
Table 5. Radioactivity monitoring of terrestrial γ-external dose rate, radon and annual effective dose of natural radio-nuclides in coal-bearing strata in the East China
-
CGS (China Geological Survey). 2014. Quality Assurance Specification for Laboratory of Radioactive Mineral Analysis and Testing (EJ/T 751-2014)[S]. Beijing: Geological Publishing House (in Chinese).
Chałupnik S, Wysocka M, Janson E, Chmielewska I, Wiesner M. 2017. Long term changes in the concentration of radium in discharge waters of coal mines and Upper Silesian rivers[J]. Journal of Environmental Radioactivity, 177: 117-123. http://www.researchgate.net/profile/Malgorzata_Wysocka2/publication/314087501_Long_term_changes_in_the_concentration_of_radium_in_discharge_waters_of_coal_mines_and_Upper_Silesian_rivers/links/5a0a927b45851551b78d49e8/Long-term-changes-in-the-concentration-of-radium-in-discharge-waters-of-coal-mines-and-Upper-Silesian-rivers.pdf
Chen Shizhong, Yang Jingsui, Zhang Zeming, Liu Fulai, Li Tianfu, Qiu Haijun, Niu Yixiong, Wang Wenxian, Xu Haijun. 2005. Natural gamma-ray logging in the main hole (100-2000 m) of the Chinese continental scientific drilling project and its significance[J]. Geology in China, 32(2): 239-248 (in Chinese with English abstract). http://www.researchgate.net/publication/287000646_Natural_gamma-ray_logging_in_the_main_hole_100-2000_m_of_the_Chinese_continental_scientific_drilling_project_and_its_significance
CNIC (China Nuclear Industry Corporation). 1995. Evaluation Requirements for the Environmental Impact of Uranium Geological Radiation Environment (EJ/T 977-1995)[S]. Beijing: China Atomic Energy Press(in Chinese).
Galhardi J A, Garcíatenorio R, Bonotto D M, DãAz F I, Mottaet J G. 2017. Natural radionuclides in plants, soils and sediments affected by U-rich coal mining activities in Brazil[J]. Journal of Environmental Radioactivity, 177: 37-47. doi: 10.1016/j.jenvrad.2017.06.001
Huang Wenhui, Tan Xiuyi. 2002. Uranium, Thorium and other radionuclides in coal of China[J]. Coal Geology of China, 14(Supp. ): 55-63 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZGMT2002S1011.htm
IAEA (International Atomic Energy Agency). 2014. Radiation Protection and Safety of Radiation Sources: International Basic Safety Standards[R]. International Atomic Energy Agency, Austria, Vienna: 1-436.
Jiang Rangyun. 2007. Survey of radioactive level and radiation dose to the miner in Zhejiang bone-coal mine[J]. Radiation Protection, 27(3): 163-170, 187 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-FSFH200703005.htm
Kříbek B, Sracek O, Mihaljevič M, Knésl L, Majer V. 2018. Geochemistry and environmental impact of neutral drainage from an uraniferous coal waste heap[J]. Journal of Geochemical Exploration, 191: 1-21. doi: 10.1016/j.gexplo.2018.05.001
Liu Fudong, Liao Haitao, Wang Chunhong, Chen Ling, Liu Senlin. 2006. Database of nuclide content of coal and gangue in Chinese coal mines[J]. Radiation Protection, 26(6): 362-366 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-FSFH200606007.htm
Liu Fudong, Pan Ziqiang, Liu Senlin, Chen Ling, Wang Chunhong, Liao Haitao, Wu Yihua, Wang Nanping. 2007. Investigation and analysis of the content of natural radionuclides at coal mines in China[J]. Radiation Protection 27(3): 171-180 (in Chinese with English abstract).
Liu Qiang, Jin Hongtao, Zhu Wei, Tian Hui, Zhang Sen, Ju Nan, Zhang Yan, Yan Xiaoming. 2020. Study on the Comprehensive Evaluation Method of Geo environmental Radioactivity of Coal fields in Northeast China[J]. Geology and Resources, 29(4): 388-396.
Luo Guozhen, Huang Jiaju, He Zhenyun. 1995. Natural Radioactivity Level in China[M]. Beijing: China Atomic Energy Press, 1-716 (in Chinese).
Lü Huijin. 2003. Radioactive pollution in bone coal mining areas in western Zhejiang[J]. Geological bulletin of China 22(9): 725-728 (in Chinese with English abstract).
Pan Ziqiang, Liu Yanyang. 2011. Enhanced natural radiation exposure enhanced by human activity-the largest contributor to the Chinese population dose[J]. Radiation Protection, 31(6): 323-327(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-FSFH201106001.htm
SEPA (State Environmental Protection Agency). 1993. Specification for Measurement of Dose Rate of Ambient Ground Gamma Radiation (GB/T 14583-93)[S]. Beijing: China Atomic Energy Press (in Chinese).
Skoko B, Marović G, Babić D, Šoštarić M, Jukić M. 2017. Plant uptake of 238U, 235U, 232Th, 226Ra, 210Pb and 40K from a coal ash and slag disposal site and control soil under field conditions: A preliminary study[J]. Journal of Environmental Radioactivity, 172: 113-121. doi: 10.1016/j.jenvrad.2017.03.011
UNSCEAR (United National Scientific Committee on the Effects of Atomic Radiation). 2000. Sources and Effects of Ionizing Radiation[R]. New York, 1-156.
Wang Chunhong, Pan Ziqiang, Liu Senlin, Yang mingli, Shang Bing, Zhuo Weihai, Ren Tianshan, Xiao Detao, Yang Weigeng. 2014. Investigation on indoor radon levels in some parts of China[J]. Radiation Protection 34(2): 65-73 (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-FSFH201402001.htm
Wang Guokun, Xi Chaozhuang, Liu Kaikun, Li Yantao. 2017. Assessment of coal-bearing strata uranium mineralization and impact on environment in Guizhou Province[J]. Coal Geology of China, 29(3): 58-61 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-ZGMT201703013.htm
Wang Honghai, Zhang Linxi, Xu Naizheng, Wei Xinxiang, Dou Xiaopin. 2017. Investigation and evaluation of radioactive environment in a bone coal mine area in Xiushui County, Jiangxi Province[J]. Radiation Protection, 37(6): 476-482 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-FSFH201706009.htm
WHO (World Health Organization). 2011. Guidelines for Drinking-Water Quality (Fourth Edition)[R]. The World Health Organization, Geneva, Switzerland, 1-564.
Wufuer R, Song W, Zhang D, Pan X L, Gadd G M. 2018. A survey of uranium levels in urine and hair of people living in a coal mining area in Yili, Xinjiang, China[J]. Journal of Environmental Radioactivity, 189: 186-174.
Xiong Zhengwei, Yu Yilin, You Meng, Guo Chenglin, Zhou Shukui, Yu Zhenxun. 2007. Analysis of environment contamination from concomitant radioactivity of coal mine source[J]. Journal of China Coal Society, 32(7): 762-766 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-MTXB200707019.htm
Xu Naizheng, Wei Xinxiang, Kuang Fuxiang, Zhang Linxi, Liu Hongyin. 2018. Study on natural radioactivity level of stone coal-bearing strata in East China[J]. Environmental Earth Sciences, 77: 726. doi: 10.1007/s12665-018-7916-2
Ye Jida, Kong Linli, Li Ying, Zhang Liang, Jiang Shan, Wang Ming, Liu Hongshi, Zhu Jinqiu, Shi Jinhua, Chen Changhua, Zhang Zhengguo. 2004a. Study of radioactivity effect of mining and utilizing bone-coal mine on environment[J]. Radiation Protection 24(1): 1-23 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-FSFH200401000.htm
Ye Jida, Zhu Li, Wu Zunmei. 2004b. Natural Radioactivity Level in Bone-coal Mines in Zhejiang Province[J]. Radiation Protection Bulletin, 24(4): 21-24 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DEFE200404006.htm
Yue Yumei, Song Gang, Zhang Zhiqiang, Fu Yingjie, Chen Diyun. 2011. Studies on natural radioactivity of soil in North of Guangzhou[J]. China Environmental Sciences, 31(4), 657-661 (in Chinese with English abstract). http://www.researchgate.net/publication/286192084_Studies_on_natural_radioactivity_of_soil_in_North_of_Guangzhou
Zeng Lingsen, Liu Fulai, Zhang Zeming, Yang Jingsui, Xu Zhiqin. 2005. Vertical distribution characteristics and origin of radiogenic heat-producing elements (HPE) in the first 2000 m of the main hole of the CCSD Project[J]. Geology in China, 32(2): 230-238(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DIZI200502007.htm
Zhang Kexin, Pan Guitang, He Wenhong, Xiao Qinghui, Xu Yadong. 2015. New division of tectonic-strata super region in China[J]. Earth Science 40 (2): 206-233 (in Chinese with English abstract).
Zhang Zhiqiang, Chen Diyun, Zhu Gang, Yue Yumei. 2011. Uptake of radionuclides from soil to plant and the discovery of 226Ra, 232Th Hyperaccumulator[J]. Chinese Journal of Environmental Science 32(4): 1159-1163 (in Chinese with English abstract). http://www.ncbi.nlm.nih.gov/pubmed/21717763
陈世忠, 杨经绥, 张泽明, 刘福来, 李天福, 邱海峻, 牛一雄, 王文先, 徐海军. 2005. 中国大陆科学钻探工程主孔100~2 000 m岩心自然伽马测量及其地质意义[J]. 中国地质, 32(2): 239-248. doi: 10.3969/j.issn.1000-3657.2005.02.007 http://geochina.cgs.gov.cn/geochina/ch/reader/view_abstract.aspx?file_no=20050207&flag=1
国家环境保护局. 1993. 环境地表γ辐射剂量率测定规范(GB/T 14583-93)[S]. 北京: 中国原子能出版社.
黄文辉, 唐修义. 2002. 中国煤中的铀、钍和放射性核素[J]. 中国煤田地质, 14(增刊): 55-63. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGMT2002S1011.htm
姜让荣. 2007. 浙江省部分石煤矿放射性水平和矿工剂量调查[J]. 辐射防护, 27(3): 163-170, 187. doi: 10.3321/j.issn:1000-8187.2007.03.006
刘福东, 廖海涛, 王春红, 陈凌, 刘森林. 2006. 全国煤矿中煤、煤矸石中核素含量数据库[J]. 辐射防护, 26(6): 362-366. doi: 10.3321/j.issn:1000-8187.2006.06.008
刘福东, 潘自强, 刘森林, 陈凌, 王春红, 廖海涛, 武奕华, 王南萍. 2007. 全国煤矿中煤、矸石天然放射性核素含量调查分析[J]. 辐射防护, 27(3): 171-180. doi: 10.3321/j.issn:1000-8187.2007.03.007
刘强, 金洪涛, 朱巍, 田辉, 张森, 鞠楠, 张妍, 闫晓明. 2020. 东北地区煤田地质环境放射性综合评价方法研究[J]. 地质与资源, 29(4): 388-396. https://www.cnki.com.cn/Article/CJFDTOTAL-GJSD202004013.htm
罗国桢. 黄家矩, 何振芸. 1995. 中国环境天然放射性水平[M]. 北京: 中国原子能出版社, 1-716.
吕惠进. 2003. 浙西石煤产区放射性污染及防治对策[J]. 地质通报, 22(9): 725-728. doi: 10.3969/j.issn.1671-2552.2003.09.017
潘自强, 刘艳阳. 2011. 人为活动引起的天然辐射照射的增加[J]. 辐射防护, 31(6): 323-327. https://www.cnki.com.cn/Article/CJFDTOTAL-FSFH201106001.htm
王春红, 潘自强, 刘森林, 杨明理, 尚兵, 卓维海, 任天山, 肖德涛, 杨维耿. 2014. 我国部分地区居室氡浓度水平调查研究[J]. 辐射防护, 34(2): 65-73. doi: 10.3969/j.issn.1000-8187.2014.02.001
王国坤, 息朝庄, 刘开坤, 李艳桃. 2017. 贵州含煤岩系含铀性对环境的影响评价[J]. 中国煤炭地质, 29(3): 58-61. doi: 10.3969/j.issn.1674-1803.2017.03.12
王红海, 张麟熹, 许乃政, 魏信祥, 窦小平. 2017. 江西省修水县石煤矿区放射性环境调查与评价[J]. 辐射防护, 37(6): 476-482. https://www.cnki.com.cn/Article/CJFDTOTAL-FSFH201706009.htm
熊正为, 喻亦林, 游猛, 郭成林, 周书葵, 余振勋. 2007. 云南省煤的放射性污染调查分析[J]. 煤炭学报, 32(7): 762-766. doi: 10.3321/j.issn:0253-9993.2007.07.020
叶际达, 孔玲莉, 李莹, 张亮, 江山, 万明, 刘鸿诗, 朱锦秋, 施锦华, 陈昌华, 张政国. 2004a. 五省放射性伴生石煤矿开发和利用对环境影响研究[J]. 辐射防护, 24(1): 1-23. https://www.cnki.com.cn/Article/CJFDTOTAL-FSFH200401000.htm
叶际达, 朱力, 吴宗梅. 2004b. 浙江省放射性伴生石煤矿区天然放射性水平调查[J]. 辐射防护通讯, 24(4): 21-24. https://www.cnki.com.cn/Article/CJFDTOTAL-DEFE200404006.htm
岳玉美, 宋刚, 张志强, 富英杰, 陈迪云. 2011. 广州市北部土壤天然放射性水平研究[J]. 中国环境科学, 31(4): 657-661. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGHJ201104026.htm
曾令森, 刘福来, 张泽明, 杨经绥, 许志琴. 2005. 中国大陆科学钻探工程主孔100~2000 m放射性产热元素的垂向分布特征及其成因[J]. 中国地质, 32(2): 230-238. doi: 10.3969/j.issn.1000-3657.2005.02.006 http://geochina.cgs.gov.cn/geochina/ch/reader/view_abstract.aspx?file_no=20050206&flag=1
张克信, 潘桂棠, 何卫红. 肖庆辉, 徐亚东. 2015. 中国构造-地层大区划分新方案[J]. 地球科学——中国地质大学学报, 40(2), 206-233. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201502003.htm
张志强, 陈迪云, 朱刚, 岳玉美. 2011. 放射性核素土壤-植物吸收与钍、镭富集植物的发现[J]. 环境科学, 32(4): 1159-1163. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201104040.htm
中国地质调查局. 2014. 放射性矿产地质分析测试实验室质量保证规范(EJ/T 751-2014)[S]. 北京: 地质出版社.
中国核工业总公司. 1995. 铀矿地质辐射环境影响评价要求(EJ/T 977-1995)[S]. 北京: 中国原子能出版社.
-