中国地质调查局 中国地质科学院主办
科学出版社出版

江苏典型污染耕地土壤有效Cd与稻米Cd相关性及其健康风险

崔晓丹, 廖启林, 任静华, 范健, 刘玮晶, 徐宏婷, 周强, 黄顺生, 汪子意, 朱伯万. 2024. 江苏典型污染耕地土壤有效Cd与稻米Cd相关性及其健康风险[J]. 中国地质, 51(6): 2090-2102. doi: 10.12029/gc20211125001
引用本文: 崔晓丹, 廖启林, 任静华, 范健, 刘玮晶, 徐宏婷, 周强, 黄顺生, 汪子意, 朱伯万. 2024. 江苏典型污染耕地土壤有效Cd与稻米Cd相关性及其健康风险[J]. 中国地质, 51(6): 2090-2102. doi: 10.12029/gc20211125001
CUI Xiaodan, LIAO Qilin, REN Jinghua, FAN Jian, LIU Weijing, XU Hongting, ZHOU Qiang, HUANG Shunsheng, WANG Ziyi, ZHU Baiwan. 2024. Correlation between available Cd in the typical contaminated farmland soil and Cd in rice seeds and its health risk in Jiangsu province[J]. Geology in China, 51(6): 2090-2102. doi: 10.12029/gc20211125001
Citation: CUI Xiaodan, LIAO Qilin, REN Jinghua, FAN Jian, LIU Weijing, XU Hongting, ZHOU Qiang, HUANG Shunsheng, WANG Ziyi, ZHU Baiwan. 2024. Correlation between available Cd in the typical contaminated farmland soil and Cd in rice seeds and its health risk in Jiangsu province[J]. Geology in China, 51(6): 2090-2102. doi: 10.12029/gc20211125001

江苏典型污染耕地土壤有效Cd与稻米Cd相关性及其健康风险

  • 基金项目: 江苏省自然科学基金面上项目(BK20171496)、国家重点研发计划课题(2018YFD0800201)和江苏省自然资源发展专项资金(海洋科技创新)项目(JSZRHYKJ202117)联合资助。
详细信息
    作者简介: 崔晓丹,女,1990年生,工程师,主要从事土壤地球化学调查;E-mail:panzhu24677@163.com
    通讯作者: 廖启林,男,1964年生,正高级工程师,主要从事环境地球化学调查;E-mail:1043034588@qq.com
  • 中图分类号: X53;X56

Correlation between available Cd in the typical contaminated farmland soil and Cd in rice seeds and its health risk in Jiangsu province

  • Fund Project: Supported by the Natural Science Foundation of Jiangsu Province (No.BK20171496) and National Key Research and Development Program (No.2018YFD0800201) and the Natural Resources Development Special Fund (Marine Science and Technology Innovation) Program of Jiangsu Province (No.JSZRHYKJ202117).
More Information
    Author Bio: CUI Xiaodan, female, born 1990, engineer, mainly engaged in the study of environmental geochemistry and soil science; E-mail: panzhu24677@163.com .
    Corresponding author: LIAO Qilin, male, born in 1964, professor lever senior engineer, mainly engaged in the study of environmental geochemistry; E-mail: 1043034588@qq.com.
  • 研究目的

    为探明江苏典型耕地Cd污染的健康风险,了解其稻米Cd吸收的主要地球化学控制因素,科学防治耕地Cd污染。

    研究方法

    系统采集江苏典型Cd污染耕地及其相关地区的水稻籽粒−土壤样品1330套,测定稻米Cd、土壤有效Cd(氯化钙提取法)、Cd、Pb、Hg、As、Cr、Cu、Zn、Sb、pH、TOC、CEC等元素含量,对所获取的土壤有效Cd与稻米Cd等环境地球化学数据进行统计归纳、元素相关性分析及R型聚类分析等,确定影响稻米Cd吸收的主要环境因子,评价局地Cd污染健康风险。

    研究结果

    研究区土壤有效Cd含量为0.0018~1.44 mg/kg、均量0.265 mg/kg,土壤Cd含量为0.13~30.0 mg/kg、均量2.11 mg/kg,稻米Cd含量为0.0053~2.58 mg/kg、均量0.478 mg/kg。土壤有效Cd是控制稻米Cd的最主要因子,局部Cd污染已扩散到食物链与人发中。

    结论

    (1)稻米Cd与土壤有效Cd之间存在显著的正相关性,全部样本参与统计所得到的稻米Cd和土壤有效Cd的相关系数r=0.54,当土壤pH=6.5~7.5时、稻米Cd与土壤有效Cd的相关系数拥有最大值(r=0.86)。除了有效Cd外,土壤Cd、TOC、CEC、pH等也是影响稻米Cd的环境因子,稻米Cd与土壤Cd多呈显著或较显著正相关性,与土壤pH、TOC、CEC多呈显著或较显著负相关性,影响稻米Cd的因子排序依次为土壤有效Cd>Cd>pH>TOC≈CEC;(2)相比无污染耕地,耕地污染区的Cd致癌健康风险指数CR值增长了85倍多,食用Cd超标稻米的人发样品Cd均量增加了1.09倍,土壤溶液Cd浓度明显偏高,污染耕地的稻米Cd及其健康风险评价对土壤有效Cd依赖程度更高,指示局部耕地Cd污染区存在更高健康风险;(3)土壤有效Cd同土壤Cd、pH、TOC、CEC、Se等因子之间存在显著相关性或复杂的拮抗作用,综合调控稻米的Cd吸收;(4)江苏耕地Cd污染总体轻微,局部的污染风险等级以轻度为主。若能从实情出发,采取合适的修复治理措施(深翻耕等)降低耕地Cd或有效Cd含量,合理增加土壤有机质、提高土壤pH等,完全可以阻断耕地土壤Cd向食物链迁移、生产合格稻米,满足社会需求。

  • 加载中
  • 图 1  江苏耕地分布状况

    Figure 1. 

    图 2  土壤有效Cd与Cd(a)、pH(b)、TOC(c)、CEC(d)相关性分析结果

    Figure 2. 

    图 3  pH<5.5的酸性土壤中稻米Cd与土壤Cd(a)、有效Cd(b)相关性分析

    Figure 3. 

    图 4  污染耕地稻米Cd和土壤有效Cd等R型聚类分析结果

    Figure 4. 

    图 5  无污染耕地稻米Cd和土壤有效Cd等R型聚类分析结果

    Figure 5. 

    表 1  研究区1330套土壤−稻米样品Cd含量等分布参数统计

    Table 1.  Distribution parameters of Cd and relative elements in the 1330 samples of soil and rice

    参数(N=1330) 土壤 稻米
    Cd Zn Se 有效Cd Cd有效度 pH TOC CEC Cd BCF
    最小值 0.13 49.6 0.15 0.0018 0.12 4.46 1.02 49.8 0.0053 0.005
    最大值 30.0 1314 16.1 1.44 47.76 8.44 5.94 391 2.58 2.171
    平均值 2.11 106 0.78 0.265 15.04 5.83 2.35 166 0.478 0.284
    变异系数 1.16 1.04 1.09 1.00 0.69 0.15 0.25 0.29 1.08 0.96
      注:Cd、Zn、Se、有效Cd含量单位为mg/kg,Cd有效度、TOC单位为%,CEC单位为mmol/kg,pH、BCF无量纲。
    下载: 导出CSV

    表 2  基于pH分类的土壤与稻米Cd等分布参数

    Table 2.  Distribution parameters of Cd in soil and rice seeds by pH classification

    样品数土壤稻米
    pHCd有效CdCd有效度CdBCF
    5904.46~5.50.13~7.5 (1.65)0.02~1.44 (0.41)7.2~47.76 (24.48)0.0053~2.58 (0.60)0.018~2.171 (0.39)
    5205.5~6.50.15~14.7 (1.81)0.0046~1.28 (0.19)1.7~28.13 (10.03)0.0073~2.43 (0.46)0.009~1.642 (0.26)
    996.5~7.50.19~20.0 (3.61)0.0029~1.05 (0.116)0.55~13.9 (2.95)0.011~1.75 (0.32)0.014~0.576 (0.103.)
    1217.5~8.440.21~30.0 (4.38)0.0018~0.17 (0.021)0.12~2.86 (0.57)0.0086~0.73 (0.092)0.005~0.12 (0.028)
    13304.46~8.440.13~30.0 (2.11)0.0018~1.44 (0.265)0.12~47.76 (15.04)0.0053~2.58 (0.478)0.005~2.171 (0.284)
      注:括号内数据为对应参数的算数平均值。Cd、有效Cd含量单位为mg/kg,Cd有效度单位为%,pH、BCF无量纲。
    下载: 导出CSV

    表 3  土壤有效Cd与Cd等相关系数对比

    Table 3.  Correlation coefficients of available Cd versus Cd and other parameters in soil

    样品数 pH 相关系数(r
    土壤有效Cd与Cd 有效Cd与Cd有效度 有效Cd与土壤pH 有效Cd与总有机碳 有效Cd与阳离子交换量 有效Cd与Se
    590 4.46~5.5 0.91 0.36 −0.13 −0.17 −0.13 0.53
    520 5.5~6.5 0.84 0.51 −0.28 −0.27 −0.22 0.70
    99 6.5~7.5 0.89 0.38 −0.26 0.04 0.25 0.74
    121 7.5~8.44 0.88 0.06 0.13 −0.13 −0.19 0.73
    1330 4.46~8.44 0.32 0.61 −0.49 −0.29 −0.33 0.09
    下载: 导出CSV

    表 4  基于土壤Cd分类的稻米Cd与土壤有效Cd等相关系数统计

    Table 4.  Statistics of correlation coefficients of Cd in rice versus available Cd or other geochemical index according to Cd contents classification in soil

    样品数 土壤Cd/(mg/kg) 相关系数(r
    稻米Cd与
    土壤有效Cd
    稻米Cd与
    土壤Cd
    稻米Cd与
    Cd有效度
    稻米Cd与
    土壤pH
    稻米Cd与
    土壤有机碳
    稻米Cd与
    阳离子交换量
    372 0.13~0.9 0.55 0.49 0.47 −0.38 −0.28 −0.31
    430 0.9~2.0 0.35 0.23 0.30 −0.34 −0.20 −0.35
    528 2.0~30.0 0.42 −0.02 0.39 −0.49 −0.28 −0.31
    1330 0.13~30.0 0.54 0.25 0.26 −0.28 −0.24 −0.24
    下载: 导出CSV

    表 5  基于pH分类的稻米Cd与土壤有效Cd等相关系数统计

    Table 5.  Statistics of correlation coefficients of Cd in rice versus available Cd or other geochemical index in soil according to pH classification

    样品数 pH 相关系数(r
    米Cd与土壤有效Cd 米Cd与土壤Cd 米Cd与Cd有效度 米Cd与土壤pH 米Cd与土壤有机碳 米Cd与阳离子交换量
    590 4.46~5.5 0.59 0.48 −0.05 0.18 −0.21 −0.15
    520 5.5~6.5 0.63 0.51 0.39 −0.18 −0.22 −0.17
    99 6.5~7.5 0.86 0.84 0.21 −0.15 0.02 0.19
    121 7.5~8.44 0.74 0.68 −0.10 −0.02 0.15 0.01
    1330 4.46~8.44 0.54 0.25 0.26 −0.28 −0.24 −0.24
    下载: 导出CSV

    表 6  稻米Cd与土壤有效Cd呈显著正相关性(r>0.5)的基本条件

    Table 6.  Significant positive correlated (r>0.5) conditions between Cd in rice and available Cd or other index in soil

    相关系数(r 满足条件
    稻米Cd与
    土壤有效Cd
    稻米Cd与
    土壤Cd
    稻米Cd与
    土壤Cd
    有效度
    稻土壤
    有效Cd与
    土壤Cd
    0.54 0.25 0.26 0.32 无条件
    0.55 0.49 0.47 0.72 土壤Cd<0.9 mg/kg
    0.63 0.51 0.39 0.84 pH=5.5~6.5
    0.86 0.84 0.21 0.89 pH=6.5~7.5
    0.74 0.68 −0.10 0.88 pH>7.5
    0.56 0.26 0.31 0.31 TOC=2%~3%
    0.55 0.41 0.20 0.57 TOC>3%
    0.52 0.54 −0.01 0.75 CEC<130 mmol/kg
    0.65 0.48 0.21 0.74 CEC<200 mmol/kg
    下载: 导出CSV

    表 7  相关地区土壤Cd致癌健康风险指数统计结果

    Table 7.  Carcinogenic health risk index of soil Cd in some related areas

    地区分类CR(致癌指数)
    变化范围均值
    耕地Cd无污染区8.61×10−6~12.7×10−61.02×10−5
    耕地Cd污染地区1.75×10−4~10.7×10−48.83×10−4
    下载: 导出CSV

    表 8  相关地区人发样品Cd等抽检结果(ng/g)

    Table 8.  Testing results of heavy metals content in human hair samples in the related area (ng/g)

    地区 元素含量分区 Cd Ni Cr Cu Zn Mo
    稻米Cd正常
    N=37)
    含量范围 0.005~0.624 0.13~0.88 0.19~0.87 2.3~39 43~201 0.01~0.17
    算术均值 0.064 0.35 0.45 10.8 136 0.08
    稻米Cd超标
    N=24)
    含量范围 0.012~0.668 0.15~0.76 0.11~0.97 1.7~45 55~197 0.02~0.16
    算术均值 0.134 0.38 0.51 8.8 148 0.09
      注:N表示参与统计的样本数量。
    下载: 导出CSV
  • [1]

    Bao Liran, Deng Hai, Jia Zhongmin, Li Yu, Dong Jinxiu, Yan Mingshu, Zhang Fenglei. 2020. Ecological and health risk assessment of heavy metals in farmland soil in northwest Xiushan, Chongqing[J]. Geology in China, 47(6): 1625−1636 (in Chinese with English abstract).

    [2]

    Cao Sheng, Zhou Weijun, Luo Siying, Zhou Yuzhou, Tan Jie, Duan Quntao. 2017. Effect of pH adjustor on available cadmium in paddy soils[J]. Chinese Agricultural Science Bulletin, 33(30): 97−102 (in Chinese with English abstract).

    [3]

    E Qian, Zhao Yujie, Liu Xiaowei, Li Zhitao, Zhang Chuangchuang, Sun Yang, Zhou Qiwen, Liang Xuefeng, Wang Haihua. 2020. Screening and evaluation of soil cadmium extraction methods for predicting cadmium accumulation in rice[J]. Journal of Agro–Environment Science, 39(5): 1000−1009 (in Chinese with English abstract).

    [4]

    Filipović L, Romic M, Romic D, Filipović V, Ondrašek G. 2018. Organic matter and salinity modify cadmium soil (phyto) availability[J]. Ecotoxicology and Environmental Safety, 147: 824−831. doi: 10.1016/j.ecoenv.2017.09.041

    [5]

    He Junqiang, Liu Daihuan, Deng Lin, Chang Haiwei, Qin Hua, Yin Zhiyao. 2017. Bioavailability and exposure assessment of cadmium in farmland soil: A review[J]. Asian Journal of Ecotoxicology, 12(6): 69−82 (in Chinese with English abstract).

    [6]

    Hou Lin, Lin Jinlan, Jia Yanlong, Xing Dan, Sun Jialong, Ning Zengping, Jiang Nan, Liu Xiaolong, Li Tingting, Wang Zonghu, Xie Ran. 2019. Soil Cd bioavailability and its control measures: A review[J]. Advances in Geosciences, 9(9): 823−838 (in Chinese with English abstract). doi: 10.12677/AG.2019.99088

    [7]

    Hu Y N, Cheng H F, Tao S. 2016. The challenges and solutions for cadmium–contaminated rice in China: A critical review[J]. Environment International, 92/93: 515−532. doi: 10.1016/j.envint.2016.04.042

    [8]

    Huang Jieying, Wu Xiuyuan, Tong Yingying, Cao Seng, Gao Yue, Yang Huiyan. 2020. Effects of returning wheat straw on available cadmium and subcellular distribution of cadmium in rice[J]. Journal of Agro–Environment Science, 39(7): 1503−1511 (in Chinese with English abstract).

    [9]

    Huang Yongchun, Zhang Changbo, Ren Xinghua, Wang Peipei, Wang Changrong, Liu Zhongqi. 2020. Effects of cadmium content in soil and stem base on the risk of cadmium contamination in rice[J]. Journal of Agro–Environment Science, 39(5): 989−999 (in Chinese with English abstract).

    [10]

    Huang Yu, Liao Min, Ye Zhaojin, Lü Ting. 2017. Cd concentrations in two low cd accumulating varieties of rice and their relationships with soil cd content and their regulation under field conditions[J]. Journal of Ecology and Rural Environment, 33(8): 748−754 (in Chinese with English abstract).

    [11]

    Li Chuanfei, Li Tingxuan, Zhang Xizhou, Yu Haiying, Zhang Lu. 2017. Stabilization characteristics of cadmium in some typical agricultural soils[J]. Journal of Agro–Environment Science, 36(1): 85−92 (in Chinese with English abstract).

    [12]

    Li Jining, Hou Hong, Wei Yuan, Xu Yafei, Li Fasheng. 2013. Bioaccessibility and health risk assessment of heavy metals in agricultural soil from Zhuzhou, China[J]. Research of Environmental Sciences, 26(10): 1139−1146 (in Chinese with English abstract).

    [13]

    Li W L, Xu B B, Song Q J, Liu X M, Xu J M, Philip C B. 2014. The identification of ‘hotspots’ of heavy metal pollution in soil–rice systems at a regional scale in eastern China[J]. Science of the Total Environment, 472: 407−420. doi: 10.1016/j.scitotenv.2013.11.046

    [14]

    Liao Q L, Liu C, Wu H Y, Jin Y, Hua M, Zhu B W, Chen K, Huang L. 2015. Association of soil cadmium contamination with ceramic industry: A case study in a Chinese town[J]. Science of the Total Environment, 514: 26−32. doi: 10.1016/j.scitotenv.2015.01.084

    [15]

    Liao Qilin, Hua Ming, Jin Yang, Huang Shunsheng, Zhu Baiwan, Weng Zhihua, Pan Yongmin. 2009. A preliminary study of the distribution and pollution source of heavy metals in soils of Jiangsu Province[J]. Geology in China, 36(5): 1163−1174 (in Chinese with English abstract).

    [16]

    Liao Qilin, Liu Cong, Cai Yuman, Zhu Baiwan, Wang Cheng, Hua Ming, Jin Yang. 2013. A preliminary study of element bioconcentration factor within milled rice and wheat meal in some typical areas of Jiangsu Province[J]. Geology in China, 40(1): 330−339 (in Chinese with English abstract).

    [17]

    Liao Qilin, Liu Cong, Wang Yi, Jin Yang, Zhu Baiwan, Ren Jinghua, Cao Lei. 2015. Geochemical characteristics of rice uptake of cadmium and its main controlling factors: A case study of the Suxichang (Suzhou–Wuxi–Changzhou) typical area[J]. Geology in China, 42(5): 1621−1632 (in Chinese with English abstract).

    [18]

    Liu Daorong, Zhou Yi. 2020. Speciation characteristics and bioavailability of cadmium in paddy soils, western Zhejiang Province[J]. Geophysical and Geochemical Exploration, 44(5): 1239−1244 (in Chinese with English abstract).

    [19]

    Lu Xinzhe, Gu Anqing, Zhang Yanwu, Kang Zhanjun, Chu Xianyao, Hu Xuefeng. 2019. Sources and risk assessment of heavy metal in agricultural soils based on the environmental geochemical baselines[J]. Acta Pedologica Sinica, 56(2): 408−419 (in Chinese with English abstract).

    [20]

    Luo W X, Ma J W, Khan M A, Liao S Y, Ruan Z B, Liu H, Zhong B, Zhu Y W, Duan L L, Fu L Q, Huang Q Y, Ye Z Q, Liu D. 2020. Cadmium accumulation in rice and its bioavailability in paddy soil with application of silicon fertilizer under different water management regimes[J]. Soil Use and Management, 37(2): 299−306.

    [21]

    Luo Yao, Chen Xiaomin, Liu Wei, Jing Feng, Yu Qingxin, Xu Yanling. 2019. Effects of organic fertilizer addition on soil nutrients and cadmium availability in cadmium–contaminated paddy soil[J]. Chinese Journal of Soil Science, 50(6): 1471−1477 (in Chinese with English abstract).

    [22]

    Rao Z X, Huang D Y, Wu J S, Zhu Q H, Zhu H H, Xu C, Xiong J, Wang H, Duan M M. 2018. Distribution and availability of cadmium in profile and aggregates of a paddy soil with 30–year fertilization and its impact on Cd accumulation in rice plant[J]. Environmental Pollution, 239: 198−204. doi: 10.1016/j.envpol.2018.04.024

    [23]

    Tang Shiqi, Yang Zheng, Ma Honghong, Guo Fei, Yang Ke, Liu Fei, Peng Min, Li Kuo, Liu Xiujin. 2020. Study on factors affecting soil cadmium bioavailability in soil in karst area[J]. Journal of Agro–Environment Science, 39(6): 1221−1229 (in Chinese with English abstract).

    [24]

    Trojanowski P, Trojanowski J, Antonowicz J. 2010. Lead and cadmium content in human hair in Central Pomerania (Northern Poland)[J]. Journal of Elementology, 15(2): 363−384.

    [25]

    USEPA. 1989. Risk Assessment Guidance for Superfund, vol. I: Human Health Evaluation Manual[R]. Washington, DC: Office of Emergency and Remedial Response, 15–28.

    [26]

    Wang Shuang, Li Ronghua, Zhang Zengqiang, Feng Jing, Shen Feng. 2014. Assessment of the heavy metal pollution and potential ecological hazardous in agricultural soils and crops of Tongguan, Shaanxi Province[J]. China Environmental Science, 34(9): 2313−2320 (in Chinese with English abstract).

    [27]

    Wei Xiaoliao, Mou Li, Fu Tianling, Li Xiangying, He Tengbing, He Ji, Teng Lang. 2019. Effcts of passivator on Cd absorption and accumulation and yield of rice as affected by its combination[J]. Acta Pedologica Sinica, 56(4): 883−894 (in Chinese with English abstract).

    [28]

    Wu Jiaqi, Huang Yunxiang, Yin Lichu, Liang Yuwen, Huang Ling, Xiang Yanyan, Shi Qiang. 2020. Effect of long–term straw returning and groundwater level on cadmium accumulation and availability in soils[J]. Journal of Agro–Environment Science, 39(9): 1957−1963 (in Chinese with English abstract).

    [29]

    Xie Yunhe, Ji Xionghui, Tian Faxiang, Wu Jiamei, Liu Zhaobing, Guang Di. 2017. Effect of passivator on Cd uptaking of rice in different Cd pollution characteristics paddy soils[J]. Chinese Journal of Environmental Engineering, 11(2): 1242−1250 (in Chinese with English abstract).

    [30]

    Xiong Jie, Zhu Qihong, Huang Daoyou, Zhu Hanhua, Xu Chao, Wang Shuai, Wang Hui. 2018. Comparison of single extraction methods for assessing Cd availability in paddy soils in South China[J]. Research of Agricultural Modernization, 39(1): 170−177 (in Chinese with English abstract).

    [31]

    Yan Shihong, Wu Chunfa, Hu Youbiao, Li Zhenxuan, Lu Qingsong, Chen Shu, Yang Quanjun. 2013. Optimization of CaCl2 extraction of available cadmium in typical soils[J]. Chinese Agricultural Science Bulletin, 29(9): 99−104 (in Chinese with English abstract).

    [32]

    Yang Yang, Peng Yemian, Wang Ying, Li Fangbai, Liu Tongxu. 2019. Surface complexation model of Cd in paddy soil and its validation with bioavailability[J]. Chinese Science Bulletin, 64(33): 3449−3457 (in Chinese with English abstract).

    [33]

    Yu H Y, Liu C P, Zhu J S, Li F B, Deng D M, Wang Q, Liu C S. 2016. Cadmium availability in rice paddy fields from a mining area: The effects of soil properties highlighting iron fractions and pH value[J]. Environmental Pollution, 209: 38−45. doi: 10.1016/j.envpol.2015.11.021

    [34]

    Yue Cong, Wang Qunhui, Yuan Li, Liu Yangsheng. 2015. Assessment of heavy metal contaminated soils from the lead–zinc mine by toxicity characteristic leaching procedure[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 51(1): 109−115 (in Chinese with English abstract).

    [35]

    Zhang Wenmin, Jiang Xiaoshan, Wu Ming, Shao Xuexin, Zhou Bin. 2014. Spatial heterogeneity of soil organic carbon on the south coast of Hangzhou Bay[J]. Acta Pedologica Sinica, 51(5): 1087−1095 (in Chinese with English abstract).

    [36]

    Zhang Ying, Wu Ping, Sun Qingye, Sun Qian, Wang Yu, Wang Shenqiang, Wang Yujun. 2020. Effect of long–term application of biochar on Cd adsorption and bioavailability in farmland soils[J]. Journal of Agro–Environment Science, 39(5): 1019−1025 (in Chinese with English abstract).

    [37]

    Zhao Y T, Liu M D, Guo L, Yang D, He N, Ying B, Wang Y J. 2020. Influence of silicon on cadmium availability and cadmium uptake by rice in acid and alkaline paddy soils[J]. Journal of Soils and Sediments, 20: 2343−2353. doi: 10.1007/s11368-020-02597-0

    [38]

    Zhu Jinqi, Liao Qilin, Hao Shefeng, Xu Weiwei. 2018. Key Technology to Monitor and Cure and Prevent Soil Pollution in the Farmland[M]. Beijing: Science Press, 162–169 (in Chinese).

    [39]

    鲍丽然, 邓海, 贾中民, 李瑜, 董金秀, 严明书, 张风雷. 2020. 重庆秀山西北部农田土壤重金属生态健康风险评价[J]. 中国地质, 47(6): 1625−1636. doi: 10.12029/gc20200602

    [40]

    曹胜, 周卫军, 罗思颖, 周雨舟, 谭洁, 段群涛. 2017. 酸碱度调节剂对稻田土壤中有效态镉的影响研究[J]. 中国农学通报, 33(30): 97−102. doi: 10.11924/j.issn.1000-6850.casb16120051

    [41]

    鄂倩, 赵玉杰, 刘潇威, 李志涛, 张闯闯, 孙杨, 周其文, 梁学峰, 王海华. 2020. 不同土壤镉提取方法预测稻米富集镉性能评估[J]. 农业环境科学学报, 39(5): 1000−1009. doi: 10.11654/jaes.2020-0256

    [42]

    和君强, 刘代欢, 邓林, 常海伟, 秦华, 殷志遥. 2017. 农田土壤镉生物有效性及暴露评估研究进展[J]. 生态毒理学报, 12(6): 69−82. doi: 10.7524/AJE.1673-5897.20161019001

    [43]

    侯林, 林金兰, 贾彦龙, 邢丹, 孙嘉龙, 宁增平, 江南, 刘小龙, 李廷婷, 王宗虎, 解冉. 2019. 土壤Cd生物有效性及其调控措施研究进展[J]. 地球科学前沿, 9(9): 823−838.

    [44]

    黄界颍, 武修远, 佟影影, 曹森, 高越, 杨卉艳. 2020. 小麦秸秆还田量对土壤Cd有效性及水稻Cd亚细胞分布的影响[J]. 农业环境科学学报, 39(7): 1503−1511. doi: 10.11654/jaes.2020-0051

    [45]

    黄永春, 张长波, 任兴华, 王培培, 王常荣, 刘仲齐. 2020. 土壤和茎基部镉含量对稻米镉污染风险的影响[J]. 农业环境科学学报, 39(5): 989−999. doi: 10.11654/jaes.2020-0294

    [46]

    黄宇, 廖敏, 叶照金, 吕婷. 2017. 两种低镉积累水稻镉含量与土壤镉的剂量−效应关系及调控[J]. 生态与农村环境学报, 33(8): 748−754. doi: 10.11934/j.issn.1673-4831.2017.08.011

    [47]

    李传飞, 李廷轩, 张锡洲, 余海英, 张路. 2017. 外源镉在几种典型农耕土壤中的稳定化特征[J]. 农业环境科学学报, 36(1): 85−92. doi: 10.11654/jaes.2016-1025

    [48]

    李继宁, 侯红, 魏源, 许亚飞, 李发生. 2013. 株洲市农田土壤重金属生物可给性及其人体健康风险评估[J]. 环境科学研究, 26(10): 1139−1146.

    [49]

    廖启林, 华明, 金洋, 黄顺生, 朱伯万, 翁志华, 潘永敏. 2009. 江苏省土壤重金属分布特征与污染源初步研究[J]. 中国地质, 36(5): 1163−1174. doi: 10.3969/j.issn.1000-3657.2009.05.020

    [50]

    廖启林, 刘聪, 蔡玉曼, 朱伯万, 王成, 华明, 金洋. 2013. 江苏典型地区水稻与小麦籽实中元素生物富集系数(BCF)初步研究[J]. 中国地质, 40(1): 330−339.

    [51]

    廖启林, 刘聪, 王轶, 金洋, 朱伯万, 任静华, 曹磊. 2015. 水稻吸收Cd的地球化学控制因素研究—以苏锡常典型区为例[J]. 中国地质, 42(5): 1621−1632. doi: 10.3969/j.issn.1000-3657.2015.05.029

    [52]

    刘道荣, 周漪. 2020. 浙西水田土壤镉形态与有效性研究[J]. 物探与化探, 44(5): 1239−1244.

    [53]

    卢新哲, 谷安庆, 张言午, 康占军, 褚先尧, 胡雪峰. 2019. 基于环境地球化学基线的农用地重金属累积特征及其潜在生态危害风险研究[J]. 土壤学报, 56(2): 408−419. doi: 10.11766/trxb201804120050

    [54]

    罗遥, 陈效民, 刘巍, 景峰, 喻清鑫, 徐艳玲. 2019. 有机肥添加对镉污染稻田土壤养分及镉有效性的影响[J]. 土壤通报, 50(6): 1471−1477.

    [55]

    唐世琪, 杨峥, 马宏宏, 郭飞, 杨柯, 刘飞, 彭敏, 李括, 刘秀金. 2020. 岩溶区土壤镉生物有效性影响因素研究[J]. 农业环境科学学报, 39(6): 1221−1229. doi: 10.11654/jaes.2019-1370

    [56]

    王爽, 李荣华, 张增强, 冯静, 沈锋. 2014. 陕西潼关农田土壤及农作物重金属污染及潜在风险[J]. 中国环境科学, 34(9): 2313−2320.

    [57]

    韦小了, 牟力, 付天岭, 李相楹, 何腾兵, 何季, 滕浪. 2019. 不同钝化剂组合对水稻各部位吸收积累Cd及产量的影响[J]. 土壤学报, 56(4): 883−894. doi: 10.11766/trxb201810120516

    [58]

    吴佳琪, 黄运湘, 尹力初, 梁玉文, 黄玲, 向艳艳, 施强. 2020. 长期秸秆还田和地下水位对土壤镉积累及有效性的影响[J]. 农业环境科学学报, 39(9): 1957−1963. doi: 10.11654/jaes.2020-0486

    [59]

    谢运河, 纪雄辉, 田发祥, 吴家梅, 刘昭兵, 官迪. 2017. 不同Cd污染特征稻田施用钝化剂对水稻吸收积累Cd的影响[J]. 环境工程学报, 11(2): 1242−1250. doi: 10.12030/j.cjee.201510041

    [60]

    熊婕, 朱奇宏, 黄道友, 朱捍华, 许超, 王帅, 王辉. 2018. 南方稻田土壤有效态镉提取方法研究[J]. 农业现代化研究, 39(1): 170−177.

    [61]

    颜世红, 吴春发, 胡友彪, 李振炫, 卢青松, 陈树, 杨泉军. 2013. 典型土壤中有效态镉CaCl2提取条件优化研究[J]. 中国农学通报, 29(9): 99−104. doi: 10.3969/j.issn.1000-6850.2013.09.018

    [62]

    杨阳, 彭叶棉, 王莹, 李芳柏, 刘同旭. 2019. 稻田土壤镉的表面络合模型及其生物有效性验证[J]. 科学通报, 64(33): 3449−3457.

    [63]

    岳聪, 汪群慧, 袁丽, 刘阳生. 2015. TCLP法评价铅锌尾矿库土壤重金属污染: 浸提剂的选择及其重金属形态的关系[J]. 北京大学学报(自然科学版), 51(1): 109−115.

    [64]

    张文敏, 姜小三, 吴明, 邵学新, 周斌. 2014. 杭州湾南岸土壤有机质空间变异性研究[J]. 土壤学报, 51(5): 1087−1095.

    [65]

    张莹, 吴萍, 孙庆业, 孙倩, 汪玉, 王慎强, 王玉军. 2020. 长期施用生物炭对土壤中Cd吸附及生物有效性的影响[J]. 农业环境科学学报, 39(5): 1019−1025. doi: 10.11654/jaes.2020-0056

    [66]

    朱锦旗, 廖启林, 郝社锋, 许伟伟. 2018. 耕地污染监测与防治关键技术研究[M]. 北京: 科学出版社, 162–169.

  • 加载中

(5)

(8)

计量
  • 文章访问数:  131
  • PDF下载数:  10
  • 施引文献:  0
出版历程
收稿日期:  2021-11-25
修回日期:  2023-03-20
刊出日期:  2024-11-25

目录