中国地质调查局 中国地质科学院主办
科学出版社出版

工业区周边农田土壤重金属与黏土矿物的关系及其生态健康风险评价

李文鹏, 史小龙, 刘建章, 陈爽, 蔡奎, 宋泽峰, 田浩飞. 2024. 工业区周边农田土壤重金属与黏土矿物的关系及其生态健康风险评价[J]. 中国地质, 51(5): 1513-1526. doi: 10.12029/gc20211126003
引用本文: 李文鹏, 史小龙, 刘建章, 陈爽, 蔡奎, 宋泽峰, 田浩飞. 2024. 工业区周边农田土壤重金属与黏土矿物的关系及其生态健康风险评价[J]. 中国地质, 51(5): 1513-1526. doi: 10.12029/gc20211126003
LI Wenpeng, SHI Xiaolong, LIU Jianzhang, CHEN Shuang, CAI Kui, SONG Zefeng, TIAN Haofei. 2024. Relationship between heavy metals and clay minerals in farmland soil around industrial zone and health risk assessment[J]. Geology in China, 51(5): 1513-1526. doi: 10.12029/gc20211126003
Citation: LI Wenpeng, SHI Xiaolong, LIU Jianzhang, CHEN Shuang, CAI Kui, SONG Zefeng, TIAN Haofei. 2024. Relationship between heavy metals and clay minerals in farmland soil around industrial zone and health risk assessment[J]. Geology in China, 51(5): 1513-1526. doi: 10.12029/gc20211126003

工业区周边农田土壤重金属与黏土矿物的关系及其生态健康风险评价

  • 基金项目: 河北省自然科学基金项目(D2020403003)和河北省自然资源厅科技项目联合资助(454−0601−YBN−P6GT)联合资助。
详细信息
    作者简介: 李文鹏,男,1978年生,高级工程师,主要从事场地污染防治研究;E-mail:biIuochu2019@163.com
    通讯作者: 蔡奎,男,1985年生,博士,副研究员,主要从事环境地球化学研究;E-mail:kcai@hgu.edu.cn
  • 中图分类号: X53; X826

Relationship between heavy metals and clay minerals in farmland soil around industrial zone and health risk assessment

  • Fund Project: Supported by the project of Hebei Province Natural Science Foundation (No.D2020403003) and science and technology project of Department of Natural Resources of Hebei Province (No.454−0601−YBN−P6GT).
More Information
    Author Bio: LI Wenpeng, male, born in 1978, engineer, engaged in the study of prevention and control of site pollution; E-mail: biluochu2019@163.com .
    Corresponding author: CAI Kui, male, born in 1985, associate researcher, mainly engaged in environmental geochemistry investigation and research; E-mail: kcai@hgu.edu.cn.
  • 研究目的

    为了解工业区周边农田土壤重金属污染状况,采集了100件表层土壤样品,分析测试Pb、Cr、As、Cd和Hg等5种重金属元素总量、赋存形态以及黏土矿物含量。

    研究方法

    采用单因子指数法、土壤矿物评价法以及健康风险评估模型等,对石家庄无极皮革厂,辛集皮革厂,邯郸武安冶金、钢铁,广平化工厂,以及邢台内丘化工厂周边的农田土壤重金属污染状况、稳定性以及健康水平进行评价。

    研究结果

    无极皮革厂土壤的Cr,内丘、广平化工厂的Hg和武安冶金、钢铁的Cd和Hg污染程度高;以残渣态为主的重金属与黏土矿物具有显著正相关关系;土壤黏土矿物对Cd、Hg固持量高,对Pb和As的固持量低。无极2个土壤样品超出了黏土矿物对Cr的容纳能力;人体健康风险评估显示,在口和皮肤双重摄入途径下,土壤会对儿童造成非致癌风险(1.02)。但是,以小麦为摄入介质的癌症风险指数超过了成人(5.16×10−4)和儿童(6.44×10−4)的耐受限度(1×10−4)。

    结论

    重金属与黏土矿物存在积极的相关性,对生态健康风险影响大,当地以小麦为主食的居民对小麦Cd应更加关注。

  • 加载中
  • 图 1  5个工业区表层土壤(0~20 cm)样品采集示意图

    Figure 1. 

    图 2  工业区单因子污染指数分级百分比柱状图

    Figure 2. 

    图 3  工业区农田土壤重金属元素与黏土矿物平均含量剖面(0~100 cm)分布图

    Figure 3. 

    图 4  重金属不同深度赋存形态相对含量分布图

    Figure 4. 

    表 1  各种暴露途径日摄入量计算公式

    Table 1.  Formulas of calculating daily intake of various exposure pathways

    介质 暴露途径 计算公式
    土壤 摄入/口 $ {{\mathrm{ADD}}}_{{\mathrm{ingestion}}}=\dfrac{{\mathrm{C}}_{{S}} \times {\mathrm{IR}}_{{S}} \times {\mathrm{EF}} \times {\mathrm{ED}}}{{\mathrm{BW}} \times {\mathrm{AT}}} \times {10}^{-6} $ (4)
    皮肤/接触 $ {{\mathrm{ADD}}}_{{\mathrm{dermal}}}=\dfrac{{\mathrm{C}}_{{S}} \times {\mathrm{SA}} \times {\mathrm{AF}} \times {\mathrm{ABS}} \times {\mathrm{EF}} \times {\mathrm{ED}}}{{\mathrm{BW}} \times {\mathrm{AT}}} \times {10}^{-6} $ (5)
    小麦 摄入/口 $ {{\mathrm{ADD}}}_{{\mathrm{ingestion}}}=\dfrac{C_{\mathrm{wheat}} \times {\mathrm{IR}}_{\mathrm{wheat}} \times {\mathrm{EF}} \times {\mathrm{ED}}}{{\mathrm{BW}} \times {\mathrm{AT}}} $ (6)
    下载: 导出CSV

    表 2  健康风险计算参数的取值及意义

    Table 2.  Value and significance of health risk calculation parameters

    参数 单位和取值 意义
    Cs, CW mg/kg 暴露浓度
    EF 365 d/a 年暴露
    频率
    ED 成人 70 a; 儿童 6a 持续时间
    ET 24 h/d 日暴露频率
    AT 365 × ED day (非)致癌
    物的平
    均时间
    BW 成人 70 kg ; 儿童 18 kg 体重
    SA 成人5700 cm2·day−1, 儿童2800 cm2·day−1 暴露皮肤
    面积
    AF 成人0.07 mg·cm−2, 儿童0.02 mg·cm−2 吸附因子
    ABS 0.001 皮肤吸收
    分数
    PEF 1.36×109 m3∙kg−1 粒子排放
    因子
    CF 10−6 kg∙mg−1 单位转换
    因子
    IRS 成人100 mg·d−1 , 儿童200 mg·d−1 土壤
    摄入率
    IRwheat 成人0.225 kg·d−1, 儿童0.075 kg·d−1
    小麦
    摄入率
    RFD−Cd RFD 摄入: 0.001 mg ∙ kg−1∙d−1,
    RFD 呼吸: 0.00001 mg∙kg−1∙d−1,
    RFD皮肤: 0.00001 mg ∙ kg−1∙d−1
    慢性参考
    剂量
    RFD−As RFDingestion: 3×10−4 mg∙kg−1∙d−1,
    RFDinhale: 1.23×10−4 mg∙kg−1∙d−1,
    RFDdermal: 1.23×10−4 mg∙kg−1∙d−1
    RFD−Cr RFDingestion: 3×10−3 mg∙kg−1∙d−1,
    RFDinhale: 2.86×10−5 mg∙kg−1∙d−1,
    RFDdermal: 6×10−5 mg∙kg−1∙d−1
    SF Cd:SF摄入: 15 kg∙d∙mg−1, SF呼吸: 6.3 kg∙d∙mg−1
    As:SF摄入: 1.5 kg∙d∙mg−1, SF呼吸: 15.1 kg∙d∙mg−1,
    SF皮肤: 3.66 kg∙d∙mg−1;Cr:SF呼吸: 42 kg∙d∙mg−1
    斜率因子
    下载: 导出CSV

    表 3  工业区周边农田表层土壤重金属含量(μg/g)统计

    Table 3.  Statistics of heavy metal content (μg/g) in surface soil of farmland around industrial zone

    地名/性质 元素 最大值 最小值 平均值 标准差 变异系数/% 河北省背景值 富集
    系数
    辛集工业区
    (皮革)
    N=20
    Pb 32.1 17.2 22.23 3.79 17.03 21.1 1.05
    Cr 84 56.8 66.7 6.75 10.12 68.1 0.98
    Cd 0.22 0.08 0.15 0.04 26.42 0.09 1.67
    As 11.6 7.01 8.98 1.05 11.68 13 0.69
    Hg 0.097 0.013 0.045 0.02 44.17 0.04 1.13
    广平工业区
    (化工)
    N=20
    Pb 25.9 20.4 23.23 1.53 6.59 21.1 1.10
    Cr 76.1 58.9 67.19 4.6 6.84 68.1 0.99
    Cd 0.3 0.12 0.17 0.04 23.81 0.09 1.89
    As 12.9 8.82 10.74 1.25 11.61 13 0.83
    Hg 0.231 0.022 0.049 0.05 97.76 0.04 1.23
    无极工业区
    (皮革)
    N=20
    Pb 36.9 17.7 23.98 3.64 15.19 21.1 1.14
    Cr 165 58 78.87 23.96 30.38 68.1 1.16
    Cd 0.25 0.1 0.15 0.03 19.97 0.09 1.67
    As 9.21 6.85 8.53 0.61 7.14 13 0.66
    Hg 0.084 0.015 0.055 0.02 35.50 0.04 1.38
    内丘工业区
    (化工)
    N=20
    Pb 41.2 20.6 24.06 4.36 18.11 21.1 1.14
    Cr 72.6 59.4 64.35 3.88 6.03 68.1 0.94
    Cd 0.32 0.12 0.16 0.04 26.15 0.09 1.78
    As 10.5 6.96 8.633 0.91 10.49 13 0.66
    Hg 0.18 0.022 0.066 0.04 59.24 0.04 1.65
    武安工业区
    (冶金、钢铁)
    N=20
    Pb 38.1 23.4 32.43 3.53 10.88 21.1 1.54
    Cr 74.6 56.3 66.91 4.57 6.83 68.1 0.98
    Cd 0.25 0.12 0.21 0.03 15.58 0.09 2.33
    As 13.4 8.93 11.16 1.29 11.51 13 0.86
    Hg 0.184 0.034 0.09 0.04 47.40 0.04 2.25
    下载: 导出CSV

    表 4  黏土矿物与重金属元素相关性

    Table 4.  Correlation of clay minerals and heavy metal elements

    表层黏土矿物与重金属元素相关性
    矿物类型 As Hg Cd Cr Pb
    蒙脱石 −0.116 0.307 −0.101 −0.307 −0.118
    伊利石 0.632* 0.168 0.354 −0.625 0.345
    高岭石 −0.389 −0.112 −0.168 0.458 −0.153
    绿泥石 −0.694* 0.004 −0.509 0.56 −0.281
    伊/蒙混层 −0.247 −0.573 −0.021 0.646* −0.304
    剖面黏土矿物与重金属元素相关性
    蒙脱石 0.632* 0.45 0.717** −0.275 0.634*
    伊利石 0.728** 0.278 0.366 −0.684** 0.355
    高岭石 0.567* −0.312 −0.326 0.838** −0.341
    绿泥石 −0.808** −0.24 −0.444 0.33 −0.405
    伊/蒙混层 0.065 −0.133 −0.178 −0.009 −0.104
      注:**表示P< 0.01 水平上显著相关;*表示P < 0.05 水平上显著相关。
    下载: 导出CSV

    表 5  不同暴露方式下土壤和小麦的非致癌风险(HQ)和致癌风险(CR)(成人为−a,儿童为−c)

    Table 5.  Non-carcinogenic and carcinogenic risks of soil and wheat under different exposures (−a for adults and −c for children)

    重金属 介质 暴露方式 ADD−a ADD−c HQ−a HQ−c CR−a CR−c
    Cd土壤皮肤3.47 × 10−86.65 × 10−82.83 × 10−45.40 × 10−4
    摄入/口2.11 × 10−103.43× 10−107.05 × 10−71.44 × 10−63.17 × 10−105.15 × 10−10
    小麦摄入/口1.03 × 10−71.29 × 10−73.44 × 10−54.29 × 10−55.16× 10−46.44 × 10−4
    As土壤皮肤1.69× 10−63.23× 10−61.37× 10−22.63 × 10−26.19× 10−61.18 × 10−5
    摄入/口8.06× 10−81.67 × 10−82.69× 10−45.57× 10−51.21 × 10−72.50 × 10−8
    小麦摄入/口9.03 × 10−81.13 × 10−73.01× 10−43.75× 10−41.35 × 10−71.69 × 10−7
    Cr土壤皮肤2.35 × 10−34.48 × 10−31.56 × 10−32.99 × 10−3
    摄入/口3.00 × 10−84.87 × 10−82.00 × 10−53.25 × 10−81.26 × 10−62.04 × 10−6
    小麦摄入/口1.05 × 10−71.30 × 10−76.97 × 10−88.69 × 10−84.39 × 10−65.48 × 10−6
    Pb土壤皮肤2.01 × 10−33.85× 10−30.500.96
    摄入/口2.57 × 10−84.18 × 10−56.43 × 10−61.04 × 10−5
    小麦摄入/口1.95 × 10−72.43 × 10−74.87 × 10−56.07 × 10−5
    Hg土壤皮肤4.90 × 10−69.30 × 10−61.62 × 10−23.10 × 10−2
    摄入/口6.22 × 10−111.01 × 10−101.04 × 10−73.37 × 10−7
    小麦摄入/口6.88 × 10−98.57 × 10−92.29 × 10−52.86 × 10−5
    ADD−a/总ADD−c/总HQTCR
    小计土壤4.37× 10−38.44× 10−30.531.027.57×10−61.39×10−5
    小麦5.00 × 10−76.24× 10−74.07×10−45.07×10−45.20×10−46.5×10−4
    合计4.37× 10−38.39× 10−30.531.025.28×10−46.64×10−4
    下载: 导出CSV
  • [1]

    Alexander J A, Ahmad Zaini M A, Surajudeen A, Aliyu E N U, Omeiza A U. 2019. Surface modification of low−cost bentonite adsorbents—A review[J]. Particulate Science and Technology, 37(5): 538−549. doi: 10.1080/02726351.2018.1438548

    [2]

    Alexander W G, Wisecaver J H, Rokas A, Hittinger, C T. 2016. Horizontally acquired genes in early−diverging pathogenic fungienable the use of host nucleosides and nucleotides[J]. Proceedings of the National Academy of Sciences, 113(15): 4116−4121. doi: 10.1073/pnas.1517242113

    [3]

    Bao Liran, Deng Hai, Jia Zhongmin, Li Yu, Dong Jinxiu, Yan Mingshu, Zhang Fenglei. 2020. Ecological and health risk assessment of heavy metals in farmland soil of northwest Xiushan, Chongqing[J]. Geology in China, 47(6): 1625−1636 (in Chinese with English abstract).

    [4]

    Bashir S, Ali U, Shaaban M, Gulshan A B, Iqbal J, Khan S, Hu H. 2020. Role of sepiolite for cadmium (Cd) polluted soil restoration and spinach growth in wastewater irrigated agricultural soil[J]. Journal of Environmental Management, 258: 110020. doi: 10.1016/j.jenvman.2019.110020

    [5]

    Bu Shuaibin, Meng Zhaofu, Sambath Yek, Zhang Mengfei, Wang Teng, Ren Shuang, Zhang Lingkai. 2019. Adsorption and interaction of Cu2+ and Pb2+ on BS−12 amphoteric modified bentonites[J]. Environmental Science, 40(10): 4611−4619 (in Chinese with English abstract).

    [6]

    Cai K, Kim K, Cui X T, Song Z F. 2019. Form distribution and potential ecological risk assessment of heavy metals in soils form Handan and Xingtai, China[J]. Fresenius Environmental Bulletin, 28(8): 5811−5819.

    [7]

    Chen C, Liu H, Chen T, Chen D, Frost R L. 2015. An insight into the removal of Pb (II), Cu (II), Co (II), Cd (II), Zn (II), Ag (I), Hg (I), Cr (VI) by Na (I)−montmorillonite and Ca (II)−montmorillonite[J]. Applied Clay Science, 118: 239−247. doi: 10.1016/j.clay.2015.09.004

    [8]

    Chen Lixiang. 2015. Preparation and Characterization of Organic Clay Minerals and Their Adsorption Properties for Heavy Metals [D]. Guangzhou: South China University of Technology, 1−153 (in Chinese with English abstract).

    [9]

    Cui J L, Zhao Y P, Li J S, Bei Y, Jing Z, Tsang D. 2018. Speciation, mobilization, and bioaccessibility of arsenic in geogenic soil profile from Hong Kong[J]. Environmental Pollution, 232: 375−384. doi: 10.1016/j.envpol.2017.09.040

    [10]

    Du Caiyan, Wang Panlei, Du Jianlei, Zhu Hongye, Bao Li, Guo Yurong, Zhang Naiming, Pan Yanhua. 2019. Influence of fixed addition of biochar, zeolite and bentonite on growth and Cd, Pb, Zn uptake by maize[J]. Ecology and Environmental Sciences, 28(1): 190−198 (in Chinese with English abstract).

    [11]

    Du H, Chen W, Cai P, Rong X, Feng X, Huang Q. 2016. Competitive adsorption of Pb and Cd on bacteria–montmorillonite composite[J]. Environmental Pollution, 218: 168−175. doi: 10.1016/j.envpol.2016.08.022

    [12]

    Du Huihui. 2017. Molecular Binding Mechanisms of Cd (II) And Pb (II) at Soil Mineral−Organic Interface [D]. Wuhan: Huazhong Agricultural University, 1−138 (in Chinese with English abstract).

    [13]

    Esmaeili A, Eslami H. 2019. Efficient removal of Pb (II) and Zn (II) ions from aqueous solutions by adsorption onto a native natural bentonite[J]. MethodsX, 6: 1979−1985. doi: 10.1016/j.mex.2019.09.005

    [14]

    Glatstein D A, Francisca F M. 2015. Influence of pH and ionic strength on Cd, Cu and Pb removal from water by adsorption in Na−bentonite[J]. Applied Clay Science, 118: 61−67. doi: 10.1016/j.clay.2015.09.003

    [15]

    Guo Ping. 2005. Study on Mechanism and Countermeasures of Soil Heavy Metal Pollution in Changchun City[D]. Changchun: Jilin University, 1−183 (in Chinese with English abstract).

    [16]

    Hu Chao. 2016. Adsorption of Heavy Metal Ions by Montmorillonite Loaded Chitosan and Its Complex[D]. Wuhan: Huazhong Agricultural University, 1−104 (in Chinese with English abstract).

    [17]

    Kim Y, Kim B K, Kim K. 2010. Distribution and speciation of heavy metals and their sources in Kumho River sediment, Korea[J]. Environmental Earth Sciences, 60(5): 943−952. doi: 10.1007/s12665-009-0230-2

    [18]

    Lin Jin, Liang Wenjing, Jiao Yang, Yang Li, Fan Yaning, Tian Tao, Liu Xiaomeng. 2021. Ecolcgical and health risk assessment of heavy metals in farmland soil around the gold mining area in Tongguan of Shaanxi Province[J]. Geology in China, 48(3): 749−763 (in Chinese with English abstract).

    [19]

    Liu R P, Xu Y N, Zhang J H, Wang W K, Elwardany R M. 2020. Effects of heavy metal pollution on farmland soils and crops: A case study of the Xiaoqinling gold belt, China[J]. China Geology, 3(3): 402−410.

    [20]

    Lu Anhuai. 2000. Development of properties of mineralogy from resource to environmental[J]. Geological Journal of China Universities, 6(2): 245−251 (in Chinese with English abstract).

    [21]

    Lu Anhuai, Lu Xiaoying, Ren Ziping, Han Rongfang, Fang Qinfang, Han Yong. 2000. New advances in environmental mineralogy of natural oxides and hydroxides of iron and manganese[J]. Earth Science Frontiers, 7(2): 473−483 (in Chinese with English abstract).

    [22]

    Luan Wenlou, Liu Hongwei, Wen Xiaoya, Dujun, Li Zhenning, Chen Zhixian, Gu Haifeng. 2010. An analysis of the modes of occurrence and validities of the heavy metal elements in soil of eastern Hebei plain[J]. Geology in China, 37(2): 508−514 (in Chinese with English abstract).

    [23]

    Otunola B O, Ololade O O. 2020. A review on the application of clay minerals as heavy metal adsorbents for remediation purposes[J]. Environmental Technology & Innovation, 18: 100692.

    [24]

    Uddin M K. 2017. A review on the adsorption of heavy metals by clay minerals, with special focus on the past decade[J]. Chemical Engineering Journal, 308: 438−462. doi: 10.1016/j.cej.2016.09.029

    [25]

    USEPA. 2009. Highlights of the Child−specific Exposure Factors Handbook(Final Report) [R]. Washington DC: U. S. Environmental Protection Agency.

    [26]

    USEPA. 2011. Exposure Factors Handbook[R]. Washington DC: National Center for Environmental Assessment.

    [27]

    USEPA. 2013. Regional Screening Level (RSL) for Chemical Contaminants at Superfund Sites[R]. Washington DC: U. S. Environmental Protection Agency.

    [28]

    Wang Hongli, Yangbin, Guo Ling. 2014. Research on the adsorption model of nickel ions on montmorillonite[J]. Liaoning Chemical Industry, 43(10): 1244−1249 (in Chinese with English abstract).

    [29]

    Wen Xiaoya. 2009. Geochemical Evaluation of Ecological Effects of Heavy Metal Elements in Eastern Hebei Plain [D]. Shijiazhuang: Shijiazhuang University of Economics, 1−89 (in Chinese with English abstract).

    [30]

    Wu Pingping. 2011. Adsorption and Desorption of Arsenic in Different Minerals and Soils[D]. Beijing: Chinese Academy of Agricultural Sciences, 1−94 (in Chinese with English abstract).

    [31]

    Xie Na, Zhang Jingyang, Liu Peide. 2020. Preparation of fly ash/bentonite particles and adsorption experiment of Pb2+[J]. Acta Mineralogica Sinica, 40(1): 41−46 (in Chinese with English abstract).

    [32]

    Xing Honglian, Guo Huaming, Wang Yi, Li Ruimin, Liu Yongsheng, Xu Huizhen. 2016. Fraction distribution and risk assessment of soil heavy metals in Anxin− Qingyuan County in Baoding of Hebei[J]. Hydrogeology & Engineering Geology, 43(2): 140−146 (in Chinese with English abstract).

    [33]

    Zhao Zhongqiu, Zhu Rongguan, Cai Yunlong. 2005. Transport and transformation of cadmium in soil−plant systems and the influence factors[J]. Ecology and Environment, 14(2): 282−286 (in Chinese with English abstract).

    [34]

    Zheng Xikun, Lu Anhuai, Gao Xiang, Zhaojin, Zheng Desheng. 2002. Contamination of heavy metals in soil present situation and method[J]. Soil and Environmental Sciences, 11(1): 79−84 (in Chinese with English abstract).

    [35]

    Zheng Xikun, Lu Anhuai, Wang Qinghua, Zheng Jia, Zhu Chaohui, Yufang. 2008. Mineralogical method for evaluating Pb pollutant status in soil from Zhejiang Province[J]. Geological Science and Technology Information, 27(3): 77−82 (in Chinese with English abstract).

    [36]

    Zheng Xikun, Lu Anhuai, Wang Qinghua, Zheng Jia, Zhu Chaohui, Yufang. 2007. Amineralogical method for evaluation Cd pollution in soils of Zhejiang Province, China[J]. Geological Bulletin of China, 26(5): 598−604 (in Chinese with English abstract).

    [37]

    Zheng Xikun, Wang Qinghua, Lu Anhuai, Zhu Chaojun, Yu Fang, Zheng Jia, Wang Peiying. 2005. Features of the mineral composition of soils from Zhejiang, China[J]. Geological Bulletin of China, 24(8): 761−766 (in Chinese with English abstract).

    [38]

    Zheng Yuanming, Chen Tongbin, Zheng guodi, Chen Huang. 2005. Soil copper accumulation under different land use types—The case of Beijing[J]. Journal of Natural Resources, 20(5): 690−696 (in Chinese with English abstract).

    [39]

    Zhu Danni, Zou Shengzhang, Zhou Changsong, Lu Haiping, Xie Hao. 2021. Hg and As contents of soil−crop system in different tillage types and ecological health risk assessment[J]. Geology in China, 48(3): 708−720 (in Chinese with English abstract).

    [40]

    Zhu Lijun, Fu Pingqiu, Wan Guojiang. 1997. Study on surface chemical characteristics and adsorption mechanism of Iron oxide minerals in carbonate laterite[J]. Acta Scientiae Circumstantiae, 17(2): 174−178 (in Chinese with English abstract).

    [41]

    Zhu R, Chen Q, Zhu R, Xu Y, Ge F, Zhu J, He H. 2015. Sequestration of heavy metal cations on montmorillonite by thermal treatment[J]. Applied Clay Science, 107: 90−97. doi: 10.1016/j.clay.2015.01.008

    [42]

    鲍丽然, 邓海, 贾中民, 李瑜, 董金秀. 2020. 重庆秀山西北部农田土壤重金属生态健康风险评价[J]. 中国地质, 47(6): 1625−1636. doi: 10.12029/gc20200602

    [43]

    卜帅宾, 孟昭福, SambathYek, 张梦飞, 王腾, 任爽, 张凌恺. 2019. Cu2+和Pb2+在BS−12两性修饰膨润土上的吸附及其交互作用[J]. 环境科学, 40(10): 4611−4619.

    [44]

    陈理想. 2015. 有机粘土矿物的制备与表征及其对重金属吸附性能的研究[D]. 广州: 华南理工大学, 1−153.

    [45]

    杜彩艳, 王攀磊, 杜建磊, 朱红业, 包立, 郭玉蓉, 张乃明, 潘艳华. 2019. 生物炭、沸石与膨润土混施对玉米生长和吸收Cd、Pb、Zn的影响研究[J]. 生态环境学报, 28(1): 190−198.

    [46]

    杜辉辉. 2017. Cd(Ⅱ)、Pb(Ⅱ)在土壤矿物—有机互作界面的分子结合机制[D]. 武汉: 华中农业大学, 1−138.

    [47]

    郭平. 2005. 长春市土壤重金属污染机理与防治对策研究[D]. 长春: 吉林大学, 1−183.

    [48]

    胡超. 2016. 蒙脱石加载壳聚糖及复合物对重金属离子的吸附[D]. 武汉: 华中农业大学, 1−104.

    [49]

    林荩, 梁文静, 焦旸, 杨莉, 范亚宁, 田涛, 刘晓萌. 2021. 陕西潼关县金矿矿区周边农田土壤重金属生态健康风险评价[J]. 中国地质, 48(3): 749−763. doi: 10.12029/gc20210306

    [50]

    鲁安怀. 2000. 矿物学的研究从资源属性到环境属性的发展[J]. 高校地质学报, 6(2): 245−251.

    [51]

    鲁安怀, 卢晓英, 任子平, 韩丽荣, 方勤方, 韩勇. 2000. 天然铁锰氧化物及氢氧化物环境矿物学研究[J]. 地学前缘, 7(2): 473−483. doi: 10.3321/j.issn:1005-2321.2000.02.015

    [52]

    栾文楼, 刘洪微, 温小亚, 杜俊, 李振宁, 陈志贤, 谷海峰. 2020. 冀东平原土壤重金属元素的存在形态及有效性分析[J]. 中国地质, 37(2): 508−514.

    [53]

    王洪丽, 杨斌, 郭玲. 2014. 蒙脱石对水中Ni2+的吸附模型研究[J]. 辽宁化工, 43(10): 1244−1249.

    [54]

    温小亚. 2009. 冀东平原重金属元素生态效应地球化学评价[D]. 石家庄: 石家庄经济学院, 1−89.

    [55]

    吴萍萍. 2011. 不同类型矿物和土壤对砷的吸附—解吸研究[D]. 北京: 中国农业科学院, 1−94.

    [56]

    谢娜, 张敬阳, 刘培德. 2020. 粉煤灰/膨润土颗粒的制备与Pb2+吸附实验[J]. 矿物学报, 40(1): 41−46.

    [57]

    邢洪连, 郭华明, 王轶, 李瑞敏, 刘永生, 徐慧珍. 2016. 河北保定市安新—清苑县土壤重金属形态分布及风险评估[J]. 水文地质工程地质, 43(2): 140−146.

    [58]

    赵中秋, 朱永官, 蔡运龙. 2005. 镉在土壤−植物系统中的迁移转化及其影响因素[J]. 生态环境, 14(2): 282−286.

    [59]

    郑喜珅, 鲁安怀, 高翔, 赵谨, 郑德圣. 2002. 土壤中重金属污染现状与防治方法[J]. 土壤与环境, 11(1): 79−84.

    [60]

    郑喜珅, 鲁安怀, 汪庆华, 郑佳, 朱朝晖, 于芳. 2007. 用矿物学方法评价浙江土壤中Cd污染的状况[J]. 地质通报, 26(5): 598−604.

    [61]

    郑喜珅, 鲁安怀, 汪庆华, 郑佳, 朱朝晖, 于芳. 2008. 基于矿物学方法评价浙江省土壤中Pb污染状况[J]. 地质科技情报, 27(3): 77−82.

    [62]

    郑喜珅, 汪庆华, 鲁安怀, 朱朝晖, 于芳, 郑佳, 王佩瑛. 2005. 浙江土壤矿物组成特征[J]. 地质通报, 24(8): 761−766. doi: 10.3969/j.issn.1671-2552.2005.08.015

    [63]

    郑袁明, 陈同斌, 郑国砥. 2005. 不同土地利用方式对土壤铜积累的影响—以北京市为例[J]. 自然资源学报, 20(5): 690−696

    [64]

    朱丹尼, 邹胜章, 周长松, 卢海平, 谢浩. 2021. 不同耕作类型下土壤−农作物系统中汞、砷含量与生态健康风险评价[J]. 中国地质, 48(3): 708−720.

    [65]

    朱立军, 傅平秋, 万国江. 1997. 碳酸盐岩红土中氧化铁矿物表面化学特征及其吸附机理研究[J]. 环境科学学报, 17(2): 174−178.

  • 加载中

(4)

(5)

计量
  • 文章访问数:  105
  • PDF下载数:  16
  • 施引文献:  0
出版历程
收稿日期:  2021-11-26
修回日期:  2022-03-28
刊出日期:  2024-09-25

目录