Structural deformation and fluid evolution associated with the formation of the Sawayardun gold deposit in Southwestern Tianshan Orogen
-
摘要:
研究目的 构造-流体与成矿的耦合关系属于目前矿床学研究的前沿问题,造山型金矿作为典型受构造变形控制的热液矿床,是窥探构造-流体与成矿作用内在联系的理想研究对象。
研究方法 萨瓦亚尔顿金矿床是西南天山地区规模最大的造山型金矿,通过野外构造解析,流体包裹体和C-H-O-S同位素地球化学数据,研究矿区的构造变形特征,分析成矿流体性质及其成矿物质来源。
研究结果 矿区变形可分3期:早期为韧性变形、中期为脆-韧性变形、晚期为脆性变形。根据脉体穿切关系和变形特征,识别出3期与构造相对应的石英脉(Qz1,Qz2,Qz3),其中Qz2为含金石英脉体,金矿主要形成于第二期的脆-韧性变形期。室内观测发现,早、中期石英中发育CO2-H2O型、纯CO2型和H2O溶液型3种类型流体包裹体,晚期仅发育水溶液型包裹体。早期石英中包裹体均一温度为237~386℃,盐度为1.4%~9.2% NaCl equiv.;中期石英获得CO2-H2O和水溶液包裹体均一温度为204~310℃,盐度为0.5%~16.6% NaCl equiv.;晚期水溶液包裹体具有较低的均一温度(125~235℃)和盐度(0.2%~10.6% NaCl equiv.)。根据CO2-H2O型包裹体计算早、中期的流体压力分别为267 MPa和208~253 MPa,对应形成的深度分别为10 km,8~9 km。同位素分析结果揭示,成矿的流体具有变质流体以及大气降水的特征,成矿物质主要来源于赋矿地层-古生代碎屑岩-碳酸盐岩建造。
结论 萨瓦亚尔顿金矿床晚古生代经历了早期挤压向晚期走滑伸展的转变;早期NW-SE向的挤压作用促使地层变质脱水产生了大量富CO2、低盐度的变质流体,形成无矿石英脉;在构造变形转向走滑伸展时,造山带抬升剥蚀,流体压力降低并发生不混溶或沸腾作用,CO2等气体逃逸,诱发浅源大气降水加入并与变质热液混合,导致大量成矿物质快速沉淀成矿。
Abstract:This paper is the result of mineral exploration engineering.
Objective The relationship between structure-fluid and mineralization is a frontier problem in modern study of mineral deposit. The orogenic-type gold deposits are hosted in fault zone, and are representative target to study structural deformation and fluid evolution responsible for mineralization process.
Methods The Sawayardun orogenic-type gold lode system is the largest gold deposit in the Southwestern Tianshan Orogen, northwestern China. Basing on results of structural analysis, fluid inclusions and C-H-O-S isotope, natures of ore-controlling structure and ore-fluid, and metal source were studied.
Results The structural deformation at the Sawayardun mine can be divided into the early ductile, middle ductile-brittle, and late brittle stages, according to the crosscutting relationships of veins, and macro and micro structures. The three-stage deformation process associated with three kinds of quartz veins (Qz1, Qz2, Qz3) from early to late, with gold mineralization being mainly introduced in middle stage. Quartz formed in the early and middle stages (Qz1 and Qz2) contains three compositional types of fluid inclusions, i.e. pure CO2, CO2-H2O and NaCl-H2O, but the late-stage minerals only contain the NaCl-H2O inclusions. The inclusions trapped in the early, middle and late stages yield total homogenization temperatures of 237℃-386℃, 204℃ -310℃, and 125℃-235℃, respectively, with corresponding salinities of 1.4-9.2, 0.5-16.6, and 0.2%-10.6% NaCl equiv., respectively. The minimum trapping pressures estimated from CO2-H2O inclusions are 267 MPa and 208-253 MPa in the early and middle stages, corresponding to lithostatic depths of 10 km and 8~9 km, respectively. The isotope systematics shows the nature of metamorphic and meteoric fluids and the hostrocks (Palaeozoic clastic and carbonate sediments) to be a significant source of ore metals.
Conclusions The structural deformation features at Sawayardun indicate that the mineralization was associated with the tectonic transition from the early NW-SE-trending compression to the late strike-slip extension. The early compression caused the metamorphism and metamorphic dehydration of the Palaeozoic clastic and carbonate sedimentary rocks, resulting in the formation of the low salinity, CO2-rich fluids and the early-stage barren quartz veins. Coupling with the tectonic transition from compression to strike-slip extension, the crust was rapidly uplifted and eroded, the fluid system depressurized and boiled, and mixed with and input by and mixed with the meteoric water, causing rapid escape of gases such as CO2 and deposition of ore-metals such as Au.
-
Key words:
- Orogenic gold deposit /
- structure /
- fluid /
- mineral exploration engineering /
- Sawayardun /
- Southwestern Tianshan Orogen
-
图 1 天山造山带构造简图(a,据Zhang et al., 2017修改)及西南天山区域地质及矿床分布示意图(b)
Figure 1.
图 9 萨瓦亚尔顿金矿成矿流体的δ18O-δD组成(底图据Taylor, 1997, 其他矿床数据引用文献见正文)
Figure 9.
图 11 西南天山萨瓦亚尔顿金矿构造-流体与成矿模式图(b据陈衍景等, 2008; 陈衍景, 2013)
Figure 11.
表 1 萨瓦亚尔顿金矿床石英流体包裹体显微测温结果
Table 1. Microthermometric data for fluid inclusions in quartz from the Sawayardun gold deposit
表 2 萨瓦亚尔顿金矿流体的δ18O,δD和δ13C(‰)
Table 2. The δ18O, δD and δ13C ratios (‰) of the Sawayardun gold deposit
表 3 萨瓦亚尔顿金矿硫同位素分析结果
Table 3. The δ134S values of sulfides at the Sawayardun gold deposit
-
Bodnar R J. 1993. Reviced equation and table for determining the freezing point depression of H2O-NaCl solutions[J]. Geochim. Cosmochim. Acta, 57: 683-684. doi: 10.1016/0016-7037(93)90378-A
Brown P E. 1989. Flincor: A microcomputer program for the reduction and investigation of fluid inclusion data[J]. American Mineralogist, 74: 1390-1393. https://www.researchgate.net/publication/279895263_FLINCOR_a_microcomputer_program_for_the_reduction_and_investigation_of_fluid-inclusion_data
Chen Fuwen, Li Huaqin. 2003. Metallogenic chronology of the Sawayaerdun gold-antimony deposit in Xinjiang[J]. Acta Geoscientica Sinica, 24(6): 563-567 (in Chinese with English abstract).
Chen Huayong, Chen Yanjing, Ni Pei, Zhang Zengjie. 2004. Fluid inclusion study of the Sawayardun deposit in Southern Tianshan, China: Implication for ore genesis and exploration[J]. Journal of Mineralogy and Petrology, 24(3): 46-54 (in Chinese with English abstract).
Chen Huayong, Chen Yanjing, Ni Pei, Zhang Li, Zhang Zengjie. 2007. Chemical composition of fluid inclusions of the Sawayardun gold deposit, Xinjiang: Implications for oregenesis and prediction[J]. Acta Petroglogica Sinica, 23(9): 2189-2197 (in Chinese with English abstract). https://www.researchgate.net/publication/283288544_Chemical_composition_of_fluid_inclusions_of_the_Sawayardun_gold_deposit_Xinjiang_and_its_implications_for_metallgeny_and_exploration
Chen H Y, Chen Y J, Baker M J. 2012a. Evolution of ore-forming fluids in the Sawayaerdun gold deposit in the Southwestern Chinese Tianshan metallogenic belt, Northwest China[J]. Journal of Asian Earth Sciences, 49: 131-144. doi: 10.1016/j.jseaes.2011.05.011
Chen H Y, Chen Y J, Baker M J. 2012b. Isotopic geochemistry of the Sawayaerdun orogenic-type gold deposit, Tianshan, northwest China: Implications for ore genesis and mineral exploration[J]. Chemical Geology, 310/311: 1-11. doi: 10.1016/j.chemgeo.2012.03.026
Chen Y J, Pirajno F, Qi J P, Li J, Wang H H. 2006. Ore geology, fluid geochemistry and genesis of the Shanggong gold deposit, eastern Qinling Orogen, China[J]. Resource Geology, 56(2): 99-116. doi: 10.1111/j.1751-3928.2006.tb00272.x
Chen Y J, Pirajno F, Qi J P. 2005. Origin of gold metallogeny and sources of ore-forming fluids in the Jiaodong Province, eastern China[J]. International Geology Review, 47: 530-549. doi: 10.2747/0020-6814.47.5.530
Chen Y J, Pirajno F, Sui Y H. 2004. Isotope geochemistry of the Tieluping silver deposit, Henan, China: A case study of orogenic silver deposits and related tectonic setting[J]. Mineralium Deposita, 39: 560-575. doi: 10.1007/s00126-004-0429-9
Chen Yanjing, Fu Shigu. 1992. Gold Mineralization in West Henan, China[M]. Beijing: Seismological Press, 234 (in Chinese with English abstract).
Chen Yanjing, Ni Pei, Fan Hongrui, Pirajno F, Lai Yong, Su Wenchao and Zhang Hui. 2007. Diagnostic fluid inclusions of different types hydrothermal gold deposits[J]. Acta Petrologica Sinica, 23(9): 2085-2108 (in Chinese with English abstract).
Chen Yanjing, Xiao Wenjiao, Zhang Jinjiang. 2008. Ore-system as a geodynamic probe[J]. Geology in China, 35 (6): 1059-1073 (in Chinese with English abstract). https://www.researchgate.net/publication/268519254_Ore-system_as_a_geodynamic_probe
Chen Yanjing, Zhang Jing, Zhang Fuxin, Pirajno F, Li Chao. 2004. Carlin and Carlin-like gold deposits in Western Qinling Mountains and their metallogenic time, tectonic setting and model[J]. Geological Review, 50: 134-152 (in Chinese with English abstract). https://www.researchgate.net/publication/274565354_Carlin_and_Carlin-like_Gold_Deposits_in_Western_Qinling_Mountains_and_Their_Metallogenic_Time_Tectonic_Setting_and_Model
Chen Yanjing. 2006. Orogenic-type deposits and their metallogenic model and exploration potential[J]. Geology in China, 33(6): 1181-1196 (in Chinese with English abstract). https://www.researchgate.net/publication/268518982_Orogenic-type_deposits_and_their_metallogenic_model_and_exploration_potential
Chen Yanjing. 2010. Indosinian tectonic setting, magmatism and metallogenesis in Qinling Orogen, central China[J]. Geology in China, 37(4): 854-865 (in Chinese with English abstract). https://www.researchgate.net/publication/268518857_Indosinian_tectonic_setting_magmatism_and_metallogenesis_in_Qinling_Orogen_central_China
Chen Yanjing. 2013. The development of continental collsion metallogeny and its application[J]. Acta Petrologica Sinica, 29(1): 1-17 (in Chinese with English abstract). https://www.researchgate.net/publication/235990978_The_development_of_continental_collision_metallogeny_and_its_application
Chen Z L, Wang Z X, Han F B, Zhang W G, Zhang Q, Zhou Z J, Wang X H, Xiao W F, Han S Q, Yu X Q, Sun Y, Nurgazy T, Latysheve N, Zailabidin H. 2017. Late Cretaceous-Cenozoic uplift, deformation, and erosion of the SW Tianshan Mountains in Kyrgyzstan and Western China[J]. International Geology Review, 60: 1-19.
Clayton R N, O'Neil J R, Mayeda T K. 1972. Oxygen isotope exchange between quartz and water[J]. Journal of Geophysical Research, 77: 3057-3067. doi: 10.1029/JB077i017p03057
Collins P L F. 1979. Gas hydrates in CO2-bearing fluid inclusions and use of freezing data for estimation of salinity[J]. Economic Geology, 74: 1435-1444. doi: 10.2113/gsecongeo.74.6.1435
Cox S F, Sun S S, Etheridge M A, Wall V J, Potter T F. 1995. Structural and geochemical controls on the development of turbidite-hosted gold quartz vein deposits, Wattle Gully Mine, Central Victoria, Australia[J]. Economic Geology, 90: 1722-1746. doi: 10.2113/gsecongeo.90.6.1722
Deng Jun, Yang Liqiang, Zhai Yusheng, Sun Zhongshi, Chen Xueming. 2000. Theoretical framework and methodological system of tectonics-fluids-mineralization system and dynamics[J]. Earth Science, 25(1): 71-78 (in Chinese with English abstract). https://www.researchgate.net/publication/287661255_Theoretical_framework_and_methodological_system_of_tectonics-fluids-mineralization_system_and_dynamics
Deng Xiaohua, Li Wenbo, Li Nuo, Mi Mei, Zhang Ying. 2008. Fluid inclusions constrains on the origin of the Zhifang Mo deposit in Songxian County, Henan Province[J]. Acta Petrologica Sinica, 24(9): 2133-2148(in Chinese with English Abstract).
Fan H R, Xie Y H, Zhao R, Wang Y L. 2000. Dual origions of Xiaoqinling gold-bearing quartz veins: Fluid inclusion evidences[J]. Chinese Science Bulletin, 45 (5): 537-542. doi: 10.1360/csb2000-45-5-537
Fan H R, Zhai M G, Xie Y H, Yang J H. 2003. Ore-forming fluids associated with granite-hosted gold mineralization at the Sanshandao deposit, Jiaodong gold province, China[J]. Mineralium Deposita, 38 (6): 739-750. doi: 10.1007/s00126-003-0368-x
Faure G. 1986. Principles of Isotope Geology[M]. 2nd edition. John Wiley and Sons, New York, 589 pp.
Gao Z L, Kwak T. 1995. Turbidite-hosted gold deposits in the Bendigo-Ballarat and Melbourne Zones, Australia. I. geology, mineralization, stable isotopes, and implications for exploration[J]. International Geology Review, 37: 910-944. doi: 10.1080/00206819509465433
Geological Team No. 2 (Xinjiang Bureau of Geology and Mineral Resources). 2015. Prospecting report of the Sawayaerdun gold deposit, Wuqia County, Uygur Autonomous Region of Xinjiang[R]. 1-302 (in Chinese).
Goldfarb R J, Leach D L, Rose S C, Landis G P. 1989. Fluid inclusion geochemistry of gold-bearing quartz veins of the Juneau gold belt, southeastern Alaska: Implications for ore genesis[J]. Economic Geology Monograph, 6: 363-375. https://pubs.geoscienceworld.org/segweb/books/book/1209/chapter/107016282/Fluid-Inclusion-Geochemistry-of-Gold-Bearing
Goldfarb R J, Newberry R J, Pickthorn W J, Gent C A. 1991. Oxygen, hydrogen, and sulfur isotope studies in the Juneau gold deposit, southeastern Alaska: Constraints on the origin of hydrothermal fluids[J]. Economic Geology, 86: 66-80. doi: 10.2113/gsecongeo.86.1.66
Hagemann S G, Luders V. 2003. P-T-X conditions of hydrothermal fluids and precipitation mechanism of stibnite-gold mineralization at the Wiluna lode-gold deposits, Western Australia: Conventional and infrared microthermometric constraints[J]. Mineralium Deposita, 38: 936-952 doi: 10.1007/s00126-003-0351-6
Hoefs J. 1997. Stable Isotope Geochemistry[M]. 4th edition. Springer-Verlag, Berlin, 201.
Hofes J. 2009. Stable Isotope Geochemistry[M]. Berlin, Springer, 1-285.
Jia Y, Li X, Kerrich R. 2001. Stable isotope (O, H, S, C and N) systematics of quartz vein systems in the tubidite-hosted Central and North Deborah gold deposits of the Bendigo gold field, Central Victoria, Australia: Constraints on the origin of oreforming fluids[J]. Economic Geology, 96: 705-721. doi: 10.2113/gsecongeo.96.4.705
Kerrich R, Fryer B J, King R W, Willmore L M, Hees E. 1987. Crustal outgassing and LILE enrichment in major lithosphere structures, Archean Abitibi greenstone belt: Evidence on the source reservoir from strontium and carbon isotope tracers[J]. Contributions to Mineralogy and Petrology, 97: 156-168. doi: 10.1007/BF00371236
Kerrich R. 1987. The stable isotope geochemistry of Au-Ag vein deposits in metamorphic rocks[C]//Kyser T K (ed.). Stable Isotope Geochemistry of Low Temperature Fluids: Mineralogical Association of Canada Short Course, 13: 287-336.
Liu Benpei, Wang Ziqiang, Zhang Chuanheng, Ma Hongwen, Zhou Hongrui, Zhu Hong. 1996. Tectonic Framework and Evolution in Southwest Tianshan Mountains, China[M]. Wuhan: China University of Geoscience Press, 1-120 (in Chinese with English abstract).
Liu Jiajun, Zheng Minghua, Long Xunrong, Zhang Shouting, Song Xiehuo, Gu Tuan. 1999. Redefinition of ore-bearing strata age of Sawaya'erdun gold deposit in Xinjiang and its significant[J]. Chinese Science Bulletin, 44(6): 653-656 (in Chinese). doi: 10.1360/csb1999-44-6-653
Liu Jiajun, Zheng Minghua, Long Xunrong, Yin Huaixin, Wang Jiangzhen, Li Endong, Wang Jin. 2002. Metallogenic characteristics of Sawayaerdun gold deposit in Xinjiang, and their similarities to and differences from those of Muruntau-type gold deposits[J]. Acta Mineralogica Sinica, 22(1): 54-61 (in Chinese with English abstract).
Lu Huanzhang, Fan Hongrui, Ni Pei, Ou Guangxi, Shen Kun, Zhang Wenhuai. 2004. Fluid Inclusion[M]. Beijing: Science Press, 208-222 (in Chinese).
Ma Tianlin, Sun Liqian, Chen Xuanhua, Zhou Jianhai, Zhang Xinli. 1999. Study of Orefield Structure of Sawayaerdun Gold Deposit, Wuqia (Ulugqat) County, Xinjiang[R]. 1-107 (in Chinese).
McCuaig T C, Kerrich R. 1998. P-T-t deformation-fluid characteristics of lode gold deposits: Evidence from alteration systematics[J]. Ore Geology Reviews, 12: 381-454. https://www.sciencedirect.com/science/article/pii/S0169136898800024
Ohmoto H, Goldhaber M B. 1997. Sulfur and carbon isotopes[C]//Barnes H L (ed.). Geochemistry of Hydrothermal Ore Deposits. Wiley Interscience, New York, 435-486.
Ohmoto H, Rye R O. 1979. Isotopes of sulphur and carbon[C]//Barnes H L (ed). Geochemistry of Hydrothermal Ore Deposits. New York, John Wiley, 509-567.
Ridley J R, Diamond L W. 2000. Fluid chemistry of orogenic lode gold deposits and implications for genetic models[C]//Hagemann S G, Brown P E (eds.). Reviews in Economic Geology, 13: 141-162.
Schidlowski M. 1998. Beginning of terrestrial life: Problems of the early record and implications for extraterrestrial scenarios[J]. Instruments, methods, and missions for astrobiology, SPIE 3441, 149-157.
Sengör A M C, Natalin B A, Burtman V S. 1993. Evolution of the Altaid tectonic collage and Palaeozoic crustal growth in Eurasia[J]. Nature, 364: 299-307. doi: 10.1038/364299a0
Sibson R H, Robert F, Poulsen H. 1988. High angle reverse faults, fluid pressure cycling and mesothermal gold quartz deposits[J]. Geology, 16: 551-555. https://pubs.geoscienceworld.org/gsa/geology/article-abstract/16/6/551/190624/High-angle-reverse-faults-fluid-pressure-cycling
Taylor H P. 1997. Oxygen and hydrogen isotope relationships in hydrothermal mineral deposits[C]//Barnes H L (ed.). Geochemistry of Hydrothermal Ore Deposits. Wiley and Sons, New York, 229-302.
Wang Deigui. 2000. Characteristics of ophiolite complex in the Sawayaerdun area, Xinjiang and its tectonic significance[C]//Wang Futong (ed.). Proceeding for the Fourth Tianshan Geology, Mineral Resources, 504-509 (in Chinese).
Wulff K, Dziggel A, Kolb J, Vennemann T, Bottcher M E, Meyer F M. 2010. Origin of mineralizing fluids of the sediment-hosted Navachab gold mine, Namibia: Constraints from stable(O, H, C, S) isotopes[J]. Economic Geology. 105(2): 285-302. doi: 10.2113/gsecongeo.105.2.285
Xu Xueyi, Ma Zhongping, Li Xiangmin, He Shiping, Yang Junlu. 2003. The discovery of P-MORB in Jigen area of southwest Tianshan Mountains and its tectonic implications[J]. Acta Petrologica et Mineralogica, 22(3): 245-253(in Chinese with English abstract).
Xue Chunji, Zhao Xiaobo, Mo Xuanxue, Dong Lianhui, Gu Xuexiang, Nurtaev B, Pak N, Zhang Zhaochong, Wang Xinli, Zu Bo, Zhang Guozhen, Feng Bo, Liu Jiaying. 2014. Asian gold belt in western Tianshan and its dynamic setting, metallogenic control and exploration[J]. Earth Science Frontiers, 21(5): 28-155 (in Chinese with English abstract).
Xue Chunji, Zhao Xiaobo, Zhang Guozhen, Mo Xuanxue, Gu Xuexiang, Dong Lianhui, Zhao Shuming, Mi Dengjiang, Nurtaev B, Pak N, Li Zhidan, Wang Xinli, Zu Bo, Yaxiaer Yalikun, Feng Bo. 2015. Metallogenic environments, oreforming types and prospecting potential of Au-Cu-Zn-Pb resources in Western Tianshan Mountains[J]. Geology in China 42(3): 381-410 (in Chinese with English abstract). https://www.researchgate.net/publication/283028040_Metallogenic_environments_ore-forming_types_and_prospecting_potential_of_Au-Cu-Zn-Pb_resources_in_Western_Tianshan_Mountains
Yang Fuquan, Wang Liben, Wang Yitian, Xia Haodong, Deng Hujuan, Ma Boyong. 2004. Ore-forming prospects of gold-antimony metallogenic belt in Southwestern Tianshan Mountain of Xinjiang, China[J]. Journal of Chengdu University of Technology, 31(4): 338-344 (in Chinese with English abstract).
Yang Fuquan, Mao Jingwen, Wang Yitian, Li Mengwen, Ye Huishou, Ye Jinhua. 2005. Geological characteristics and metallogenesis of Sawayaerdun gold deposit in southwest Tianshan Mountains, Xinjiang[J]. Mineral Deposits, 24(3): 206-227 (in Chinese with English abstract).
Yang Fuquan, Mao Jingwen, Wang Yitian, Ye Huishou, Chen Wen. 2006. Chronology and geochemical characteristics of helium, argon, carbon and oxygen isotope in fluid inclusion of the Sawayaerdun gold deposit, Xinjiang, Northwestern China and their significance[J]. Geological Review, 52(3): 341-351(in Chinese with English abstract).
Yang Fuquan, Mao Jingwen, Wang Yitian, Zhao Caisheng, Zhang Yan, Liu Yaling. 2007. Major types, characteristics and metallogenese of gold deposits in southwest Tianshan Mountains, Xinjiang[J]. Mineral Deposits, 26(4): 361-379(in Chinese with English abstract). https://www.researchgate.net/publication/232696998_Major_Types_and_Characteristics_of_Late_Paleozoic_Ore_Deposits_East_Tianshan_Northwest_China
Ye Qingtong, Wu Yiping, Fu Xujie, Chen Mingyong, Ye Jinhua, Zhuang Daoze, Yang Fuquan, Bai Honghai. 1999. Ore-Forming Conditions and Metallogenic Prognosis of Gold and Nonferrous Metallic Resources in Southwestern Tianshan Mountains[M]. Beijing: Geological Publishing House, 1-201(in Chinese with English abstract).
Zacharias J, Paterova B, Pudilova M. 2009. Mineralogy, fluid inclusion, and stable isotope constraints on the genesis of the Roudny Au-Ag deposit, Bohemian Massif[J]. Economic Geology, 104: 53-72. doi: 10.2113/gsecongeo.104.1.53
Zhai Yusheng. 1996. Problems in the study of structure-fluid-ore-forming processes[J]. Earth Science Frontiers, 3(3/4): 230-236(in Chinese with English abstract).
Zhang G Z, Xue C J, Chi G X, Liu J Y, Zhao X B, Zu B, Zhao Y. 2017. Multiple-stage mineralization in the Sawayaerdun orogenic gold deposit, western Tianshan, Xinjiang: Constraints from paragenesis, EMPA analyses, Re-Os dating of pyrite (arsenopyrite) and U-Pb dating of zircon from the host rocks[J]. Ore Geology Reviews, 81: 326-341. doi: 10.1016/j.oregeorev.2016.10.038
Zhang Zhaochong, Dong Shuyun, Huang He, Ma Letian, Zhang Dongyang, Zhang Shu, Xue Chunji. 2009. Geology and geochemistry of the Permian intermediate-acid intrusions in the southwestern Tianshan, Xinjiang, China: Implications for petrogenesis and tectonics[J]. Geological Bulletin of China, 28(12): 1827-1839(in Chinese with English abstract). https://www.researchgate.net/publication/279764604_Geology_and_geochemistry_of_the_Permian_intermediate-acid_intrusions_in_the_southwestern_Tianshan_Xinjiang_China_Implications_for_petrogenesis_and_tectonics
Zheng Minghua, Liu Jiajun, Zhang Shouting, Long Xunrong. 2002. Isotopic composition and genetic indication of Sawaya'erdun gold deposit, Xinjiang[J]. Journal of Chengdu University of Technology, 29(3): 237-245 (in Chinese with English abstract).
Zheng Y F, Hoefs J C. 1993. Effects of mineral precipitation on the sulfur isotope composition of hydrothermal solutions[J]. Chemical Geology, 105(4): 259-269. doi: 10.1016/0009-2541(93)90130-B
Zhou Z J, Chen Y J, Jiang S Y, Hu C J, Qin Y, Zhao H X. 2015. Isotope and fluid inclusion geochemistry and ore genesis of the Qiangma gold deposit, Xiaoqinling gold field, Qinling Orogen, southern margin of North China Craton[J]. Ore Geology Reviews, 66: 47-64. doi: 10.1016/j.oregeorev.2014.10.020
Zhou Z J, Chen Y J, Jiang S Y, Zhao H X, Qin Y, Hu C J. 2014a. Geology, geochemistry and ore genesis of the Wenyu gold deposit, Xiaoqinling gold field, southern margin of North China Craton[J]. Ore Geology Reviews, 59: 1-20. doi: 10.1016/j.oregeorev.2013.12.001
Zhou Z J, Chen Z L, Han F B, Han S Q, Wang Z X, Xiao W F, Shen T, Wu J F. 2018. Fluid inclusion and isotope geochemistry of the Atebayue Sb deposit, South Tianshan Orogen, Kyrgyzstan[J]. Geological Journal, 53: 1050-1060. doi: 10.1002/gj.2943
Zhou Z J, Liu Z W, Qin, Y. 2014b. Geology, geochemistry and genesis of the Huachanggou gold deposit, western Qinling Orogen, central China[J]. Geological Journal, 49: 424-441. doi: 10.1002/gj.2557
陈富文, 李华芹. 2003. 新疆萨瓦亚尔顿金锑矿床成矿作用同位素地质年代学[J]. 地球学报, 24(6): 563-567. doi: 10.3321/j.issn:1006-3021.2003.06.016
陈华勇, 陈衍景, 倪培, 张增杰. 2004. 南天山萨瓦亚尔顿金矿流体包裹体研究: 矿床成因和勘探意义[J]. 矿物岩石, 24(3): 46-54. doi: 10.3969/j.issn.1001-6872.2004.03.006
陈华勇, 陈衍景, 倪培, 张莉, 张增杰. 2007. 新疆萨瓦亚尔顿金矿流体包裹体成分、矿床成因和成矿预测[J]. 岩石学报, 23(9): 2189-2197. doi: 10.3969/j.issn.1000-0569.2007.09.017
陈衍景, 富士谷. 1992. 豫西金矿成矿规律[M]. 北京: 地震出版社, 1-234.
陈衍景, 倪培, 范宏瑞, F Pirajno, 赖勇, 苏文超, 张辉. 2007. 不同类型热液金矿床的流体包裹体特征[J]. 岩石学报, 23(9): 2085-2108. doi: 10.3969/j.issn.1000-0569.2007.09.009
陈衍景, 肖文交, 张进江. 2008. 成矿系统: 地球动力学的有效探针[J]. 中国地质, 35(6): 1059-1073. doi: 10.3969/j.issn.1000-3657.2008.06.004 http://geochina.cgs.gov.cn/geochina/ch/reader/view_abstract.aspx?file_no=20080603&flag=1
陈衍景, 张静, 张复新, Pirajno F, 李超. 2004. 西秦岭地区卡林-类卡林金矿床及其成矿时间、构造背景和模式[J]. 地质论评, 50(2): 134-152. doi: 10.3321/j.issn:0371-5736.2004.02.004
陈衍景. 2006. 造山型矿床、成矿模式及找矿潜力[J]. 中国地质, 33 (6): 1181-1196. doi: 10.3969/j.issn.1000-3657.2006.06.001 http://geochina.cgs.gov.cn/geochina/ch/reader/view_abstract.aspx?file_no=20060601&flag=1
陈衍景. 2010. 秦岭印支期构造背景、岩浆活动及成矿作用[J]. 中国地质, 37(4): 854-865. doi: 10.3969/j.issn.1000-3657.2010.04.003 http://geochina.cgs.gov.cn/geochina/ch/reader/view_abstract.aspx?file_no=20100402&flag=1
陈衍景. 2013. 大陆碰撞成矿理论的创建及应用[J]. 岩石学报, 29(1): 1-17. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201301002.htm
邓军, 杨立强, 翟裕生, 孙忠实, 陈学明. 2000. 构造-流体-成矿系统及其动力学的理论格架与方法体系[J]. 地球科学, 25(1): 71-78. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200001015.htm
邓小华, 李文博, 李诺, 糜梅, 张颖. 2008. 河南嵩县纸房钼矿床流体包裹体研究及矿床成因[J]. 岩石学报, 24(9): 2133 -2148.
刘本培, 王自强, 张传恒, 马鸿文, 周洪瑞, 朱鸿. 1996. 西南天山构造格局与演化[M]. 武汉: 中国地质大学出版社, 1-120.
刘家军, 郑明华, 龙训荣, 尹怀信, 王奖臻, 李恩东, 王进. 2002. 新疆萨瓦亚尔顿金矿床成矿特征及其与穆龙套型金矿床的异同性[J]. 矿物学报, 22(1): 54-61. doi: 10.3321/j.issn:1000-4734.2002.01.010
刘家军, 郑明华, 龙训荣, 张寿庭, 宋谢火, 谷团. 1999. 新疆萨瓦亚尔顿金矿床赋矿地层时代的重新厘定及其意义[J]. 科学通报, 44(6): 653-656. doi: 10.3321/j.issn:0023-074X.1999.06.018
卢焕章, 范宏瑞, 倪培, 欧光习, 沈昆, 张文淮. 2004. 流体包裹体[M]. 北京: 科学出版社, 208-222.
马天林, 孙立倩, 陈宣华, 周建海, 张新利. 1999. 新疆西南天山萨瓦亚尔顿金矿矿田构造研究[R]. 1-107.
王德贵. 2000. 新疆萨瓦亚尔顿地区蛇绿杂岩的特征及构造意义[C]//王福同. 第四届天山地质矿产资源学术讨论会论文集, 504-509.
新疆地质矿产勘查开发局第二地质大队, 2015. 新疆维吾尔自治区乌恰县萨瓦亚尔顿金矿勘探报告[R]. 1-302.
徐学义, 马中平, 李向民, 何世平, 杨军录. 2003. 西南天山吉根地区P-MORB残片的发现及其构造意义[J]. 岩石矿物学杂志, 22(3): 245-253. doi: 10.3969/j.issn.1000-6524.2003.03.006
薛春纪, 赵晓波, 莫宣学, 董连慧, 顾雪祥, Bakhtiar Nurtaev, Nikolay Pak, 张招崇, 王新利, 俎波, 张国震, 冯博, 刘家瑛. 2014. 西天山"亚洲金腰带"及其动力背景和成矿控制与找矿[J]. 地学前缘, 21 (5): 128-155. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201405015.htm
薛春纪, 赵晓波, 张国震, 莫宣学, 顾雪祥, 董连慧, 赵树铭, 米登江, Bakhtiar Nurtaev, Nikolay Pak, 李志丹, 王新利, 俎波, 亚夏尔亚力坤, 冯博. 2015. 西天山金铜多金属重要成矿类型、成矿环境及找矿潜力[J]. 中国地质, 42(3): 381-410. doi: 10.3969/j.issn.1000-3657.2015.03.002 http://geochina.cgs.gov.cn/geochina/ch/reader/view_abstract.aspx?file_no=20150302&flag=1
杨富全, 王立本, 王义天, 夏浩东, 邓会娟, 马伯永. 2004. 西南天山金锑成矿带成矿远景[J]. 成都理工大学学报. 31(4): 338-344. doi: 10.3969/j.issn.1671-9727.2004.04.002
杨富全, 毛景文, 王义天, 李蒙文, 叶会寿, 叶锦华. 2005. 新疆西南天山萨瓦亚尔顿金矿床地质特征及成矿作用[J]. 矿床地质, 24(3): 206-227. doi: 10.3969/j.issn.0258-7106.2005.03.002
杨富全, 毛景文, 王义天, 赵财胜, 叶会寿, 陈文. 2006. 新疆萨瓦亚尔顿金矿床年代学、氦氩碳氧同位素特征及其地质意义[J]. 地质论评, 52(3): 341-351. doi: 10.3321/j.issn:0371-5736.2006.03.015
杨富全, 毛景文, 王义天, 赵财胜, 张岩, 刘亚玲. 2007. 新疆西南天山金矿床主要类型、特征及成矿作用[J]. 矿床地质, 26(4): 361-379. doi: 10.3969/j.issn.0258-7106.2007.04.002
叶庆同, 吴一平, 傅旭杰, 陈明勇, 叶锦华, 庄道泽, 杨富全, 白洪海. 1999. 西南天山金和有色金属矿床成矿条件和矿床预测[M]. 北京: 地质出版社, 1-201.
翟裕生. 1996. 关于构造-流体-成矿作用研究的几个问题[J]. 地学前缘, 3(3/4): 230-236.
张招崇, 董书云, 黄河, 马乐天, 张东阳, 张舒, 薛春纪. 2009. 西南天山二叠纪中酸性侵入岩的地质学和地球化学: 岩石成因和构造背景[J]. 地质通报, 28(12): 1827-1839. doi: 10.3969/j.issn.1671-2552.2009.12.015
郑明华, 刘家军, 张寿庭, 龙训荣. 2002. 萨瓦亚尔顿金矿床的同位素组成特征及其成因意义[J]. 成都理工大学学报(自科版), 29(3): 237-245. https://www.cnki.com.cn/Article/CJFDTOTAL-CDLG200203001.htm