Electrical characteristics and prospecting evaluation of Panzhihua crystalline graphite deposit in Sichuan Province
-
摘要:
研究目的 石墨具有高的电子导电性,电性呈现形式为低阻(< 10-5Ω·m)高极化(> 40%)特征,正是由于石墨的超低阻特性,在石墨矿地球物理勘查中经常遇到"低阻屏蔽"作用,因此,优选有效的电法勘探组合在石墨矿勘查中非常重要。
研究方法 本文选择四川攀枝花中坝晶质石墨矿开展正演模拟,同时对典型矿床开展自然电位法和宽频电磁法的有效性和适用性分析。
研究结果 遵循"从已知到未知的原则",利用该方法组合在中坝外围唐家坪石墨矿勘查中取得了较好的应用效果,为该区矿产地评价提供了重要支撑。
结论 自然电位法+宽频大地电磁测深法的组合地球物理方法能够有效圈定石墨矿地表范围及深部延展,为相似地质条件下的石墨矿勘查提供了应用示范。
Abstract:This paper is the result of mineral exploration engineering.
Objective Graphite, characterized by high electronic conductivity, with low resistivity (< 10-5Ω.m) and high polarization (> 40%). Due to the ultra-low resistance of graphite, "low resistance shielding" is often encountered in the geophysical exploration. Therefore, it is very important to optimize the effective geophysics methods in graphite exploration.
Methods In this paper, the Zhongba crystalline graphite deposit in Panzhihua, Sichuan Province is selected for forward simulation, and the effectiveness and applicability of spontaneous potential method and broadband electromagnetic method are analyzed for typical deposits.
Results Following the principle of "from known to unknown", this method has been successfully applied in the Tangjiaping Graphite exploration, which identified in the periphery of Zhongba deposit. It provides an important support for the mineral evaluation in this area.
Conclusions we proposed a geophysical methods which synthesized the spontaneous potential method and the broadband magnetotelluric sounding method, which can effectively delineate the graphite orebody extension at surface and underground.At the same time, it provides an application demonstration for graphite exploration under similar geological conditions.
-
-
表 1 攀枝花地区岩(矿)石电性统计
Table 1. Statistics of physical parameters of rocks in Panzhihua
表 2 大地电磁相关参数表
Table 2. Relevant parameter of MT
-
Bai Q, Zhang S T, Wang W L, Wang Z J. 2015. Variance of graphite import-export volume and price in china for 2003-2012: A time series analysis[J]. Resources Policy, 44: 65-70. doi: 10.1016/j.resourpol.2015.01.004
Constable S C, Parker R L, Constable C. 1987. A practical algorithm for generating smooth models from electromagnetic sounding data[J]. Geophysics, 52(3): 289-300. doi: 10.1190/1.1442303
Dissanayake C B, Chandrajith R, Boudou J P. 2000. Biogenic graphite as a potential geomarker -Application to continental reconstructions of Pan-African Gondwana terrains[J]. Gondwana Research, 3: 405-413. doi: 10.1016/S1342-937X(05)70298-7
Dong Hao, Wei Wenbo, Ye Gaofeng, Jin Sheng, Jin Jianen, Zhang Letian, Zhang Fan, Xie Chenliang. 2012. Study of two dimensional magnetotelluric inversions of complex three dimensional structures[J]. Chinese J. Geophys, 55(12): 4003-4014 (in Chinese with English abstract).
Glassley W. 1982. Fluid evolution and graphite genesis in the deep continental crust[J]. Nature, 295: 299-231. doi: 10.1038/295299a0
Hu Yaoxing, 2015. Application of comprehensive electrical methodin the Jamming area of graphite ore deposit[J]. China non-metallic minerals industry, 4: 29-33(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-LGFK201504010.htm
Huang Bojun. 1986. Graphitization of carbonaceous material in metamorphic rocks[J]. Acta Mineralogica Sinica, 6(4): 350-355(in Chinese with English abstract).
Jiang Gaozhen, Li Yike, Wang Anjian, Yang Xuan. 2017. Genetic features of Dawudian graphite deposit in Urad Middle Banner, Inner Mongolia[J]. Earth Science Frontiers, 5(24): 307-316(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DXQY201705032.htm
Jin Guangwen. 1991. A sensitivity study on magnetotelluric data[J]. Acta Geophysica Sinica, 4: 465-473(in Chinese with English abstract).
Li Chao, Wang Denghong, Zhao Hong. 2015. Minerogenetic regularity of graphite deposits in China[J]. Mineral Deposits, 34(6): 1223-1236(in Chinese with English abstract).
Li Hanbin, Zhang Bing. 2015. Metamorphism and its significance of Yunshan graphite deposit in Heilongjiang[J]. China Non-metallic Minerals Industry, 1: 45-46(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-LGFK201401017.htm
Lin Changyou, Wu Yuxia. 1991. On the joint inversion of Magnetotelluric data[J]. Northwestern Seismological Journal, 2(13): 8-20(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZBDZ199102001.htm
Liu Huanan, Liu Jiajun, Li Xiaowei, Liu Chonghao, Dai Hongzhang, Tao Yinlong, Wang Jianfeng, Du Yingdong, Fan Yunfei. 2018. Thermoelectric characteristics of pyrite from the Xindigou gold deposit in Inner Mongolia and its significance on deep prospecting[J]. Geology in China, 45(4): 819-838(in Chinese with English abstract).
Lu Yaozu, Shi Guocheng. 2016. Geological characteristics and genersis analysis of graphite deposit in South Mountain of Datonggou region, Qinghai Province[J]. Journal of Qinghai University(Natural Science Edition), 2(34): 54-59(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-QHXZ201602010.htm
Luo Maojin, Ma Zhixin, Sun Zhiming, Huang Teng, Ren Jingwei, Jiang Yan. 2019. Crystalline-basement crystalline graphite deposit dataset on the northern margin of the Upper Yangtze and North Sichuan[J]. Geology in China, 46(S1): 39-45(in Chinese with English abstract).
Oohashi K, Hirose T, Kobayashi K, Shimamoto T. 2012. The occurrence of graphite-bearing fault rocks in the Atotsugawa fault system, Japan: Origins and implication for fault creep[J]. Journal of Structural Geology, 38: 39-50. doi: 10.1016/j.jsg.2011.10.011
Pitcairn I K, Roberts S, Teagle D A H, Crow D. 2005. Detecting hydrothermal graphite deposition during metamorphism and gold mineralization[J]. Journal of the Geological Society, London, 162: 429-432. doi: 10.1144/0016-764904-139
PoubaZ, Kříbek B, 1986. Organic matter and the concentration of metals in Precambrian stratiform deposits of the Bohemian Massif[J]. Precambrian research, 33: 225-237. doi: 10.1016/0301-9268(86)90023-9
Qiu Gengen, Fang Hui, Lü Qinyin, Peng Yan. 2019. Deep electrical structures and metallogenic analysis in the north section of Wuyishan Mountains and its adjacent areas: Based on three-dimensional magnetotelluric sounding results[J]. Geology in China, 46(4): 775-785(in Chinese with English abstract).
Qiu Yonghai, Chen Baizhen. 1997. Electrochemistry mechanism of induced polarization of graphite ore[J]. The Chinese Journal of Nonferrous Metals, 3(7): 6-9(in Chinese with English abstract).
Schiffbauer J D, Yin L, Bodnar R J, Kaufman A J, Meng F, Hu J, Shen B, Yuan X, Bao H, Xiao S. 2007. Ultrastructural and geochemical characterization of Archean-Paleo-proterozoic graphite particles: Implication for recognizing traces of life in highly metamorphosed rocks[J]. Astrobiology, 7(4): 684-704. doi: 10.1089/ast.2006.0098
Smith J T, Booker J R, 1991. Rapid inversion of two-and three-dimensional magnetotelluricdata[J]. J. Geophys, 96(B3): 3905-3922. doi: 10.1029/90JB02416
Tang Jingtian, Ren Zhengyong, Hua Xirui. 2007. The forward modeling and inversion in geophysical electromagnetic field[J]. Progress in Geophysics, 22(4): 1181-1194(in Chinesewith English abstract).
Ueno Y, Yurimoto H, Yoshioka H, Komiya T, Maruyama S. 2002. Ion microprobe analysis of graphite from ca. 3.8 Ga metasediments, Isuasupracrustal belt, West Greenland: Relationship between metamorphism and carbon isotopic composition[J]. Geochimica et Cosmochimica Acta, 66(7): 1257-1268. doi: 10.1016/S0016-7037(01)00840-7
Upton P, Craw D. 2008. Modelling the role of graphite in development of a mineralised mid-crustal shear zone, Macraes mine, New Zealang[J]. Earth and Planetary Science Letters, 266(3/4): 245-255. https://www.sciencedirect.com/science/article/abs/pii/S0012821X0700698X
Wang Gang, Fang Hui, Qiu Gengen, Huang Jimin. 2019. The deep electrical structure across Anqing-Guichi ore concentration area[J]. Geology in China, 46(4): 795-806(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DIZI201904011.htm
Wang Jian, Lü Chengyuan, Hu Yonghua, Sun Zhigang. 2004. Experiment of rock resistivity under formation conditions[J]. Petroleum Exploration and Development, 13(1): 113-115. http://en.cnki.com.cn/Article_en/CJFDTOTAL-SKYK200401036.htm
Yan Lingya, Gao Shuxue, Chen Zhengguo, Jiao Lixiang, Sun Li, Liu Yanfei, Zhou Wen. 2018. Metallogenic characteristics and metallogenic zoning of graphite deposits in China[J]. Geology in China, 45(3): 421-440(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DIZI201803002.htm
Yu Peng, Wang Jialin, Wu Jiansheng, Zhang Donglun. 2003. Improving inversion resolution by using new definition of magnetotelluric apparent resistivity[J]. Journal of Tongji University, 4(31): 418-423.
Zhang Kun, Lü Qingtian, Yan Jiayong, Zhao Jinhua. 2019. The three-dimensional electrical characteristics of the typical iron and copper deposits in the Lujiang-Zongyang ore concentration area[J]. Geology in China, 46(4): 807-817(in Chinese with English abstract).
Zhang Wenhao, Wang Dandan, Li Shizhen, Zhou Xingui, Zhang Jiaodong, Liu Weibin, Zhou Ximing, Wang Peiye. 2019. The application of gravity-magnetic-electric prospecting engineering for Carboniferous-Permian petroleum geological survey in Sanjiang Basin, Heilongjiang Province[J]. Geology in China, 46(1): 191-202(in Chinese with English abstract).
仇根根, 方慧, 吕琴音, 彭炎. 2019. 武夷山北段及相邻区深部电性构造与成矿分析: 基于三维大地电磁探测结果[J]. 中国地质, 46(4): 775-785. http://geochina.cgs.gov.cn/geochina/ch/reader/view_abstract.aspx?file_no=20190408&flag=1
仇勇海, 陈白珍, 1997. 石墨矿的激发极化电化学机理[J]. 中国有色金属学报, 3(7): 6-9.
董浩, 魏文博, 叶高峰, 金胜, 景建恩, 张乐天, 张帆, 谢成良. 2012. 大地电磁测深二维反演方法求解复杂电性结构问题的适应性研究[J]. 地球物理学报, 55(12): 4003-4014. doi: 10.6038/j.issn.0001-5733.2012.12.012
胡耀星. 2015. 综合电法在干扰区石墨矿勘查中的应用[J]. 中国非金属矿工业导刊, 4: 29-33. https://www.cnki.com.cn/Article/CJFDTOTAL-LGFK201504010.htm
黄伯钧. 1986. 变质岩中碳质物质的石墨化作用[J]. 矿物学报, 6(4): 350-355. doi: 10.3321/j.issn:1000-4734.1986.04.010
姜高珍, 李以科, 王安建, 杨轩, 杨彪, 马莉. 2017. 内蒙古乌拉特中旗大乌淀石墨矿成因特征分析[J]. 地学前缘, 5(24): 307-316.
晋光文. 1991. 大地电磁资料的灵敏度研究[J]. 地球物理学报, 4: 465-473. doi: 10.3321/j.issn:0001-5733.1991.04.007
李超, 王登红, 赵鸿, 裴浩翔, 李欣蔚, 周丽敏, 杜安道, 屈文俊. 2015. 中国石墨矿床成矿规律概要[J]. 矿床地质, 34(6): 1223-1236. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201506011.htm
李寒滨, 张冰. 2014. 黑龙江云山石墨矿床变质作用及其意义[J]. 中国非金属矿工业导刊, 1: 45-46.
林长佑, 武玉霞. 1991. 大地电磁测深资料的联合反演研究[J]. 西北地震学报, 2(13): 8-20. https://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ199102001.htm
刘华南, 刘家军, 李小伟, 刘冲昊, 代鸿章, 陶银龙, 王建锋, 杜映东, 范云飞. 2018. 内蒙古新地沟金矿床黄铁矿热电性特征及深部找矿意义[J]. 中国地质, 45(4): 819-838. http://geochina.cgs.gov.cn/geochina/ch/reader/view_abstract.aspx?file_no=20180412&flag=1
路耀祖, 石国成. 2016. 青海大通沟南山石墨矿床地质特征及其成因分析[J]. 青海大学学报(自然科学版), 2(34): 54-59. https://www.cnki.com.cn/Article/CJFDTOTAL-QHXZ201602010.htm
罗茂金, 马志鑫, 孙志明, 黄腾, 任京伟, 姜岩. 2019. 上扬子北缘川北地区结晶基底晶质石墨矿数据集[J]. 中国地质, 46(S1): 39-45. doi: 10.12029/gc2019Z105 http://geochina.cgs.gov.cn/geochina/ch/reader/view_abstract.aspx?file_no=2019S105&flag=1
汤井田, 任政勇, 化希瑞. 2007. 地球物理学中的电磁场正演与反演[J]. 地球物理学进展, 22(4): 1181-1194. doi: 10.3969/j.issn.1004-2903.2007.04.025
王刚, 方慧, 仇根根, 黄继民. 2019. 安庆-贵池矿集区及邻区深部电性结构研究[J]. 中国地质, 46(4): 795-806. http://geochina.cgs.gov.cn/geochina/ch/reader/view_abstract.aspx?file_no=20190410&flag=1
王建, 吕成远, 胡永华, 孙志刚. 2004. 地层条件下岩石电性特征实验研究[J]. 石油勘探与开发, 13(1): 113-115. doi: 10.3321/j.issn:1000-0747.2004.01.036
颜玲亚, 高树学, 陈正国, 焦丽香, 孙莉, 刘艳飞, 周雯. 2018. 中国石墨矿成矿特征及成矿区带划分[J]. 中国地质, 45(3): 421-440. http://geochina.cgs.gov.cn/geochina/ch/reader/view_abstract.aspx?file_no=20180301&flag=1
于鹏, 王家林, 吴健生, 张东伦. 2003. 利用MT新的视电阻率定义提高反演分辨率[J]. 同济大学学报, 4(31): 418-423. https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ200304010.htm
张昆, 吕庆田, 严加永, 赵金花. 2019. 安徽庐江-枞阳矿集区典型铜、铁矿床三维电性结构特征[J]. 中国地质, 46(4): 807-817. http://geochina.cgs.gov.cn/geochina/ch/reader/view_abstract.aspx?file_no=20190411&flag=1
张文浩, 王丹丹, 李世臻, 周新桂, 张交东, 刘卫彬, 周锡明, 王佩业. 2019. 重磁电勘探在黑龙江三江盆地石炭系-二叠系油气地质调查中的应用[J]. 中国地质, 46(1): 191-202. http://geochina.cgs.gov.cn/geochina/ch/reader/view_abstract.aspx?file_no=20190112&flag=1
-