Hydrate phase transition and seepage mechanism during natural gas hydrate production tests in the South China Sea: A review and prospect
-
摘要:
研究目的 中国地质调查局先后于2017年、2020年在南海北部神狐海域成功实施两轮水合物试采,创造了产气时间最长、产气总量最大、日均产气量最高等多项世界纪录,了解和掌握南海天然气水合物开采储层相变与渗流机理,有助于进一步揭示该类型水合物分解机理、产出规律、增产机制等,可为中国海域水合物资源规模高效开采提供理论基础。
研究方法 基于两轮试采实践,笔者通过深入研究发现,储层结构表征、水合物相变、多相渗流与增渗、产能模拟与调控是制约水合物分解产气效率的重要因素。
研究结果 研究表明,南海水合物相变具有分解温度低,易在储层内形成二次水合物等特点,是由渗流场-应力场-温度场-化学场共同作用的复杂系统;多相渗流作用主要受控于未固结储层的物性特征、水合物相变、开采方式等多元因素影响,具有较强的甲烷吸附性、绝对渗透率易突变、气相流动能力弱等特点;围绕南海水合物长期、稳定、高效开采目标,需要在初始储层改造基础上,通过实施储层二次改造,进一步优化提高储层渗流能力,实现增渗扩产目的。
结论 随着天然气水合物产业化进程不断向前推进,还需要着力解决大规模长时间产气过程中温度压力微观变化及物质能源交换响应机制以及水合物高效分解、二次生成边界条件等难题。
Abstract:This paper is the result of marine hydrates exploration engineering.
Objective The China Geological Survey successfully carried out two NGH production tests in the Shenhu area in the northern South China Sea (SCS) in 2017 and 2020, setting multiple world records, such as the longest gas production time, the highest total gas production, and the highest average daily gas production. Understanding and mastering the phase transition and seepage mechanism of natural gas hydrate reservoir exploitation in the SCS will help to further reveal the decomposition mechanism, production law, and production increase mechanism of this type of hydrate, and provide a theoretical basis for large- scale and efficient exploitation of hydrate resources in China sea.
Methods As suggested by the in-depth research on the two production tests, key factors that restrict the gas production efficiency of hydrate dissociation include reservoir structure characterization, hydrate phase transition, multiphase seepage and permeability enhancement, and the simulation and regulation of production capacity, among which the hydrate phase transition and seepage mechanism are crucial.
Results Study results reveal that the hydrate phase transition in the SCS is characterized by low dissociation temperature, is prone to produce secondary hydrates in the reservoirs, and is a complex process under the combined effects of the seepage, stress, temperature, and chemical fields. The multiphase seepage is controlled by multiple factors such as the physical properties of unconsolidated reservoirs, the hydrate phase transition, and exploitation methods and is characterized by strong methane adsorption, abrupt changes in absolute permeability, and the weak flow capacity of gas. To ensure the long-term, stable, and efficient NGHs exploitation in the SCS, it is necessary to further enhance the reservoir seepage capacity and increase gas production through secondary reservoir stimulation based on initial reservoir stimulation.
Conclusions With the constant progress in the NGHs industrialization, great efforts should be made to tackle the difficulties, such as determining the micro-change in temperature and pressure, the response mechanisms of material-energy exchange, the methods for efficient NGH dissociation, and the boundary conditions for the formation of secondary hydrates in the large-scale, long-term gas production.
-
图 5 六个水合物储层样品的原始灰度图(a)、二值化图(b)及压力场分布图(c)(Bian et al., 2020)
Figure 5.
图 6 水合物样品孔隙度和渗透率拟合示意图(a)以及样品在不同正方向上的进相与渗透率拟合曲线(b)(Bian et al., 2020)
Figure 6.
图 8 水基体系不同盐度条件下天然气水合物分解条件(a)和不同盐度条件下沉积物基体系中水合物分解条件(b)(Geng et al., 2021)
Figure 8.
图 9 甲烷水合物实验数据压力与温度图:a—水基体系;b—沉积物基体系, 其中实线表明实验方法与数据的可靠性(Geng et al., 2021)
Figure 9.
图 14 改进的Langmuir和DR模型拟合不同实验样品结果图(a—KT4-16; b-KT4-17;c—KT4-18;d—KT4-16)(Qi et al., 2022)
Figure 14.
图 16 泥质粉砂与常规砂岩煤层气、致密砂岩气-水两相相对渗透率曲线对比图(Lu et al., 2021)
Figure 16.
图 17 水合物分解区泥质粉砂储层水力压裂断裂特征CT扫描图(Lu et al., 2021)
Figure 17.
图 18 Hydrate Smart平台界面(Sun et al., 2021)
Figure 18.
表 1 世界主要国家水合物试采情况
Table 1. NGH production tests in major countries
表 2 不同样品孔隙半径参数对照
Table 2. Comparison of pore radius parameters between samples
表 3 六个水合物样品和两个砂岩岩心的三维分形维数计算(Bian et al., 2020)
Table 3. Calculated 3D fractal dimensions of six hydrate samples and two sandstone cores (Bian et al., 2020)
-
Bian H, Xia Y X, Lu C, Qin X W, Meng Q B. 2020. Pore structure fractal characterization and permeability simulation of natural gas hydrate reservoir based on CT images[J]. Geofluids, 6934691.
Cai Jianchao, Hu Xiangyun. 2015. Fractal Theory in Porous Media and Its Applications[M]. Beijing: Science Press (in Chinese).
Cai J C, Xia Y X, Lu C, Bian H, Zou S G. 2020. Creeping microstructure and fractal permeability model of natural gas hydrate reservoir[J]. Marine and Petroleum Geology, 115: 104282. doi: 10.1016/j.marpetgeo.2020.104282
Cai Jianchao, Xia Yuxuan, Xu Sai, Tian Haitao. 2020. Advances in multiphase seepage characteristics of natural gas hydrate sediments[J]. Chinese Journal of Theoretical and Applied Mechanics, 52 (1): 208-223 (in Chinese with English abstract).
Cao Qinya. 2017. Fracability of Reservoirs in Frozen Soil[D]. Qingdao: China University of Petroleum (East China), 21-69 (in Chinese with English abstract).
Chaouachi M, Falenty A, Sell K. 2015. Microstructural evolution of gas hydrates in sedimentary matrices observed with synchrotron X-ray computed tomographic[J]. Geochemistry, Geophysics, Geosystems, 16 (6): 1711-1722. doi: 10.1002/2015GC005811
Chen L, Feng Y C, Kogawa T. 2018. Construction and simulation of reservoir scale layered model for production and utilization of methane hydrate: The case of Nankai Trough Japan[J]. Energy, 143: 128-140. doi: 10.1016/j.energy.2017.10.108
Chen Qiang, Hu Gaowei, Li Yanlong, Wan Yizhao, Liu Cangling, Wu Nengyou, Liu Yang. 2020. A prospect review of new technology for development of marine gas hydrate resources[J]. Marine Geology Frontiers, 36 (9): 44-55 (in Chinese with English abstract).
Fan Z B, Sun C M, Kuang Y M. 2017. MRI analysis for methane hydrate dissociation by depressurization and the concomitant ice generation[J]. Energy Procedia, 105: 4763-4768. doi: 10.1016/j.egypro.2017.03.1038
Gao Deli. 2020. Discussin on development modes and engineering techniques for deepwater natural gas and its hydrates[J]. Natural Gas Industry, 40 (8): 136-143 (in Chinese with English abstract).
Geng L T, Cai J, Lu C, Qin X W, Qi R R, Meng F L, Xie Y, Sha Z B, Wang X H, Sun C Y. 2021. Phase equilibria of natural gas hydrates in bulk brine and marine sediments from the South China Sea[J]. Journal of Chemical and Engineering Data, 66: 4064-4074. doi: 10.1021/acs.jced.1c00307
Hauge L P, Birkedal K A, Ersland G, Graue A. 2014. Methane production from natural gas hydrates by CO2 replacement-review of lab experiments and field trial[J]. Proceedings of the SPE Bergen One Day Seminar, SPE-169198-MS.
Heeschen K U, Schicks J M, Oeltzschner G. 2016. The promoting effect of natural sand on methane hydrate formation: Grain sizes and mineral composition[J]. Fuel, 181: 139-147. doi: 10.1016/j.fuel.2016.04.017
Hu Gaowei, Bu Qingtao, Lü Wanjun, Wang Jiasheng, Chen Jie, Li Qing, Gong Jianming, Sun Jianye, Wu Nengyou. 2020. A comparative study on natural gas hydrate accumulation models at active and passive continental margins[J]. Natural Gas Industry, 40(8): 45-58 (in Chinese with English abstract).
Jiang Huaiyou, Qiao Weijie, Zhong Taixian, Song Xinmin, Qi Renli, An Xiaoxuan. 2018. Status and forecast of world's natural gas hydrate exploration & development[J]. Sino-global Energy, 13 (6): 19-25 (in Chinese with English abstract).
Khurana M, Yin Z, Linga P. 2017. A review of clathrate hydrate nucleation[J]. ACS Sustainable Chemistry and Engineering, 5 (12): 11176-11203. doi: 10.1021/acssuschemeng.7b03238
Kondori J, Zendehboudi S, Hossain M E. 2017. A review on simulation of methane production from gas hydrate reservoirs: Molecular dynamics prospective[J]. Journal of Petroleum Science and Engineering, 159: 754-772. doi: 10.1016/j.petrol.2017.09.073
Kumar SawV, Udayabhanu G, Mandal A, Laik S. 2015. Methane hydrate formation and dissociation in the presence of silica sand and bentonite clay[J]. Oil Gas Sci. Technol., 70: 1087-1099. doi: 10.2516/ogst/2013200
Lei X, Yao Y B, Qin X W, Lu C, Luo W J, Wen Z A, Yuan X H. 2022. Pore structure changes induced by hydrate dissociation: An example of the unconsolidated clayey-silty hydrate bearing sediment reservoir in the South China Sea[J]. Marine Geology, 443: 106689. doi: 10.1016/j.margeo.2021.106689
Li J F, Ye J L, Qin X W, Qiu H J, Wu N Y, Lu H L, Xie W W, Lu J A, Peng F, Xu Z Q, Lu C, Kuang Z G, Wei J G, Liang Q Y, Lu H F, Kou B B. 2018. The first offshore natural gas hydrate production test in South China Sea[J]. China Geology, 1(1): 5-16. doi: 10.31035/cg2018003
Li Shouding, Li Xiao, Wang Sijing, Sun Yiming. 2020. A novel method for natural gas hydrate production: depressurization and backfilling with in-situ supple-mental heat[J]. Journal of Engineering Geology, 28 (2): 282-293 (in Chinese with English abstract).
Li Shuxia, Guo Shangping, Chen Mingyue, Zhang Ningtao, Wu Didi. 2020. Advances and recommendations for multi-field characteristics and coupling seepage in natural gas hydrate development[J]. Chinese Journal of Theoretical and Applied Mechanics, 52(3): 828-842 (in Chinese with English abstract).
Li S X, Wang Z Q, Li S. 2021. Investigations on performance of hydrate dissociation by depressurization near the quadruple point[J]. Journal of Natural Gas Science and Engineering, 90: 1-12.
Li Xiaosen. 2008. Progress in researches on exploration and exploitation for natural gas hydrate[J]. Modern Chemical Industry, 28 (6): 1-15 (in Chinese with English abstract).
Li Z, Tian X, Li Z, Xu J, Zhang H, Wang D. 2020. Experimental study on growth characteristics of pore-scale methane hydrate[J]. Energy Reports, 6: 933-943.
Liu W, Cui S, Wang Z, Ding B. 2019. Research progress on adsorbent materials for gas hydrate exploitation by displacement method[J]. Modern Chemical Industry, 11: 53-57.
Liu W, Wang S, Yang M, Song Y, Wang S, Zhao J. 2015. Investigation of the induction time for THF hydrate formation in porous media[J]. Journal of Natural Gas Science and Engineering, 24: 357-364. doi: 10.1016/j.jngse.2015.03.030
Lu C, Ma C, Geng L T, Yu L, Bian H, Qi R R, Xing D H, Mao W J, Meng F L. 2021. Device for simulating the formation and evolution of NGH inverse phase transition[P]. 2021.08.17, China, ZL202023152284.6.
Lu C, Qin X W, Ma C, Bian H, Cui Y D, Rao Y. 2020. Onsite data analysis platform for hydrate production and tests-Hydrate Captain V1.0[P]. 2020.01.3, 2020SR0916459.
Lu C, Qin X W, Mao W J, Ma C, Geng L T, Yu L, Bian H, Meng F, Qi R R. 2021. Experimental study on the propagation characteristics of hydraulic fracture in clayey-silt sediments[J]. Geofluids, 6698649.
Lu C, Qin X W, Yu L, Geng L T, Mao W G, Bian H, Meng F. 2021. The characteristics of gas-water two-phase radial flow in clay-silt sediment and effects on hydrate production[J]. Geofluids, 6623802.
Lu C, Sun X X, Li Z Z, Ma C, Wang J L, Geng L T, Zhang K W. 2019. Simulation system for the radial flow in geological reservoirs[P]. 2019.09.17, China, ZL201821818171.5.
Lu C, Xia Y X, Sun X X, Bian H, Qiu H J, Lu H F, Luo W J, Cai J C. 2019. Permeability evolution at various pressure gradients in natural gas hydrate reservoir at the Shenhu Area in the South China Sea[J]. Energies, 12 (19): 3688. doi: 10.3390/en12193688
Lu H, Matsumoto R. 2002. Preliminary experimental results of the stable P-T conditions of methane hydrate in a nannofossil-rich claystone column[J]. Geochemical Journal, 36 (1): 21-30. doi: 10.2343/geochemj.36.21
Lu Hailong, Shang Shilong, Cheng Xuejun, Qin Xuwen, Gu Lijuan, Qiu Haijun. 2021. Research progress and development direction of numerical simulator for natural gas hydrate development[J]. Acta Petrolei Sinica, 42 (11): 1516-1530 (in Chinese with English abstract).
Lu Z Q, Zhu Y H, Zhang Y Q, Wen H J, Li Y H, Liu C L. 2011. Gas hydrate occurrences in the Qilian Mountain permafrost, Qinghai Province, China[J]. Cold Regions Science and Technology, 66 (2/3): 93-104.
Luo Tianyu, Feng Yi, Hu Rende, Shi Yongheng. 2020. Fracturing technology of subsea gas hydrate reservoir[J]. Drilling & Production Technology, 43 (4): 67-70 (in Chinese with English abstract).
Lü Q, Zang, X R, Li X S, Li G. 2017. Effect of seawater ions on cyclopentane-methane hydrate phase equilibrium[J]. Fluid Phase Equilibria, 458: 272-277.
Ma Gongzheng, Lu Hailong, LU Jing'an, Hou Guiting, Gong Yuehua. 2020. Polygonal fault in marine sediments and its impact on gas hydrate occurrence[J]. Geology in China, 47(1): 1-13(in Chinese with English abstract).
Moridis G J, Collett T S, Dallimore S, Inoue T, Mroz T. 2005. Analysis and interpretation of the thermal test of gas hydrate dissociation in the JAPEX/JNOC/GSC et al. Mallik 5L-38 gas hydrate production research well[J]. Bulletin-Geological Survey of Canada.
Mu L, Cui Q Y. 2019. Experimental study on the dissociation equilibrium of (CH4 + CO2 + N2) hydrates in the mixed sediments[J]. Journal of Chemical and Engineering Data, 64 (12): 5806-5813. doi: 10.1021/acs.jced.9b00760
Ning Fulong, Liang Jinqiang, Wu Nengyou, Zhu Youhai, Wu Shiguo, Liu Changling, Wei Changfu, Wang Dongdong, Zhang Zhun, Xu Meng, Liu Zhichao, Li Jing, Sun Jiaxin, Ou Wenjia. 2020. Reservoir characteristics of natural gas hydrates in China[J]. Natural Gas Industry, 40 (8): 1-24 (in Chinese with English abstract).
Numasawa M. 2008. Objectives and operation over view of the JOGMEC/NRCan/Aurora Mallik gas hydrate production test[C]//Proceedings of the 6th International Conference on Gas Hydrates.
Oyama A, Masutani S M. 2017. A review of the methane hydrate program in Japan[J]. Energies, 10 (10): 1447. doi: 10.3390/en10101447
Qi R G, Qin X W, Bian H, Lu C, Yu L, Ma C. 2021. Overview of molecular dynamics simulation of natural gas hydrate at nanoscale[J]. Geofluids, 6689254.
Qi RR, Qin X W, Lu C, Ma C, Mao W J, Zhang W T. 2022. Experimental study on the isothermal adsorption of methane gas in natural gas hydrate argillaceous silt reservoir[J]. Advances in Geo-Energy Research, 6 (2): 143-156. doi: 10.46690/ager.2022.02.06
Qin X W, Liang Q Y, Ye J L, Yang L, Qiu H J, Xie W W, Liang J Q, Lu J A, Lu C, Lu H L, Ma B J, Kuang Z G, Wei J G, Lu H F, Kou B B. 2020. The response of temperature and pressure of hydrate reservoirs in the first gas hydrate production test in South China Sea[J]. Applied Energy, 278: 115649. doi: 10.1016/j.apenergy.2020.115649
Qin X W, Lu C, Ma C. 2019. Hydrate engine platform-Hydrate Smart V1.0[P]. 2019.11.01, 2019sr1329033.
Qin X W, Lu C, Tian Y Y, Bian H, Meng F L, Cui Y D. 2021. Comprehensive management platform of reservoir physical property data-GH Properties V1.0[P]. 2021.02.10, 2021SR0245278.
Qin X W, Lu J A, Lu H L, Qiu H J, Liang J Q, Kang D J, Zhan L S, Lu HF, Kuang Z G. 2020. Coexistence of natural gas hydrate, free gas and water in the gas hydrate system in the Shenhu Area, South China Sea[J]. China Geology, 3 (2): 210-220.
Qin X W, Ye J L, Qiu H J, Lu C, Sun X X, Ma C, Li Z Z, Wan T H. Geng L T, Zhang X, Zhang K W. 2019. CT technology-based device form measuring the changes in the clayey silt reservoirs in sea areas[P]. 2019.07.16, China, ZL201821815838.6.
Qin X W, Ye J L, Qiu H J, Zhang J H, Lu C, Ma C, Li Z Z, Wan T H, Geng L T, Sa R N. 2019. Device for fracturing experiments of clayey silt reservoir[P]. 2019.03.15, China, ZL201821179508.2.
Qin Y, Pan Z, Liu Z. 2021. Influence of the particle size of porous media on the formation of natural gas hydrate: A review[J]. Energy & Fuels, 35 (15): 11640-11664.
Schoderbek D, Farrell H, Howard J, Raterman K, Silpngarmlert S, Martin K, Smith B, Klein P. 2013. ConocoPhillips gas hydrate production test[R]. United States.
Shi Yaohong, Liang Qianyong, Yang Jiangpin, Yuan Qingmeng, Wu Xuemin, Kong Liang. 2019. Stability analysis of submarine slopes in the area of the test production of gas hydrate in the South China Sea[J]. China Geology, 2(2): 276-286.
Sloan E D, Koh C A. 2007. Clathrate Hydrates of Natural Gases[M]. New York: CRC press.
Song G C, Li Y X, Sum A K. 2020. Characterization of the Coupling between Gas Hydrate Formation and Multiphase Flow Conditions[J]. Journal of Natural Gas Science and Engineering, 83: 103567. doi: 10.1016/j.jngse.2020.103567
Su Pibo, Liang Jinqiang, Zhang Wei, Liu Fang, Wang Feifei. 2020. Natural gas hydrate accumulation system in the Shenhu sea area of the northern South China Sea[J]. Natural Gas Industry, 40 (8): 77-89 (in Chinese with English abstract).
Sun Jinsheng, Cheng Yuanfang, Qin Xuwen, Sun Youhong, Jin Yan, Wang Zhiyuan, Li Shuxia, Lu Cheng, Qu Yuanzhi, Lü Kaihe, Wang Chengwen, Wang Jintang, Wang Ren. 2021. The exploration and production test of gas hydrate and its research progress and exploration prospect in the northern South China Sea[J]. Bulletin of National Natural Science Foundation of China, 35 (6): 940-951 (in Chinese with English abstract).
Sun S C, Kong Y Y, Zhang Y, Liu C L. 2015. Phase equilibrium of methane hydrate in silica sand containing chloride salt solution[J]. The Journal of Chemical Thermodynamics, 90: 116-121. doi: 10.1016/j.jct.2015.06.030
Teixeira A M A, Arinelli L D O, Medeiros J L D, Araújo O. 2018. Recovery of thermodynamic hydrate inhibitors methanol, ethanol and MEG with supersonic separators in offshore natural gas processing[J]. Journal of Natural Gas Science and Engineering, 52: 166-186. doi: 10.1016/j.jngse.2018.01.038
Terao Y, Lay K, Yamamoto K. 2014. Design of the surface flow test system for 1st offshore production test of methane hydrate[J]. Offshore Technology Conference-Asia.
Too J L, Cheng A, Linga P. 2018. Fracturing methane hydrate in sand: A review of the current status[C]//Society of Petroleum Engineers Offshore. Kuala Lumpur, Malaysia, 28292.
Uchida T, Takeya S, Chuvilin E M, Ohmura R, Nagao J, Yakushev V S, Istomin V A, Minagawa H, Ebinuma T, Narita H. 2004. Decomposition of methane hydrates in sand, sandstone, clays and glass beads[J]. Journal of Geophysical Research: Solid Earth, 109 (5): 1-12.
Wang P, Yang M, Chen B, Zhao Y, Zhao J, Song Y. 2017. Methane hydrate reformation in porous media with methane migration[J]. Chemical Engineering Science, 168: 344-51. doi: 10.1016/j.ces.2017.04.036
Wang Pingkang, Zhu Youhai, Lu Zhenquan, Bai Minggang, Huang Xia, Pang Shouji, Zhang Shuai, Liu Hui, Xiao Rui. 2019. Research progress of gas hydrates in the Qilian Mountain permafrost, Qinghai, Northwest China: Review[J]. Scientia Sinica Physica, Mechanica and Astronomica, 49 (3): 034606 (in Chinese with English abstract). doi: 10.1360/SSPMA2018-00133
Wang X H, Wang Y F, Xie Y, Sun C Y, Chen G J. 2018. Study on the decomposition conditions of gas hydrate in quartz sand-brine mixture systems[J]. The Journal of Chemical Thermodynamics, 131: 247-253.
Wei Changfu, Yan Rongtao, Tian Huihui, Zhou Jiazuo, Li Wentao, Ma Tiantian, Chen Pan. 2020. Geotechnical status and challenges of natural gas hydrate exploitation[J]. Natural Gas Industry, 40 (8): 116-132 (in Chinese with English abstract).
Wei Na, Zhou Shouwei, Cui Zhenjun, Zhao Jinzhou, Zhang Liehui, Zhao Jun. 2020. Evaluation of physical parameters and construction of a parameter classification system for natural gas hydrate in the northern South China Sea[J]. Natural Gas Industry, 40 (8): 59-67 (in Chinese with English abstract).
Wu Nengyou, Huang Li, Hu Gaowei, Li Yanlong, Cheng Qiang, Liu Changling. 2017. Geological controlling factors and scientific challenges for offshore gas hydrate exploration[J]. Marine Geology and Quaternary Geology, 37 (5): 1-11 (in Chinese with English abstract).
Wu Nengyou, Li Yanlong, Liu Lele, Wan Yizhao, Zhang Zhengcai, Chen Mingtao. 2021. Controlling factors and research prospect on creeping behaviors of marine natural gas hydrate-bearing-strata[J]. Marine Geology and Quaternary Geology, 41 (5): 3-11 (in Chinese with English abstract).
Wu Nengyou, Li Yanlong, Wan Yizhao, Sun Jianye, Huang Li, Mao Peixiao. 2020. Prospect of marine natural gas hydrate stimulation theory and technology system[J]. Natural Gas Industry, 40 (8): 100-115 (in Chinese with English abstract).
Xu T, Zhang Z B, Li S D, Li X, Lu C. 2021. Numerical evaluation of Gas hydrate production performance of the depressurization and backfilling with an in situ supplemental heat Method[J]. ACS Omega, 6 (18): 12274-12286. doi: 10.1021/acsomega.1c01143
Yamamoto K, Kanno T, Wang X X. 2017. Thermal responses of a gas hydrate-bearing sediment to a depressurization operation[J]. RSC Advance, 7 (10): 5554-5577. doi: 10.1039/C6RA26487E
Yang Chengzhi, Luo Kunwen, Liang Jinqiang, Lin Zhixuan, Zhang Boda, Liu Fang, Su Ming, Fang Yunxin. 2020. Control effect of shallow-burial deepwater deposits on natural gas hydrate accumulation in the Shenhu sea area of the northern South China Sea[J]. Natural Gas Industry, 40(8): 68-76 (in Chinese with English abstract).
Yang Liu, Shi Fukun, Zhang Xuhui, Lu Xiaobing. 2020. Experimental studies on the propagation characteristics of hydrate fracture in clay hydrate sediment[J]. Chinese Journal of Theoretical and Applied Mechanics, 52 (1): 224-234 (in Chinese with English abstract).
Yang L, Ye J L, Qin X W. 2021. Effects of the seepage capability of overlying and underlying strata of marine hydrate system on depressurization-induced hydrate production behaviors by horizontal well[J]. Marine and Petroleum Geology, 128: 105019. doi: 10.1016/j.marpetgeo.2021.105019
Yao Yuanxin, Li Donglian, Liang Deqing. 2020. Research progress on hydraulic fracturing of natural gas hydrate reservoir[J]. Advances in New and Renewable Enengy, 8(4): 282-290 (in Chinese with English abstract).
Ye J L, Qin X W, Xie W W, Lu H L, Ma B J, Qiu H J, Liang G Q, Lu G A, Kuang Z G, Lu C, Liang Q Y, Wei S P, Yu Y J, Liu C H, Li B, Shen K X, Shi H X, Lu Q P, Li J, Kou B B, Song G, Li B, Zhang H E, Lu H F, Ma C, Dong Y F, Bian H. 2020. The second natural gas hydrate production test in the South China Sea[J]. China Geology, 3 (2): 197-209.
Yu L, Zhang L, Zhang R. 2018. Assessment of natural gas production from hydrate-bearing sediments with unconsolidated argillaceous siltstones via a controlled sandout method[J]. Energy, 160: 654-667. doi: 10.1016/j.energy.2018.07.050
Yu M, Li W, Jiang L. 2017. Numerical study of gas production from methane hydrate deposits by depressurization at 274K[J]. Applied Energy, 227: 28-37.
Zhang L, Sun M, Sun L. 2019. In-situ observation for natural gas hydrate in porous medium: Water performance and formation characteristic[J]. Magnetic Resonance Imaging, 65: 166-174.
Zhang Wei, Liang Jinqiang, Su Pibo, Wang Lifeng, Lin Lin, Huang Wei, Wei Jiangong, Liang Jin. 2020. Research progress and prospect of relationship between double bottom simulating reflector and the accumulation of gas hydrates[J]. Geology in China, 47(1): 29-42(in Chinese with English abstract).
Zhang Wei, Liang Jinqiang, Lu Jingan, Meng Miaomiao, He Yulin, Deng Wei, Feng Junxi. 2020. Characteristics and controlling mechanism of typical leakage gas hydrate reservoir forming system in the Qiongdongnan Basin, northern South China Sea[J]. Natural Gas Industry, 40 (8): 90-99 (in Chinese with English abstract).
Zhang Y, Li X S, Wang Y, Chen Z Y, Yan K F. 2016. Decomposition conditions of methane hydrate in marine sediments from South China Sea[J]. Fluid Phase Equilibria, 413: 110-115. doi: 10.1016/j.fluid.2015.12.004
Zhong Guangfa, Zhang Di, Zhao Luanxiao. 2020. Current states of well-logging evaluation of deep-sea gas hydrate-bearing sediments by international scientific ocean drilling (DSDP/ODP/IODP) programs[J]. Natural Gas Industry, 40 (8): 25-44 (in Chinese with English abstract).
Zou Caineng. 2013. Unconventional Petroleum Geology, 2nd Edition[M]. Beijing: Geological Publishing House(in Chinese).
蔡建超, 胡祥云. 多孔介质分形理论与应用[M]. 科学出版社, 2015.
蔡建超, 夏宇轩, 徐赛, 田海涛. 2020. 含水合物沉积物多相渗流特性研究进展[J]. 力学学报, 52(1): 208-223. https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB202001019.htm
曹钦亚. 冻土带水合物储层可压裂性研究[D]. 中国石油大学(华东)石油工程学院, 2017, 21-69.
陈强, 胡高伟, 李彦龙, 万义钊, 刘昌岭, 吴能友, 刘洋. 2020. 海域天然气水合物资源开采新技术展望[J]. 海洋地质前沿, 36(09): 44-55. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDT202009005.htm
高德利. 2020. 深海天然气及其水合物开发模式与钻采技术探讨[J]. 天然气工业, 40(8): 136-143. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202008021.htm
胡高伟, 卜庆涛, 吕万军, 王家生, 陈杰, 李清, 龚建明, 孙建业, 吴能友. 2020. 主动、被动大陆边缘天然气水合物成藏模式对比[J]. 天然气工业, 40(8): 45-58. doi: 10.3787/j.issn.1000-0976.2020.08.003
江怀友, 乔卫杰, 钟太贤, 宋新民, 齐仁理, 安晓璇. 2008. 世界天然气水合物资源勘探开发现状与展望[J]. 中外能源, 13(6): 19-25. https://www.cnki.com.cn/Article/CJFDTOTAL-SYZW200806009.htm
李守定, 李晓, 王思敬, 孙一鸣. 2020. 天然气水合物原位补热降压充填开采方法[J]. 工程地质学报, 28(2): 282-293. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202002009.htm
李淑霞, 郭尚平, 陈月明, 张宁涛, 武迪迪. 2022. 天然气水合物开发多物理场特征及耦合渗流研究进展与建议[J]. 力学学报, 52(3): 828-842. https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB202003023.htm
李小森. 2008. 天然气水合物能源的勘探与开发[J]. 现代化工, 28(6): 1-15. doi: 10.3321/j.issn:0253-4320.2008.06.001
陆程, 秦绪文, 马超, 边航, 崔玉东, 饶阳. 水合物生产测试现场数据分析平台-Hydrate Captain V1.0, 2020.01.31, 2020SR0916459.
陆程, 孙晓晓, 李占钊, 马超, 王静丽, 耿澜涛, 张渴为. 一种地质储层径向流模拟系统[P]. 2019.09.17, 中国, ZL201821818171.5.
陆程, 马超, 耿澜涛, 余路, 边航, 齐荣荣, 邢东辉, 毛文静, 孟凡乐. 一种天然气水合物逆相变形成演化规律模拟装置[P]. 2021.08.17. 中国, ZL202023152284.6.
卢海龙, 尚世龙, 陈雪君, 秦绪文, 古利娟, 邱海峻. 2021. 天然气水合物开发数值模拟器研究进展及发展趋势[J]. 石油学报, 42(11): 1516-1530. doi: 10.7623/syxb202111011
罗天雨, 冯一, 胡仁德, 石咏衡. 2020. 海下天然气水合物储层压裂工艺技术[J]. 钻采工艺, 43(4): 67-70. doi: 10.3969/J.ISSN.1006-768X.2020.04.19
马公正, 卢海龙, 陆敬安, 侯贵廷, 龚跃华. 2020. 海底沉积物多边形断层及其对天然气水合物赋存的控制[J]. 中国地质, 47(1): 1-13. http://geochina.cgs.gov.cn/geochina/ch/reader/view_abstract.aspx?file_no=20200101&flag=1
宁伏龙, 梁金强, 吴能友, 祝有海, 吴时国, 刘昌岭, 韦昌富, 王冬冬, 张准, 徐猛, 刘志超, 李晶, 孙嘉鑫, 欧文佳. 2020. 中国天然气水合物赋存特征[J]. 天然气工业, 40(8): 1-24. doi: 10.3787/j.issn.1000-0976.2020.08.001
秦绪文, 陆程, 马超. 水合物引擎-Hydrate Smart平台V1.0. 2019.11.01, 2019sr1329033.
秦绪文, 陆程, 田英英, 边航, 孟凡乐, 崔玉东, 天然气水合物储层物性数据综合管理平台-GH Properties V1.0[P]. 2021.02.10, 2021SR0245278.
秦绪文, 叶建良, 邱海峻, 张建华, 陆程, 马超, 李占钊, 万庭辉, 耿澜涛, 萨日娜, 泥质粉砂油气层的压裂实验装置[P]. 2019.03.15, 中国, ZL201821179508.2.
秦绪文, 叶建良, 邱海峻, 陆程, 孙晓晓, 马超, 李占钊, 万庭辉, 耿澜涛, 张熙, 张渴为, CT技术测量海域泥质粉砂储层结构变化的装置[P]. 2019.07.16, 中国, ZL201821815838.6.
苏丕波, 梁金强, 张伟, 刘坊, 王飞飞. 2020. 南海北部神狐海域天然气水合物成藏系统[J]. 天然气工业, 40(8): 77-89. doi: 10.3787/j.issn.1000-0976.2020.08.006
孙金声, 程远方, 秦绪文, 孙友宏, 金衍, 王志远, 李淑霞, 陆程, 屈沅治, 吕开河, 王成文, 王金唐, 王韧. 2021. 南海天然气水合物钻采机理与调控研究进展[J]. 中国科学基金, 35(6): 940-951. https://www.cnki.com.cn/Article/CJFDTOTAL-ZKJJ202106013.htm
王平康, 祝有海, 卢振权, 白名岗, 黄霞, 庞守吉, 张帅, 刘晖, 肖睿. 2019. 青海祁连山冻土区天然气水合物研究进展综述[J]. 中国科学: 物理学力学天文学, 49(3): 76-95. https://www.cnki.com.cn/Article/CJFDTOTAL-JGXK201903005.htm
韦昌富, 颜荣涛, 田慧会, 周家作, 李文涛, 马田田, 陈盼. 2020. 天然气水合物开采的土力学问题: 现状与挑战[J]. 天然气工业, 40(8): 83-99. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202008014.htm
魏纳, 周守为, 崔振军, 赵金洲, 张烈辉, 赵军. 2020. 南海北部天然气水合物物性参数评价与分类体系构建[J]. 天然气工业, 40(8): 59-67. doi: 10.3787/j.issn.1000-0976.2020.08.004
吴能友, 黄丽, 胡高伟, 李彦龙, 陈强, 刘昌岭. 2017. 海域天然气水合物开采的地质控制因素和科学挑战[J]. 天然气工业, 37(5): 1-11. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ201705001.htm
吴能友, 李彦龙, 刘乐乐, 万义钊, 张正财, 陈明涛. 2021. 海洋天然气水合物储层蠕变行为的主控因素与研究展望[J]. 海洋地质与第四纪地质, 41(5): 3-11. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ202105002.htm
吴能友, 李彦龙, 万义钊, 孙建业, 黄丽, 毛佩筱. 2020. 海域天然气水合物开采增产理论与技术体系展望[J]. 天然气工业, 40(8): 100-115. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202008013.htm
杨承志, 罗坤文, 梁金强, 林智轩, 张伯达, 刘坊, 苏明, 方允鑫. 2020. 南海北部神狐海域浅层深水沉积体对天然气水合物成藏的控制[J]. 天然气工业, 40(8): 68-76. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202008008.htm
杨柳, 石富坤, 张旭辉, 鲁晓兵. 2020. 含水合物粉质黏土压裂成缝特征实验研究[J]. 力学学报, 52(1): 224-234. https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB202001020.htm
姚远欣, 李栋梁, 梁德青. 2020. 天然气水合物储层水力压裂研究进展[J]. 新能源进展, 8(4): 282-290. https://www.cnki.com.cn/Article/CJFDTOTAL-XNYJ202004005.htm
张伟, 梁金强, 苏丕波, 王力峰, 林霖, 黄伟, 尉建功, 梁劲. 2020. 双似海底反射层与天然气水合物成藏关系研究进展与展望[J]. 中国地质, 47(1): 29-42. http://geochina.cgs.gov.cn/geochina/ch/reader/view_abstract.aspx?file_no=20200103&flag=1
张伟, 梁金强, 陆敬安, 孟苗苗, 何玉林, 邓炜, 冯俊熙. 2020. 琼东南盆地典型渗漏型天然气水合物成藏系统的特征与控藏机制[J]. 天然气工业, 40(8): 90-99. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202008011.htm
钟广法, 张迪, 赵峦啸. 2020. 大洋钻探天然气水合物储层测井评价研究进展[J]. 天然气工业, 40(8): 25-44. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202008003.htm
邹才能. 非常规油气地质(第二版)[M]. 北京: 地质出版社, 2013.