中国地质调查局 中国地质科学院主办
科学出版社出版

环渤海湿地沉积物球囊霉素相关土壤蛋白分布特征及其对湿地土壤风化的影响

周攀, 叶思源, 王锦, 于长斌, 袁红明, 裴理鑫, 丁喜桂, 杨娟, HANSBrix. 2022. 环渤海湿地沉积物球囊霉素相关土壤蛋白分布特征及其对湿地土壤风化的影响[J]. 中国地质, 49(4): 1075-1087. doi: 10.12029/gc20220404
引用本文: 周攀, 叶思源, 王锦, 于长斌, 袁红明, 裴理鑫, 丁喜桂, 杨娟, HANSBrix. 2022. 环渤海湿地沉积物球囊霉素相关土壤蛋白分布特征及其对湿地土壤风化的影响[J]. 中国地质, 49(4): 1075-1087. doi: 10.12029/gc20220404
ZHOU Pan, YE Siyuan, WANG Jin, YU Changbin, YUAN Hongming, PEI Lixin, DING Xigui, YANG Juan, Hans Brix. 2022. Glomalin-related soil protein distribution and its relation to mineral weathering in the wetlands along the Bohai Sea, China[J]. Geology in China, 49(4): 1075-1087. doi: 10.12029/gc20220404
Citation: ZHOU Pan, YE Siyuan, WANG Jin, YU Changbin, YUAN Hongming, PEI Lixin, DING Xigui, YANG Juan, Hans Brix. 2022. Glomalin-related soil protein distribution and its relation to mineral weathering in the wetlands along the Bohai Sea, China[J]. Geology in China, 49(4): 1075-1087. doi: 10.12029/gc20220404

环渤海湿地沉积物球囊霉素相关土壤蛋白分布特征及其对湿地土壤风化的影响

  • 基金项目:
    青岛海洋科学与技术试点国家实验室山东省专项经费(2022QNLM040003-3)、国家重点研发计划中美政府间科技创新重点专项(2016YFE0109600)、中国地质调查局项目(DD20189503,DD20160144,GZH201200503)、国土资源部公益性行业基金(201111023)以及国家自然科学基金(41240022,40872167)联合资助
详细信息
    作者简介: 周攀,男,1994生,博士生,主要从事生物地球化学方面的研究工作;E-mail: 541646172@qq.com
    通讯作者: 叶思源,女,1963生,研究员,博士生导师,主要从事生物地球化学方面的研究工作;E-mail:siyuanye@hotmail.com
  • 中图分类号: S153

Glomalin-related soil protein distribution and its relation to mineral weathering in the wetlands along the Bohai Sea, China

  • Fund Project: Supported by the Marine S & T Fund of Shandong Province for the Pilot National Laboratory for Marine Science and Technology (Qingdao) (No.2022QNLM040003-3), the National Key R & D Program of China (No.2016YFE0109600), the project of China Geological Survey (No.DD20189503, No.DD20160144, No.GZH201200503), Ministry of Land and Resources program: (No.201111023)and National Natural Science Foundation of China (No.41240022, No.40872167)
More Information
    Author Bio: ZHOU Pan, male, born in 1994, doctor candidate, engaged in biogeochemistry; E-mail: 541646172@qq.com .
    Corresponding author: YE Siyuan, female, born in 1963, researcher, engaged in biogeochemistry; E-mail: siyuanye@hotmail.com
  • 研究目的

    球囊霉素作为丛枝菌根真菌(AMF)分泌的一种难降解土壤蛋白, 广泛分布于陆地生态系统中, 是长期碳贮的重要组成。当前鲜有研究涉及其在滨海湿地中的分布。基于此, 本文对中国环渤海主要滨海湿地表层沉积物中球囊霉素相关土壤蛋白(GRSP)的空间分布进行表征, 探讨不同湿地生境下GRSP分布及其对沉积物风化的指示意义。

    研究方法

    本文选取辽河三角洲、北大港和黄河三角洲湿地作为研究区, 对166个表层样(0~5 cm)和4个柱状样(0~35 cm)的GRSP、粒度以及常量元素进行测定, 并计算化学蚀变系数(CIA)。

    研究结果

    研究区GRSP在空间上的动态变化受植被类型影响显著, 范围在0.06~11.31 mg/g, 均值为(2.35±0.16) mg/g; 沉积物以粉砂质砂和砂为主, CIA值分布范围为44.79~69.59, 部分区域达到中等化学风化; CIA与GRSP呈显著相关(R=~0.49, p < 0.01), 总体上CIA随GRSP的增加呈现先增加后减少的趋势。

    结论

    GRSP在滨海湿地沉积物中的分布受到生境差异性的影响, 其与CIA的相关性表征AMF及其代谢产物在地质体风化过程中发挥了潜在的生态功能。

  • 加载中
  • 图 1  研究区域和取样点位

    Figure 1. 

    图 2  表层沉积物Folk分类图

    Figure 2. 

    图 3  表层沉积物GRSP含量的平面分布及不同生境下的GRSP含量

    Figure 3. 

    图 4  黄河三角洲湿地柱状样GRSP含量垂向分布

    Figure 4. 

    图 5  化学风化指数与GRSP的相关性

    Figure 5. 

    图 6  A-CN-K化学风化趋势三角图

    Figure 6. 

    表 1  表层沉积物常量元素含量及相关变量统计

    Table 1.  Statistics on the content of macroelements and related variables in surface sediments

    下载: 导出CSV

    表 2  主要常量元素与平均粒径的相关性

    Table 2.  Correlation between major macroelements and average particle size

    下载: 导出CSV

    表 3  GRSP与常量元素关系及相关参数变量的相关性统计

    Table 3.  Correlation statistics between GRSP and macroelements and related variables

    下载: 导出CSV
  • Adame M F, Neil D, Wright S F, Lovelock C E. 2010. Sedimentation within and among mangrove forests along a gradient of geomorphological settings[J]. Estuarine, Coastal and Shelf Science, 86(1): 21-30. doi: 10.1016/j.ecss.2009.10.013

    Arocena J M, Velde B, Robertson S J. 2012. Weathering of biotite in the presence of arbuscular mycorrhizae in selected agricultural crops[J]. Applied Clay Science, 64: 12-17. doi: 10.1016/j.clay.2011.06.013

    Bago B, Vierheilig H, Piché Y, AzcóN-Aguilar C. 1996. Nitrate depletion and pH changes induced by the extraradical mycelium of the arbuscular mycorrhizal fungus Glomus intraradices grown in monoxenic culture[J]. New Phytologist, 133(2): 273-280. doi: 10.1111/j.1469-8137.1996.tb01894.x

    Barker W W, Welch S A, Chu S, Banfield J F. 1998. Experimental observations of the effects of bacteria on aluminosilicate weathering[J]. American Mineralogist, 83(11/12 Part 2): 1551-1563. http://www.degruyter.com/dg/viewarticle.fullcontentlink:pdfeventlink/$002fj$002fammin.1998.83.issue-11$002fam-1998-1116$002fam-1998-1116.pdf/am-1998-1116.pdf?t:ac=j$002fammin.1998.83.issue-11$002fam-1998-1116$002fam-1998-1116.xml

    Berner R A. 1997. The rise of plants and their effect on weathering and atmospheric CO2 [J]. Science, 276(8): 506-511.

    Bradford M M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding [J]. Analytical Biochemistry, 72(s 1/2): 248-254.

    Caravaca F, Alguacil M d M, Torres P, Roldán A. 2005. Microbial activities and arbuscular mycorrhizal fungi colonization in the rhizosphere of the salt marsh plantInula crithmoides L. along a spatial salinity gradient[J]. Wetlands, 25(2): 350-355. doi: 10.1672/11

    Cao Wanjie, Ji Hongbing, Zhu Xianfang, Zhao Xinyuan, Qiao Minmin. 2012. Contrast of geochemical features of the typical weathered profiles in Guizhou Plateau[J]. Carsologica Sinica, 31(2): 131-138(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZGYR201202005.htm

    Chen Yang, Chen Jun, Liu Lianwen. 2001. Chemical composition and characterization of chemical weathering of late tertiary red clay in Xifeng, Gansu Province[J]. Journal of Geomechanics, 7(2): 167-175(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-DZLX200102011.htm

    Driver J D, Holben W E, Rillig M C. 2005. Characterization of glomalin as a hyphal wall component of arbuscular mycorrhizal fungi[J]. Soil Biology & Biochemistry, 37(1): 101-106. http://www.osti.gov/cgi-bin/eprints/redirectEprintsUrl?http%3A%2F%2Fdbs.umt.edu%2Fresearch_labs%2Frilliglab%2FDriver%2520Holben%2520Rillig%25202005%2520SBB.pdf

    Gao M, Hou G, Dang X, Huang X. 2020. Sediment distribution characteristics and environment evolution within 100 years in western Laizhou Bay, Bohai Sea, China[J]. China Geology, 3(3): 445-454. http://qikan.cqvip.com/Qikan/Article/Detail?id=7103027862

    Guo X, Gong J. 2014. Differential effects of abiotic factors and host plant traits on diversity and community composition of root-colonizing arbuscular mycorrhizal fungi in a salt-stressed ecosystem[J]. Mycorrhiza, 24(2): 79. doi: 10.1007/s00572-013-0516-9

    Harner M J, Ramsey P W, Rillig M C. 2004. Protein accumulation and distribution in floodplain soils and river foam[J]. Ecology Letters, 7(9): 829-836. doi: 10.1111/j.1461-0248.2004.00638.x

    He L, Xue C, Ye S, Laws E A, Yuan H, Yang S, Du X. 2018. Holocene evolution of the Liaohe Delta, a tide-dominated delta formed by multiple rivers in Northeast China[J]. Journal of Asian Earth Sciences, 152: 52-68. doi: 10.1016/j.jseaes.2017.11.035

    He L, Xue C, Ye S, Amorosi A, Yuan H, Yang S, Laws E A. 2019. New evidence on the spatial-temporal distribution of superlobes in the Yellow River Delta Complex[J]. Quaternary Science Reviews, 214: 117-138. doi: 10.1016/j.quascirev.2019.05.003

    He X, Li Y, Zhao L. 2010. Dynamics of arbuscular mycorrhizal fungi and glomalin in the rhizosphere of Artemisia ordosica Krasch. in Mu Us sandland, China[J]. Soil Biology and Biochemistry, 42(8): 1313-1319. doi: 10.1016/j.soilbio.2010.03.022

    Johansen A, Jakobsen I, Jensen E S. 1993. Hyphal transport by a vesicular-arbuscular mycorrhizal fungus of N applied to the soil as ammonium or nitrate[J]. Biology and Fertility of Soils, 16(1): 66-70. doi: 10.1007/BF00336518

    Jongmans A G, van Breemen N, Lundström U, van Hees P A W, Finlay R D, Srinivasan M, Unestam T, Giesler R, Melkerud P A, Olsson M. 1997. Rock-eating fungi[J]. Nature, 389: 682. doi: 10.1038/39493

    Kemper W D, Koch E J. 1966. Aggregate stability of soils from western United States and Canada. Measurement Procedure, correlation with soil constituents[M]. U.S. : Government Printing Office, .

    Kleber M, Sollins P, Sutton R. 2007. A conceptual model of organo-mineral interactions in soils: Self-assembly of organic molecular fragments into zonal structures on mineral surfaces[J]. Biogeochemistry, 85(1): 9-24. doi: 10.1007/s10533-007-9103-5

    Koele N, Dickie I A, Blum J D, Gleason J D, de Graaf L. 2014. Ecological significance of mineral weathering in ectomycorrhizal and arbuscular mycorrhizal ecosystems from a field-based comparison[J]. Soil Biology and Biochemistry, 69: 63-70. doi: 10.1016/j.soilbio.2013.10.041

    Li Gonggang, Hu Bangqi, Li Jun, Bu Ruyuan, Yang Ming, Dou Yanguang. 2012. Geochemistry of major elements in the surface sediments of the offshore area of Shandong peninsula and its geological implications [J]. Marine Geology & Quaternary Geology, (3): 45-54(in Chinese with English abstract). http://adsabs.harvard.edu/abs/2013MGQG...32...45L

    Li Guanhua, Xia Dunsheng, Liu Jiabo, Wen Yanglei, Zhao Shuang, Jia Jia. 2013. Characteristics of major geochemical elements of tacheng loess deposits in xinjiang and its paleoenvironmental implications[J]. Marine Geology & Quaternary Geology, 33(4): 183-191(in Chinese with English abstract).

    Li Tongtong, Ye Siyuan, Han Zongzhu, Yuan Hongming, Pei Lixin. 2019. Weathering characteristics of the surface sediments and their indications for biological process in the Liaohe Delta wetlands [J]. Geological Review, 65(1): 40-51(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DZLP201901008.htm

    Liu Jin, Ye Siyuan, Wang Jiasheng. 2017. Organic carbon distribution, function and its burial processes in the coastal wetlands of the Liaohe Delta, Northeast of China[J]. Acta Geoscientica Sinica, 38(b11): 83-86(in Chinese with English abstract). http://www.researchgate.net/publication/322383988_Organic_Carbon_Distribution_Function_and_Its_Burial_Processes_in_the_Coastal_Wetlands_of_the_Liaohe_Delta_Northeast_of_China

    López-Merino L, Serrano O, Adame M F, Mateo M á, Martínez Cortizas A. 2015. Glomalin accumulated in seagrass sediments reveals past alterations in soil quality due to land-use change[J]. Global and Planetary Change, 133: 87-95. doi: 10.1016/j.gloplacha.2015.08.004

    Lovelock C E, Wright S F, Clark D A, Ruess R W. 2004. Soil stocks of glomalin produced by arbuscular mycorrhizal fungi across a tropical rain forest landscape[J]. Journal of Ecology, 92(2): 278-287. doi: 10.1111/j.0022-0477.2004.00855.x

    McLennan S M. 1993. Weathering and Global Denudation[J]. Journal of Geology, 101(2): 295-303. doi: 10.1086/648222

    Mo B, Lian B. 2010. Study on feldspar weathering and analysis of relevant impact factors[J]. Earth Science Frontiers, 17(3): 281-289. http://www.cnki.com.cn/Article/CJFDTotal-DXQY201003033.htm

    Nesbitt H W, Markovics G, Price R C. 1980. Chemical processes affecting alkalis and alkaline earths during continental weathering[J]. Geochimica et Cosmochimica Acta, 44(11): 1659-1666. doi: 10.1016/0016-7037(80)90218-5

    Nesbitt H W, Young G M, McLennan S M, Keays R R. 1996. Effects of chemical weathering and sorting on the petrogenesis of siliciclastic sediments, with implications for provenance studies[J]. Journal of Geology, 104(5): 525-542. doi: 10.1086/629850

    Nichols, K A, Wright, S F. 2005. Comparison of glomalin and humic acid in eight native U.S. soils[J]. Soil Science, 170(170): 985-997. http://www.xueshufan.com/publication/2059334851

    Rillig M C. 2004. Arbuscular mycorrhizae, glomalin, and soil aggregation[J]. Canadian Journal of Soil Science, 84(4): 355-363. doi: 10.4141/S04-003

    Rillig M C, Ramsey P W, Morris S, Paul E A. 2003. Glomalin, an arbuscular-mycorrhizal fungal soil protein, responds to land-use change[J]. Plant & Soil, 253(2): 293-299.

    Singh A K, Rai A, Pandey V, Singh N. 2017. Contribution of glomalin to dissolve organic carbon under different land uses and seasonality in dry tropics[J]. J. Environ. Manage., 192: 142-149. doi: 10.1016/j.jenvman.2017.01.041

    Singh A K, Rai A, Singh N. 2016. Effect of long term land use systems on fractions of glomalin and soil organic carbon in the Indo-Gangetic plain[J]. Geoderma, 277: 41-50. doi: 10.1016/j.geoderma.2016.05.004

    Spohn M, Giani L. 2010. Water-stable aggregates, glomalin-related soil protein, and carbohydrates in a chronosequence of sandy hydromorphic soils[J]. Soil Biology and Biochemistry, 42(9): 1505-1511. doi: 10.1016/j.soilbio.2010.05.015

    Treseder K K, Turner K M. 2007. Glomalin in Ecosystems[J]. Soil Science Society of America Journal, 71(4): 1257-1266. doi: 10.2136/sssaj2006.0377

    Tan Yuanlong, Qiao Yansong, Zhao Zhizhong, Wang Yan. 2013. Chemical weathering characteristics and paleoclimatic significance of the eolian deposits in Chengdu plain[J]. Journal of Geomechanics, 19(1): 26-34(in Chinese with English abstract). http://engine.scichina.com/doi/pdf/2D4C282F458B46A4B3BC153DBD258042

    Villa J A, Bernal B. 2018. Carbon sequestration in wetlands, from science to practice: An overview of the biogeochemical process, measurement methods, and policy framework[J]. Ecological Engineering, 114: 115-128. doi: 10.1016/j.ecoleng.2017.06.037

    Wang Q, Li J, Chen J, Hong H, Lu H, Liu J, Dong Y, Yan C. 2018. Glomalin-related soil protein deposition and carbon sequestration in the Old Yellow River delta[J]. Science of The Total Environment, 625: 619-626. doi: 10.1016/j.scitotenv.2017.12.303

    Wang Q, Lu H, Chen J, Hong H, Liu J, Li J, Yan C. 2018. Spatial distribution of glomalin-related soil protein and its relationship with sediment carbon sequestration across a mangrove forest[J]. Science of the Total Environment, 613-614: 548-556. doi: 10.1016/j.scitotenv.2017.09.140

    Wang Q, Wang W, He X, Zhang W, Song K, Han S. 2015. Role and variation of the amount and composition of glomalin in soil properties in farmland and adjacent plantations with reference to a primary forest in North-Eastern China[J]. PLoS One, 10(10): e0139623. doi: 10.1371/journal.pone.0139623

    Weston N B, Neubauer S C, Velinsky D J. 2011. Accelerated microbial organic matter mineralization following salt-water intrusion into tidal freshwater marsh soils[J]. Biogeochemistry, 102(1/3): 135-151. http://www.onacademic.com/detail/journal_1000039498709010_d48b.html

    Wilson G W T, Rice C W, Rillig M C, Springer A, Hartnett D C. 2009. Soil aggregation and carbon sequestration are tightly correlated with the abundance of arbuscular mycorrhizal fungi: Results from long-term field experiments[J]. Ecology Letters, 12(5): 452-461. doi: 10.1111/j.1461-0248.2009.01303.x

    Wright S F, Franke-Snyder M, Morton J B, Upadhyaya A. 1996. Time-course study and partial characterization of a protein on hyphae of arbuscular mycorrhizal fungi during active colonization of roots[J]. Plant and Soil, 181(2): 193-203. doi: 10.1007/BF00012053

    Wright S F, Upadhyaya A. 1996. Extraction of an abundant and unusual protein from soil and comparison with hyphal protein of arbuscular mycorrhizal fungi[J]. Soil Science, 161(9): 575-586. doi: 10.1097/00010694-199609000-00003

    Wright S F, Upadhyaya A. 1998. A survey of soils for aggregate stability and glomalin, a glycoprotein produced by hyphae of arbuscular mycorrhizal fungi[J]. Plant and Soil, 198(1): 97-107. doi: 10.1023/A:1004347701584

    Xie H, Li J, Zhang B, Wang L, Wang J, He H, Zhang X. 2015. Long-term manure amendments reduced soil aggregate stability via redistribution of the glomalin-related soil protein in macroaggregates[J]. Scientific Reports, 5: 14687. doi: 10.1038/srep14687

    Xu Z, Ban Y, Jiang Y, Zhang X, Liu X. 2016. Arbuscular mycorrhizal fungi in wetland habitats and their application in constructed wetland: A review[J]. Pedosphere, 26(5): 592-617. doi: 10.1016/S1002-0160(15)60067-4

    Ying Lichao, Liang Bin, Wang Quanwei, Zhu Bing, Hao Xuefeng, Liu Liang, Wen Long, Yan Zhonglin, Fu Xiaofang. 2013. Geochemical characteristics of Chengdu clay and their implications for provenance and weathering intensity [J]. Geology in China, 40(5): 1666-1674(in Chinese with English abstract). http://www.researchgate.net/publication/287887673_Geochemical_characteristics_of_Chengdu_clay_and_their_implications_for_provenance_and_weathering_intensity

    Ye S, Laws E A, Yuknis N, Ding X, Yuan H, Zhao G, Wang J, Yu X, Pei S, DeLaune R D. 2015. Carbon sequestration and soil accretion in coastal wetland communities of the Yellow River Delta and Liaohe Delta, China[J]. Estuaries and Coasts, 38(6): 1885-1897. doi: 10.1007/s12237-014-9927-x

    Zhang Z, Wang Q, Wang H, Nie S, Liang Z. 2017. Effects of soil salinity on the content, composition, and ion binding capacity of glomalin-related soil protein (GRSP)[J]. Science of the Total Environment, 581: 657-665. http://www.researchgate.net/file.PostFileLoader.html?id=591e854aed99e124415383e9&assetKey=AS%3A495603227348992%401495172425950

    Zhu Fei. 2010. Relationships among glomalin related soil protein, SOC and soil texture under different land use types [J]. Journal of Anhui Agri, 38(23): 12499-12502(in Chinese with English abstract). http://www.cabdirect.org/abstracts/20103342806.html

    Zhang Liankai, Ji Hongbing, Liu Xiuming, Wei Xiao, Luo Gang, Wang Shijie, Nguyen Dại Trung, Nguyen Quoc Dinh. 2021. Genetic mechanism and elemental evolution of weathering laterite crust overlying carbonate rocks in tropical areas[J]. Geology in China, 48(2): 651-660(in Chinese with English abstract).

    Zhang Wei, Dong Yingwei, Yu Yang, Liu Beibei, Li Yonghua, Li Yuanyuan, Wang Meixia. 2013. Chemical weathering of the loess in the south of Liaoning province and its implications for environmental change[J]. Marine Geology & Quaternary Geology, 33(5): 163-171(in Chinese with English abstract). http://adsabs.harvard.edu/abs/2013MGQG...33..163Z

    Zhu Yongguan, Duan Guilan, Chen Baodong, Peng Xinhua, Chen Zheng, Sun Guoxin. 2014. Mineral weathering and element cycling in soil-microbe-plant systems[J]. Science China: Earth Sciences, 1(6): 1107-1116(in Chinese with English abstract). doi: 10.1007/s11430-014-4861-0

    曹万杰, 季宏兵, 朱先芳, 赵兴媛, 乔敏敏. 2012. 贵州高原地区典型风化剖面地球化学特征及其对比研究[J]. 中国岩溶, 31(2): 131-138. doi: 10.3969/j.issn.1001-4810.2012.02.004

    陈旸, 陈骏, 刘连文. 2001. 甘肃西峰晚第三纪红粘土的化学组成及化学风化特征[J]. 地质力学学报, 7(2): 167-175. doi: 10.3969/j.issn.1006-6616.2001.02.012

    李国刚, 胡邦琦, 李军, 布如源, 杨敏, 窦衍光. 2012. 山东半岛沿岸海域表层沉积物的常量元素及其地质意义[J]. 海洋地质与第四纪地质, (3): 45-54. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ201203010.htm

    李冠华, 夏敦胜, 柳加波, 温仰磊, 赵爽, 贾佳. 2013. 新疆塔城黄土沉积常量地球化学元素特征及其环境意义[J]. 海洋地质与第四纪地质, 33(4): 183-191. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ201304026.htm

    李通通, 叶思源, 韩宗珠, 袁红明, 裴理鑫. 2019. 辽河三角洲湿地表层沉积物的风化特征及其对生物作用的指示意义[J]. 地质论评, 65(1): 40-51. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201901008.htm

    刘瑾, 叶思源, 王家生. 2017. 辽河三角洲滨海湿地有机碳的时空演变、环境功能及其埋藏机制[J]. 地球学报, 38(b11): 83-86. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB2017S1022.htm

    谭元隆, 乔彦松, 赵志中, 王燕. 2013. 成都平原风尘堆积的化学风化特征及其古气候意义[J]. 地质力学学报, 19(1): 26-34. doi: 10.3969/j.issn.1006-6616.2013.01.003

    应立朝, 梁斌, 王全伟, 朱兵, 郝雪峰, 刘亮, 文龙, 燕钟林, 付小方. 2013. 成都粘土地球化学特征及其对物源和风化强度的指示[J]. 中国地质, 40(5): 1666-1674. doi: 10.3969/j.issn.1000-3657.2013.05.029 http://geochina.cgs.gov.cn/geochina/article/abstract/20130529?st=search

    祝飞. 不同土地利用方式下球囊霉素相关土壤蛋白与有机碳及土壤质地的关系[J]. 安徽农业科学, (23): 12499-12502. doi: 10.3969/j.issn.0517-6611.2010.23.072

    张连凯, 季宏兵, 刘秀明, 魏晓, 罗刚, 王世杰, NGUYEN Dại Trung, NGUYEN Quoc Dinh. 2021. 热带地区碳酸盐岩上覆红色风化壳的成因机理及元素演化[J]. 中国地质, 48(2): 651-660. http://geochina.cgs.gov.cn/geochina/article/abstract/20210221?st=search

    张威, 董应巍, 于洋, 刘蓓蓓, 李永化, 李媛媛, 王美霞. 2013. 辽南黄土化学风化特点及其环境意义[J]. 海洋地质与第四纪地质, 33(5): 163-171. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ201305022.htm

    朱永官, 段桂兰, 陈保冬, 彭新华, 陈正, 孙国新. 2014. 土壤-微生物-植物系统中矿物风化与元素循环[J]. 中国科学: 地球科学, 1(6): 1107-1116. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201406005.htm

  • 加载中

(6)

(3)

计量
  • 文章访问数:  2141
  • PDF下载数:  64
  • 施引文献:  0
出版历程
收稿日期:  2020-02-22
修回日期:  2020-05-20
刊出日期:  2022-08-25

目录