中国地质调查局 中国地质科学院主办
科学出版社出版

华北平原制革废水Cr(III)和氨氮在典型包气带中迁移模拟与污染评价

庞雅婕, 李春辉, 韩占涛, 张兆吉, 孔祥科. 2024. 华北平原制革废水Cr(III)和氨氮在典型包气带中迁移模拟与污染评价[J]. 中国地质, 51(4): 1280-1289. doi: 10.12029/gc20220518003
引用本文: 庞雅婕, 李春辉, 韩占涛, 张兆吉, 孔祥科. 2024. 华北平原制革废水Cr(III)和氨氮在典型包气带中迁移模拟与污染评价[J]. 中国地质, 51(4): 1280-1289. doi: 10.12029/gc20220518003
PANG Yajie, LI Chunhui, HAN Zhantao, ZHANG Zhaoji, KONG Xiangke. 2024. Migration simulation and pollution assessment of Cr (III) and ammonia from tannery wastewater in typical vadose zone in North China Plain[J]. Geology in China, 51(4): 1280-1289. doi: 10.12029/gc20220518003
Citation: PANG Yajie, LI Chunhui, HAN Zhantao, ZHANG Zhaoji, KONG Xiangke. 2024. Migration simulation and pollution assessment of Cr (III) and ammonia from tannery wastewater in typical vadose zone in North China Plain[J]. Geology in China, 51(4): 1280-1289. doi: 10.12029/gc20220518003

华北平原制革废水Cr(III)和氨氮在典型包气带中迁移模拟与污染评价

  • 基金项目: 河北省自然科学基金项目(D2020504003)资助。
详细信息
    作者简介: 庞雅婕,女,1987年生,高级工程师,博士生,水文地质专业;E-mail:pangyajie@mail.cgs.gov.cn
    通讯作者: 孔祥科,男,1987年生,副研究员,主要从事土壤、地下水污染机理与修复研究;E-mail:kongxiangke@mail.cgs.gov.cn
  • 中图分类号: X508; X794; X131

Migration simulation and pollution assessment of Cr (III) and ammonia from tannery wastewater in typical vadose zone in North China Plain

  • Fund Project: Supported by Natural Science Foundation of Hebei Province (No. D2020504003).
More Information
    Author Bio: PANG Yajie, born in 1987, senior engineer, doctor candidate, majors in hydrogeology; E-mail: pangyajie@mail.cgs.gov.cn .
    Corresponding author: KONG Xiangke, born in 1987, associated researcher, engaged in soil and groundwater contamination mechanisms and remediation; E-mail: kongxiangke@mai.cgs.gov.cn.
  • 研究目的

    为探明制革废水中的特征污染物铬(Cr(III))和氨氮(NH4+–N)在华北平原典型包气带中的迁移规律,评价其可能产生的土壤与地下水污染风险。

    研究方法

    采用土柱淋滤实验研究Cr(III)和NH4+–N在典型粉土中的吸附和迁移转化特征,结合Hydrus–1D建立的包气带水流和溶质运移模型,模拟预测深0.5 m渗坑中NH4+–N连续入渗状态下通过包气带到达地下水面所需时间及不同深度浓度值的变化规律。

    研究结果

    在3 cm定水头,污染液(Cr(III) 20 mg/L,NH4+–N 250 mg/L)定浓度持续淋滤120 d的情况下,Cr(III)在土柱中垂向迁移距离小于10 cm,且以残渣态(73%)为主,未检出Cr(VI)。NH4+–N则迁移能力较强,淋滤40 d后即穿透50 cm厚粉土柱。在高含盐量(电导率为10.08 ms/cm)条件下,NH4+–N在粉土中的迁移主要受吸附作用控制,土−水分配系数为25.87 L/kg,未发生硝化作用。持续淋滤150 d时NH4+–N迁移至地下水面(18 m埋深)且浓度超过III类地下水质量标准(0.5 mg/L, GB/T 14848–2017),在223 d完全穿透包气带,严重污染地下水。

    结论

    高含盐量制革废水中Cr(III)在粉土中迁移能力较弱,且难以被氧化为Cr(VI),对地下水威胁较小。NH4+–N则随水流快速迁移至地下水面,严重威胁地下水安全。

  • 加载中
  • 图 1  柱实验装置示意图

    Figure 1. 

    图 2  示踪试验Br含量以及Hydrus 1−D拟合穿透曲线

    Figure 2. 

    图 3  土柱不同观测孔中NH4+–N的实测值(点)与Hydrus–1D模拟预测值(线)对比

    Figure 3. 

    图 4  不同埋深土壤NH4+–N的迁移曲线(a)及其浓度达到特定值的时间(b)

    Figure 4. 

    图 5  不同时间剖面中NH4+–N的预测浓度分布

    Figure 5. 

    表 1  制革污泥中各种组分含量与比例

    Table 1.  Contents and proportions of various components in the tanning sludge

    组分 含量/(mg/kg) 比例/%
    N
    形态
    总N 30900 100.00
    NH4+–N 14400 46.60
    NO3–N 420 1.36
    NO2–N <1 0.00
    Cr
    价态
    总Cr 28822 100.00
    Cr(VI) 170 0.59
    Cr(III) 28652 99.41
    Cr形态 水溶态 153 0.53
    弱酸提取态 229 0.79
    铁锰氧化物
    结合态
    21700 75.29
    有机质结合态 3860 13.39
    残渣态 2880 9.99
    pH值 7.94
    总盐量/(mg/kg) 99000
    下载: 导出CSV

    表 2  污染场地周边表层(0~10 cm)洁净土壤的基本特征

    Table 2.  Characteristics of clean soil (0−10 cm) surrounding the contaminated sites

    容重/(g/cm3) CEC/(mol/kg) pH 黏粒/% 粉粒/% 砂粒/% 有机碳/% Fe2O3total/% Cr(III)/(mg/kg) (NH4+–N)/(mg/kg)
    1.64 13.6 7.61 10.52 74.39 15.09 1.7 6.13 69.9 20.2
    下载: 导出CSV

    表 3  包气带水分运动参数

    Table 3.  Parameters of water movement in the vadose zone

    参数 θr/% θs/% α/cm−1 n Ks/(cm/d) l
    粉土 5.7 45.64 0.0049 1.6979 31.59 0.5
      注:θr为土壤的残余含水率,θs为土壤的饱和含水率,αn为土壤水力特性经验参数,Ks为渗透系数。
    下载: 导出CSV

    表 4  渗流速度及弥散系数求解结果

    Table 4.  Results of percolation velocity and dispersion coefficients

    参数 t0.16/h t0.50/h t0.84/h v/(cm/h) D/(cm2/h) Disp/cm
    粉土 46.4 50.2 53.8 0.997 0.134 0.134
    下载: 导出CSV

    表 5  土柱表层粉土(0~2 cm)中不同形态的Cr(III)含量

    Table 5.  Contents of different forms of chromium(III) in topsoil of silt column (0~2 cm)

    形态 水溶态 弱酸
    提取态
    铁锰氧化物
    结合态
    有机质
    结合态
    残渣态
    含量/
    (mg/kg)
    8.6 142.02 1127.38 771 5420
    占比/% 0.12 1.90 15.09 10.32 72.57
    下载: 导出CSV
  • [1]

    Alibardi L, Cossu R. 2016. Pre–treatment of tannery sludge for sustainable landfilling[J]. Waste Management, 52: 202−211. doi: 10.1016/j.wasman.2016.04.008

    [2]

    Barajas–Aceves M, Rios–Berber J, Oropeza–Mota J, Rodríguez–Vázquez R. 2014. Assessment of tannery waste in semi–arid soils under a simulated rainfall system[J]. Soil and Sediment Contamination: An International Journal, 23: 954−964. doi: 10.1080/15320383.2014.896861

    [3]

    Chen Pei, Zhang Yongbo, Zheng Xiuqing, Zhao Xuehua. 2016. Prediction of the migration of ammonia nitrogen in vadose zone by using HYDRUS–1D model[J]. Water Power, 42(4): 10−12,30 (in Chinese with English abstract).

    [4]

    Chidambaram S, Karmegam U, Prasanna M, Sasidhar P. 2012. A study on evaluation of probable sources of heavy metal pollution in groundwater of Kalpakkam region, South India[J]. The Environmentalist, 32: 371−382. doi: 10.1007/s10669-012-9398-1

    [5]

    China C R, Maguta M M, Nyandoro S S, Hilonga A, Kanth S V, Njau K N. 2020. Alternative tanning technologies and their suitability in curbing environmental pollution from the leather industry: A comprehensive review[J]. Chemosphere, 254: 1−18.

    [6]

    Cyrus J S, Reddy G. 2011. Sorption and desorption of ammonium by zeolite: Batch and column studies[J]. Journal of Environmental Science and Health Part A, 46: 408−414. doi: 10.1080/02773813.2010.542398

    [7]

    Ding Shaolan, Li Ling, Zhao Mengjun. 2009. Investigation on the characteristic of COD and nitrogen in waste water from making cattle leather[J]. Leather Science and Engineering, 19(2): 19−21 (in Chinese with English abstract).

    [8]

    Du Hangtao, Xu Rui, Xu Hui, Shi Wenqing, Deng Haoyuan, He Junlong, Zhu Lin. 2022. Ammonia nitrogen removal by nitrifying bacteria from different habitats[J]. Journal of Environmental Engineering Technology, 12(1): 81−91 (in Chinese with English abstract).

    [9]

    Evanylo G, Sukkariyah B, Anderson Eborall M, Zelazny L. 2006. Bioavailability of heavy metals in biosolids−amended soil[J]. Communications in Soil Science and Plant Analysis, 37: 2157−2170. doi: 10.1080/00103620600817309

    [10]

    Fu Xuezhong. 2012. Progress in resource utilization of tannery solid wastes[J]. Leather and Chemicals, 29(1): 19−22 (in Chinese with English abstract).

    [11]

    Guo Huaming, Gao Zhipeng, Xiu Wei. 2022. Research status and trend of coupling between nitrogen cycle and arsenic migration and transformation in groundwater systems[J]. Hydrogeology & Engineering Geology, 49(3): 153−163 (in Chinese with English abstract).

    [12]

    He Z, Hu Y, Yin Z, Hu Y, Zhong H. 2016. Microbial diversity of chromium–contaminated soils and characterization of six chromium–removing bacteria[J]. Environmental Management, 57: 1319−1328.

    [13]

    Hu Shuyan. 2008. Adsorption and Competitive Adsorption of Heavy Metals on Humic Acid and Fulvic Acid [D]. Nanjing: Nanjing Forestry University, 1−63 (in Chinese with English abstract).

    [14]

    Huang Xuefen, Meng Min, Xie Gang, Luo Yuchen, Li Lei, Wang Weisheng. 2017. Study on speciation distribution of Cr and reduction of Cr (VI) in tannery sludge[J]. Journal of Guangxi University(Natural Science Edition), 42(5): 1930−1936 (in Chinese with English abstract).

    [15]

    Jellali S, Diamantopoulos E, Kallali H, Bennaceur S, Anane M, Jedidi N. 2010. Dynamic sorption of ammonium by sandy soil in fixed bed columns: Evaluation of equilibrium and non–equilibrium transport processes[J]. Journal of Environmental Management, 91: 897−905.

    [16]

    Kong Xiangke, Huang Guanxing, Han Zhantao, Li Zhitao, Wand Pping, Xu Youming. 2017. Vertical distribution characteristics of pollutants in a typical soil profile in the tannery sludge landfill site[J]. South–to–North Water Transfers and Water Science & Technology, 15(6): 96−100 (in Chinese with English abstract).

    [17]

    Kong X, Li C, Wang P, Huang G, Li Z, Han Z. 2019. Soil pollution characteristics and microbial responses in a vertical profile with long–term tannery sludge contamination in Hebei, China[J]. International Journal of Environmental Research and Public Health, 16: 563. doi: 10.3390/ijerph16040563

    [18]

    Kong X, Wang Y, Ma L, Li H, Han Z. 2022. Impact of δ–MnO2 on the chemical speciation and fractionation of Cr (III) in contaminated soils[J]. Environmental Science and Pollution Research, 29: 45328–45337.

    [19]

    Kotaś J, Stasicka Z. 2000. Chromium occurrence in the environment and methods of its speciation[J]. Environmental Pollution, 107: 263−283. doi: 10.1016/S0269-7491(99)00168-2

    [20]

    Li Wei, He Jiangtao, Liu Liya, Gao Peng, Ji Yaping. 2013. Application of Hydrus–1D software in groundwater contamination risk assessment[J]. China Environmental Science, 33(4): 639−647 (in Chinese with English abstract).

    [21]

    Liu Gang, Gao Zhipeng, Qu Jihong. 2017. Effects of hydraulic parameters in the unsaturated zones on pressure head and solute transport under the influence of river[J]. North China Institute of Water Conservancy and Hydroelectric Power, 38(2): 72−76 (in Chinese with English abstract).

    [22]

    Ma Hongrui, Xi Yinyin, Chen Zhanguang. 2010. Emision Factor of Ammonia Nitrogen and Total Nitrogen from Leather Process[J]. China Leather, 39(1): 6−10 (in Chinese with English abstract).

    [23]

    Mao Jiajun, Liu Qing. 2019. Study on the migration of chromiun (Ⅵ) in the vadose zone of coal ash stacking yard based on Hydrus–1D[J]. Energy Environmental Protection, 33(1): 13−18 (in Chinese with English abstract).

    [24]

    Pang Yajie, Liu Changli, Wang Cuiling, Zhang Yun, Pei Lixin, Hou Hongbing, Wang Zhiliang. 2013. A study of the migration of factory pollutants COD_Cr in the vasose zone using numerical simulation methods[J]. Hydrogeology & Engineering Geology, 40(3): 115−120 (in Chinese with English abstract).

    [25]

    Pantazopoulou E, Zouboulis A. 2018. Chemical toxicity and ecotoxicity evaluation of tannery sludge stabilized with ladle furnace slag[J]. Journal of Environmental Management, 216: 257−262. doi: 10.1016/j.jenvman.2017.03.077

    [26]

    Reijonen I, Hartikainen H. 2016. Oxidation mechanisms and chemical bioavailability of chromium in agricultural soil–pH as the master variable[J]. Applied Geochemistry, 74: 84−93. doi: 10.1016/j.apgeochem.2016.08.017

    [27]

    Sungur A, Soylak M, Yilmaz S, Özcan H. 2014. Determination of heavy metals in sediments of the Ergene River by BCR sequential extraction method[J]. Environmental Earth Sciences, 72: 3293−3305. doi: 10.1007/s12665-014-3233-6

    [28]

    Wang C, Liu C, Pei L, Pang Y, Zhang Y, Hou H. 2015. Experimental and modeling study of pure terephthalic acid (PTA) wastewater transport in the vadose zone[J]. Environmental Science: Processes & Impacts, 17: 389–397.

    [29]

    Wang D, He S, Shan C, Ye Y, Ma H, Zhang X, Zhang W, Pan B. 2016. Chromium speciation in tannery effluent after alkaline precipitation: Isolation and characterization[J]. Journal of Hazardous Materials, 316: 169−177. doi: 10.1016/j.jhazmat.2016.05.021

    [30]

    Wu Yanqing. 2007. Dynamics of Fluid Folw and Contaminant Transport in Porous Media [M]. Shanghai: Shanghai Jiao Tong University Press (in Chinese with English abstract).

    [31]

    Xia Xing, Yang Jianjun. 2019. Molecular sequestration mechanisms of heavy metals by iron oxides in soils using synchrotron–based techniques: A review[J]. Chinese Journal of Applied Ecology, 30(1): 348−358 (in Chinese with English abstract).

    [32]

    Xiao Wendan. 2014. Migration and Transformation Characteristics of Chromium in Typical Soil and Pollution Diagnosis Index [D]. Hangzhou: Zhejiang University, 1−141 (in Chinese with English abstract).

    [33]

    Xu Chengbin, Meng Xuelian, Ma Xiping, Zhang Lihong, Li Yaoyao, Bao Kun. 2012. Research on influence of Cr pollution on index for biological characteristics of soil quality[J]. Environmental Science and Management, 37(8): 1−3 (in Chinese with English abstract).

    [34]

    Zhang Dazheng, Li Haiming, Zhan Xiaoyan, Xia Yuezhen. 2014. Characteristics of groundwater salt pollution in a typical leather–contaminated site[J]. Hydrogeology & Engineering Geology, 41(2): 18−23 (in Chinese with English abstract).

    [35]

    Zhou Jianjun, Ma Hongrui, Dong Hexiang, Du Kai, Li Ka. 2018. Research progress on resourceful treatment and disposal of tannery sludge[J]. China Leather, 47(4): 44−49 (in Chinese with English abstract).

    [36]

    陈佩, 张永波, 郑秀清, 赵雪花. 2016. 氨氮在包气带中迁移的HYDRUS–1D预测模型[J]. 水力发电, 42(4): 10−12. doi: 10.3969/j.issn.0559-9342.2016.04.003

    [37]

    丁绍兰, 李玲, 赵梦君. 2009. 牛皮制革废水COD和氮素排放特征研究[J]. 皮革科学与工程, 19(2): 19−21. doi: 10.3969/j.issn.1004-7964.2009.02.003

    [38]

    杜杭涛, 徐睿, 徐慧等, 施文卿, 邓皓元, 何俊龙, 朱琳. 2022. 不同生境来源硝化细菌群对氨氮的去除性能[J]. 环境工程技术学报, 12(1): 81−91. doi: 10.12153/j.issn.1674-991X.20210380

    [39]

    傅学忠. 2012. 制革固体废弃物的资源化利用进展[J]. 皮革与化工, 29(1): 19−22. doi: 10.3969/j.issn.1674-0939.2012.01.006

    [40]

    郭华明, 高志鹏, 修伟. 2022. 地下水氮循环与砷迁移转化耦合的研究现状和趋势[J]. 水文地质工程地质, 49(3): 153−163.

    [41]

    胡书燕. 2008. 腐殖酸对重金属的吸附作用及金属竞争吸附特征[D]. 南京: 南京林业大学, 1−63.

    [42]

    黄雪芬, 蒙敏, 谢刚, 罗宇晨, 李磊, 王维生. 2017. 制革污泥中Cr形态分布及Cr(Ⅵ)还原性研究[J]. 广西大学学报(自然科学版), 42(5): 1930−1936.

    [43]

    孔祥科, 黄国鑫, 韩占涛, 李志涛, 王平, 许有明. 2017. 制革污泥堆存场地典型土壤剖面中污染物的垂向分布特征[J]. 南水北调与水利科技, 15(6): 96−100.

    [44]

    李玮, 何江涛, 刘丽雅, 高鹏, 纪亚萍. 2013. Hydrus–1D软件在地下水污染风险评价中的应用[J]. 中国环境科学, 33(4): 639−647. doi: 10.3969/j.issn.1000-6923.2013.04.009

    [45]

    刘钢, 高志鹏, 屈吉鸿. 2017. 河流影响下包气带水力参数对压力水头及溶质运移的影响[J]. 华北水利水电大学学报(自然科学版), 38(2): 72−76.

    [46]

    马宏瑞, 郗引引, 陈占光. 2010. 制革过程中氨氮和总氮产污系数的试验模拟核算[J]. 中国皮革, 39(1): 6−10.

    [47]

    茅佳俊, 刘清. 2019. 基于Hydrus–1D的粉煤灰堆场Cr(Ⅵ)在包气带中迁移规律的研究[J]. 能源环境保护, 33(1): 13−18. doi: 10.3969/j.issn.1006-8759.2019.01.003

    [48]

    庞雅婕, 刘长礼, 王翠玲, 张云, 裴丽欣, 侯宏冰, 王志良. 2013. 某化工厂废液COD_(Cr)在包气带中的迁移规律及数值模拟[J]. 水文地质工程地质, 40(3): 115−120.

    [49]

    仵彦卿. 2007. 多孔介质污染物迁移动力学[M]. 上海: 上海交通大学出版社.

    [50]

    夏星, 杨建军. 2019. 基于同步辐射技术研究土壤铁氧化物固定重金属分子机制的进展[J]. 应用生态学报, 30(1): 348−358.

    [51]

    肖文丹. 2014. 典型土壤中铬迁移转化规律和污染诊断指标[D]. 杭州: 浙江大学, 1−141.

    [52]

    徐成斌, 孟雪莲, 马溪平, 张利红, 李瑶瑶, 包坤. 2012. 铬污染对土壤环境质量生物特征指标的影响研究[J]. 环境科学与管理, 37(8): 1−3. doi: 10.3969/j.issn.1673-1212.2012.08.001

    [53]

    张达政, 李海明, 詹晓燕, 夏跃珍. 2014. 典型制革污染场地地下水盐污染特征[J]. 水文地质工程地质, 41(2): 18−23.

    [54]

    周建军, 马宏瑞, 董贺翔, 杜凯, 李卡. 2018. 制革污泥资源化处理与处置研究进展[J]. 中国皮革, 47(4): 44−49.

  • 加载中

(5)

(5)

计量
  • 文章访问数:  568
  • PDF下载数:  66
  • 施引文献:  0
出版历程
收稿日期:  2022-05-18
修回日期:  2022-10-03
刊出日期:  2024-07-25

目录