中国地质调查局 中国地质科学院主办
科学出版社出版

湖北宜昌磷矿伴生稀土元素分布规律、赋存状态及其开发利用前景分析

刘林, 王大钊, 陈爱章, 蔡雄威. 2024. 湖北宜昌磷矿伴生稀土元素分布规律、赋存状态及其开发利用前景分析[J]. 中国地质, 51(2): 525-546. doi: 10.12029/gc20221027003
引用本文: 刘林, 王大钊, 陈爱章, 蔡雄威. 2024. 湖北宜昌磷矿伴生稀土元素分布规律、赋存状态及其开发利用前景分析[J]. 中国地质, 51(2): 525-546. doi: 10.12029/gc20221027003
LIU Lin, WANG Dazhao, CHEN Aizhang, CAI Xiongwei. 2024. Distribution, occurrence and exploration prospect of associated rare earth elements in Yichang phosphate deposit, Hubei Province[J]. Geology in China, 51(2): 525-546. doi: 10.12029/gc20221027003
Citation: LIU Lin, WANG Dazhao, CHEN Aizhang, CAI Xiongwei. 2024. Distribution, occurrence and exploration prospect of associated rare earth elements in Yichang phosphate deposit, Hubei Province[J]. Geology in China, 51(2): 525-546. doi: 10.12029/gc20221027003

湖北宜昌磷矿伴生稀土元素分布规律、赋存状态及其开发利用前景分析

  • 基金项目: 湖北省自然科学基金项目(2019CFB551)资助。
详细信息
    作者简介: 刘林,男,1990年生 ,助理研究员,主要从事地质矿产研究;E-mail: 615787470@qq.com
    通讯作者: 王大钊,男,1991年生,博士,助理研究员,主要从事矿床学研究;E-mail: wangdazhao@ecut.edu.cn
  • 中图分类号: P619.2

Distribution, occurrence and exploration prospect of associated rare earth elements in Yichang phosphate deposit, Hubei Province

  • Fund Project: Supported by Hubei Natural Science Foundation (No.2019CFB551).
More Information
    Author Bio: LIU Lin, male, born in 1990, assistant researcher, engaged in the study of mineral resources; E-mail: 615787470@qq.com .
    Corresponding author: WANG Dazhao, male, born in 1991, doctor, assistant researcher, engaged in the study of mineral deposits research; E-mail: wangdazhao@ecut.edu.cn.
  • 研究目的

    湖北省宜昌磷矿中伴生有稀土元素,研究其分布规律及赋存状态,对稀土元素的回收利用具有重要意义,其作为伴生矿产的综合利用将成为未来稀土矿的重要来源。

    研究方法

    本文以含稀土磷块岩为主要研究对象,在系统取样的基础上,开展岩矿鉴定、全岩地球化学分析、XRD衍射分析、SEM观察、LA−ICP−MS测试等工作。

    研究结果

    磷块岩中稀土元素总量ΣREE+Y为63.5×10−6~271.8×10−6,不同层位或不同岩性的磷块岩中稀土元素含量有所差异。

    结论

    稀土元素含量受岩性控制明显,由白云岩→白云质磷块岩→致密块状磷矿石→泥质条带磷块岩→泥岩,含量逐渐升高。微量元素反映出宜昌磷矿的古气候以干热为主,西北部略表现出温暖湿润特点;Ce异常、V/Ni和Y/Ho比值反映海水中EH条件从底部到顶部,即从Ph22成磷期到Ph13成磷期,形成水体环境逐渐氧化。宜昌磷矿中稀土元素总量整体较低,且泥岩较磷块岩中含量高,表明吸附态稀土较类质同象稀土含量高。宜昌伴生稀土磷矿资源丰富,利用合理的技术对稀土元素进行综合回收,对宜昌磷矿资源的合理利用和经济发展有重要意义。

  • 加载中
  • 图 1  宜昌磷矿区域地质构造图(据刘林和蔡雄威, 2018修改)

    Figure 1. 

    图 2  宜昌磷矿含磷岩系柱状图(据杨刚忠等, 2008修改)

    Figure 2. 

    图 3  鄂西陡山沱期岩相古地理图(据杨刚忠等, 2010修改)

    Figure 3. 

    图 4  磷矿石野外地质特征

    Figure 4. 

    图 5  胶磷矿石显微镜下特征

    Figure 5. 

    图 6  磷块岩扫描电镜下矿物特征

    Figure 6. 

    图 7  磷矿石和含磷泥岩X射线衍射强度图谱

    Figure 7. 

    图 8  磷块岩主量元素CaO、MaO、SiO2、Al2O3 vs. P2O5图解

    Figure 8. 

    图 9  磷块岩稀土元素含量图解(图例同图8)

    Figure 9. 

    图 10  磷块岩沉积环境判别图(图例同图8

    Figure 10. 

    图 11  磷块岩样品稀土元素PAAS标准化配分图(PAAS标准化数据据Taylor and McLennan, 1985

    Figure 11. 

    图 12  胶磷矿、磷灰石和方解石稀土元素球粒陨石标准化配分图(球粒陨石标准化数据据Sun and McDonough,1989

    Figure 12. 

    表 1  X衍射分析结果

    Table 1.  XRD analysis results

    样品编号 岩性 分析结果
    X−SQH1 硅质泥岩 石英(约36%),黄铁矿(约3%),长石(约41%) ,伊利石(约18%),白云石(约2%)
    X−JN0 含磷硅质泥岩 磷灰石(约77%) ,石英(约12%),黄铁矿(约1%),长石(约10%)
    X−XSC1 含磷硅质泥岩 磷灰石(约34%),石英(约38%),黄铁矿(约1%) ,长石(约21%),伊利石(约5%),方解石(约1%)
    X−WW1 泥质条带磷块岩 磷灰石(约78%) ,石英(约8%),黄铁矿(约1%),长石(约11%),伊利石(极少),白云石(约2%)
    X−HP1 含磷硅质泥岩 磷灰石(约30%),石英(约14%),黄铁矿(约2%),长石(约44%),伊利石(约6%),白云石(约4%)
    X−HP4 泥质条带状磷块岩 磷灰石(约89%) ,石英(约2%),长石(约6%),白云石(约3%)
    下载: 导出CSV

    表 2  磷矿石主量元素测试结果(%)

    Table 2.  The major elements data (%) of phosphate rock

    样品编号 矿石类型 P2O5 SiO2 Al2O3 Fe2O3 CaO MgO K2O Na2O SO3
    DX2 致密条带状磷矿石 32.20 7.95 1.68 0.76 46.90 1.06 1.18 0.67 2.17
    SSY2 致密条带状磷矿石 35.90 0.50 0.05 0.13 53.20 1.52 0.01 0.51 1.17
    WW3 致密条带状磷矿石 25.70 8.45 1.18 0.66 43.10 5.24 0.38 0.36 1.79
    TSH2 致密条带磷矿石 35.30 5.61 0.51 0.27 50.70 0.38 0.36 0.57 1.43
    HP2 致密块状磷矿石 33.10 7.31 1.58 0.99 47.40 0.79 1.26 0.75 2.59
    SQH3 致密块状磷矿石 31.30 11.80 1.66 1.73 44.60 0.54 0.79 0.71 4.32
    YLX3 致密块状磷矿石 34.10 5.80 1.04 0.73 49.80 0.56 0.20 0.85 2.15
    JN2 砂屑胶磷矿石 32.00 9.05 1.45 2.66 45.50 0.46 0.59 0.63 6.19
    WW2 泥质条纹状磷矿石 27.50 16.90 3.39 1.10 39.50 1.36 1.95 0.44 2.53
    XSC2 泥质条纹状磷矿石 32.30 11.04 1.17 1.18 45.80 0.25 0.14 1.04 3.22
    DX1 泥质条带状磷矿石 27.90 17.12 3.66 1.52 39.70 0.58 2.08 0.89 3.66
    HP3 泥质条带状磷矿石 20.80 28.01 7.03 2.12 29.40 0.52 5.62 0.61 4.76
    HP4 泥质条带状磷矿石 16.75 31.61 9.83 3.05 23.50 1.04 6.15 0.51 6.42
    TSH1 泥质条带状磷矿石 19.15 24.88 5.16 3.81 29.50 2.05 3.63 0.44 8.42
    WW1 泥质条带状磷矿石 25.90 19.31 4.77 1.76 36.30 1.08 2.89 0.54 3.84
    YLX2 泥质条带状磷矿石 25.50 21.77 2.64 1.16 37.70 0.54 0.80 1.01 3.49
    JN1 白云质条带磷矿石 24.20 7.21 0.99 0.90 43.10 5.66 0.36 0.62 2.56
    SSY1 白云质条带磷矿石 22.20 4.31 0.11 0.24 43.20 8.48 0.02 0.22 0.67
    SSY3 白云质条带磷矿石 25.50 9.62 2.20 0.95 42.20 4.62 1.15 0.42 0.72
    DX3 白云质磷块岩 21.70 6.38 1.33 0.70 41.40 7.63 0.68 0.61 1.60
    HP5 白云质磷块岩 18.00 9.32 1.64 0.84 37.90 8.81 1.10 0.36 1.90
    TSH3 白云质磷块岩 20.80 19.01 0.66 0.52 37.60 5.75 0.48 0.26 1.23
    XSC3 白云质磷块岩 30.00 6.97 1.12 0.70 46.60 2.54 0.15 0.98 2.05
    XSC4 白云质磷块岩 16.75 10.54 0.51 0.69 39.40 7.89 0.10 0.50 2.00
    下载: 导出CSV

    表 3  磷矿石微量元素测试结果(10−6)及有关比值

    Table 3.  The trace elements data (10−6) and rations of phosphate rock

    样品编号 矿石类型 V Cr Co Ni Cu As Rb Sr Zr Nb Cd Sb Ba Hf Pb Th U U/Th Rb/Sr Sr/Cu Sr/Ba
    JN1 白云质条带
    磷矿石
    18 12 1.2 3.1 5.5 17.2 10.7 996 26 2.4 0.11 0.16 590 0.6 4.5 0.97 4.83 4.98 0.011 181.1 1.7
    SSY1 11 4 1.3 0.8 3.8 13.7 0.2 384 3 0.3 0.03 0.11 42.7 0.1 3.2 0.21 3.67 17.48 0.001 101.1 9.0
    SSY3 21 26 1.6 3.9 9.9 22.6 16.9 924 48 4.2 0.03 0.14 263 1.2 7.1 1.77 6.09 3.44 0.018 93.3 3.5
    XSC3 10 9 1.1 2.4 3.2 17.6 3.3 1115 66 2.9 0.14 0.06 1045 1.5 2.4 0.95 2.55 2.68 0.003 348.4 1.1
    XSC4 9 6 1.0 3.7 6.3 16.6 2.3 812 19 1.4 0.08 0.08 2440 0.5 2.2 0.56 2.63 4.70 0.003 128.9 0.3
    HP5 20 12 1.5 4.9 7.6 18.4 16.9 565 55 5.3 0.10 0.17 505 1.3 4.0 1.62 7.48 4.62 0.03 74.3 1.1
    TSH3 10 11 1.2 3.6 4.5 13.0 4.6 321 17 1.3 0.02 0.13 84.8 0.4 2.9 0.56 5.09 9.09 0.014 71.3 3.8
    DX3 13 10 1.9 2.9 4.6 15.0 8.9 821 32 3.1 0.03 0.21 540 0.7 6.2 1.12 5.87 5.24 0.011 178.5 1.5
    WW3 致密块状
    磷矿石
    11 11 1.6 4.9 4.1 17.8 8.9 717 35 2.7 0.05 0.15 2830 0.8 4.9 1.37 4.46 3.26 0.012 174.9 0.3
    DX2 12 14 1.7 7.7 3.9 17.3 15.6 1165 42 3.5 0.06 0.16 1535 0.9 8.9 1.37 3.39 2.47 0.013 298.7 0.8
    SSY2 12 7 1.3 0.3 5.8 12.6 0.2 1010 6 0.4 0.04 0.11 79.5 0.1 2.3 0.26 7.18 27.62 0.000 174.1 12.7
    TSH2 7 23 1.5 5.7 28.6 17.9 3.3 1150 17 1.3 0.05 0.19 86.0 0.3 3.7 0.62 5.22 8.42 0.003 40.2 13.4
    SQH3 24 20 1.5 4.6 5.0 28.7 19.3 1145 49 3.3 0.07 0.26 843 1.0 7.8 1.51 3.39 2.25 0.017 229.0 1.4
    YLX3 9 10 1.1 3.1 3.6 17.8 5.8 1120 40 3.2 0.10 0.09 298 0.8 2.7 0.96 3.22 3.35 0.005 311.1 3.8
    HP2 15 14 1.6 8.4 5.0 21.6 10.6 906 36 3.3 0.05 0.09 1000 0.8 8.9 1.18 2.45 2.08 0.012 181.2 0.9
    JN2 17 19 1.2 3.4 5.1 24.3 21.1 1260 44 3.0 0.10 0.21 841 1.0 10.9 1.39 2.91 2.09 0.017 247.1 1.5
    XSC2 泥质条带状
    磷矿石
    8 12 1.2 3.3 4.8 18.9 3.9 1340 36 2.2 0.21 0.08 1515 0.8 3.1 1.01 2.89 2.86 0.003 279.2 0.9
    WW2 23 29 1.8 7.6 5.7 13.4 28.8 797 65 6.1 0.08 0.13 839 1.5 6.3 2.69 4.45 1.65 0.036 139.8 1.0
    YLX2 20 15 2.0 9.8 4.7 14.3 19.4 1005 45 2.9 0.36 0.09 6300 1.0 3.1 1.58 2.46 1.56 0.019 213.8 0.2
    WW1 30 26 12.2 61.1 37.3 33.5 31.9 739 145 11.0 0.05 0.37 419 3.4 61 4.24 3.43 0.81 0.043 19.8 1.8
    HP3 40 32 4.0 34.4 15.7 28.5 42.3 632 134 13.3 0.08 0.27 686 4.2 25.8 6.92 2.83 0.41 0.067 40.3 0.9
    HP4 40 30 3.5 18.4 14 24.3 71.7 489 349 32.8 0.04 0.36 429 8.5 15.9 8.36 2.43 0.29 0.147 34.9 1.1
    TSH1 62 43 23.3 91.9 103.5 72.1 40.4 572 90 8.2 0.14 1.35 141 2.2 44 3.18 7.50 2.36 0.071 5.5 4.1
    DX1 26 25 2.8 14.2 8.3 18.6 28.7 1015 63 5.2 0.07 0.27 1180 1.4 17.4 2.65 2.76 1.04 0.028 122.3 0.9
    地壳丰度*  143 127 24.7 8.13 56 2.03 108 382 148 18.3 0.18 0.51 463 4.5 14 7.6 2.07 / / / /
      注:*地壳丰度数据:黎彤, 1992,地壳元素丰度的若干统计特征。
    下载: 导出CSV

    表 4  Ph13磷矿层稀土元素测试结果(10−6)及有关比值

    Table 4.  REE+Y data (10−6) and rations of Ph13 phosphate layer

    编号 SQH2 SQH3 JN1 JN2 XSC2 YLX2 YLX3 WW1 WW2 WW3 HP2 HP3 HP4 DX1 DX2 DX3
    岩性 泥质
    条带
    磷块岩
    致密
    块状
    磷矿石
    白云
    质条
    带磷
    矿石
    砂屑
    胶磷
    矿石
    泥质
    条纹
    状磷
    矿石
    泥质
    条带
    状磷
    矿石
    致密
    块状
    磷矿石
    泥质
    条带
    状磷
    矿石
    泥质
    条纹
    状磷
    矿石
    致密
    条带
    状磷
    矿石
    致密
    块状
    磷矿石
    泥质
    条带
    磷矿石
    泥质
    条带
    状磷
    矿石
    泥质
    条带
    状磷
    矿石
    致密
    条带
    状磷
    矿石
    白云
    质磷
    块岩
    La 20.70 18.80 12.70 21.60 16.70 24.30 9.80 42.10 29.30 17.80 11.70 22.20 27.90 34.50 17.10 10.80
    Ce 45.10 38.50 29.70 46.60 32.20 46.30 20.20 90.00 59.30 36.60 26.30 47.10 61.40 60.70 34.90 22.30
    Pr 5.39 5.01 3.78 6.15 3.95 5.78 2.53 11.40 7.70 4.55 3.33 6.09 7.92 7.45 4.55 2.85
    Nd 23.40 20.10 16.60 26.50 16.10 21.40 10.70 46.60 34.50 18.50 14.40 24.50 32.50 29.60 19.10 12.30
    Sm 4.82 4.63 3.68 5.86 3.47 4.04 2.22 9.38 7.20 4.20 3.02 5.46 7.13 5.65 3.91 2.57
    Eu 0.91 0.99 0.72 1.19 0.90 1.03 0.41 1.93 1.47 0.81 0.59 0.86 1.20 1.89 0.73 0.46
    Gd 4.06 4.35 3.34 5.47 3.36 3.58 1.95 8.29 6.55 3.78 2.82 5.05 6.59 4.93 3.32 2.27
    Tb 0.61 0.62 0.49 0.79 0.47 0.52 0.29 1.27 0.94 0.52 0.42 0.82 1.10 0.71 0.48 0.33
    Dy 3.35 3.55 2.65 4.59 2.62 3.00 1.63 7.33 5.37 2.96 2.39 4.83 6.90 3.95 2.74 1.87
    Ho 0.71 0.71 0.54 0.91 0.51 0.58 0.33 1.39 1.04 0.58 0.48 0.99 1.43 0.76 0.53 0.36
    Er 1.88 1.79 1.34 2.27 1.28 1.46 0.84 3.48 2.63 1.45 1.18 2.61 4.06 1.88 1.30 0.92
    Tm 0.28 0.23 0.18 0.30 0.17 0.18 0.11 0.50 0.33 0.19 0.16 0.38 0.60 0.24 0.17 0.12
    Yb 1.78 1.32 1.05 1.64 0.99 1.06 0.67 2.85 1.93 1.10 0.94 2.35 3.82 1.40 0.98 0.72
    Lu 0.27 0.19 0.15 0.23 0.14 0.16 0.10 0.42 0.28 0.16 0.14 0.35 0.57 0.20 0.14 0.11
    Y 20.00 23.70 18.50 31.10 18.20 18.70 10.70 40.10 33.70 19.50 15.70 28.30 39.50 25.40 17.20 11.80
    REE+Y 133.00 124.00 95.40 155.00 101.00 132.00 62.50 267.00 192.00 113.00 83.60 152.00 203.00 179.00 107.00 69.80
    La/La* 1.20 0.95 1.09 1.07 1.11 0.91 1.12 1.00 1.32 1.03 1.09 0.93 0.94 1.15 1.07 1.17
    Ce/Ce* 1.00 0.94 1.02 0.96 0.92 0.91 0.95 0.97 0.93 0.95 1.00 0.96 0.98 0.86 0.93 0.95
    Eu/Eu* 0.97 1.04 0.97 0.99 1.24 1.27 0.93 1.03 1.01 0.96 0.95 0.77 0.82 1.69 0.95 0.90
    (La/Nd)N 0.79 0.83 0.68 0.72 0.92 1.01 0.81 0.80 0.75 0.85 0.72 0.80 0.76 1.03 0.79 0.78
    (La/Nd)N 0.79 0.83 0.68 0.72 0.92 1.01 0.81 0.80 0.75 0.85 0.72 0.80 0.76 1.03 0.79 0.78
    V/Ni 2.28 5.22 5.81 5.00 2.42 2.04 2.90 0.49 3.03 2.24 1.79 1.16 2.17 1.83 1.56 4.48
    Ni/Co 5.75 3.07 2.58 2.83 2.75 4.90 2.82 5.01 4.22 3.06 5.25 8.60 5.26 5.07 4.53 1.53
    Y/Ho 28.17 33.38 34.26 34.18 35.69 32.24 32.42 28.85 32.40 33.62 32.71 28.59 27.62 33.42 32.45 32.78
      注:La/La* = [La/(3×Pr−2×Nd)]N, Ce/Ce* = [3×Ce/(2×La+Pr)]N, Eu/Eu* = [2×Eu/(Sm+Gd)]N
    下载: 导出CSV

    表 5  Ph22磷矿层及围岩稀土元素测试结果(10−6)及有关比值

    Table 5.  REE+Y data (10−6) and rations of Ph22 phosphate layer and surrounding rocks

    编号 TSH1 TSH2 TSH3 SSY1 SSY2 SSY3 SQH4 JN3 XSC3 XSC4 YLX4 HP5 SQH1 JN0 XSC1 YLX1 HP1
    岩性 泥质
    条带
    状磷
    矿石
    致密
    条带
    磷矿石
    白云
    质磷
    块岩
    致密
    条带
    状磷
    矿石
    致密
    条带
    状磷
    矿石
    白云
    质条
    带磷
    矿石
    白云岩 白云岩 白云岩 白云岩 白云岩 白云岩 泥岩 泥岩 泥岩 泥岩 泥岩
    La 25.80 20.00 11.30 3.50 11.10 16.10 1.70 1.90 9.10 8.10 5.00 11.30 46.20 25.50 26.00 37.40 25.10
    Ce 38.60 30.50 18.50 5.50 16.40 24.40 3.20 4.20 19.50 15.40 9.90 23.20 79.50 52.00 51.80 87.80 49.60
    Pr 6.90 5.72 2.84 0.89 2.87 4.46 0.45 0.56 2.40 1.81 1.15 2.93 8.03 6.56 6.86 11.90 6.09
    Nd 29.60 25.60 11.90 3.90 12.70 19.70 1.90 2.30 9.50 7.50 4.80 12.40 25.30 26.70 26.40 48.30 24.60
    Sm 6.30 5.92 2.44 0.83 2.89 4.37 0.44 0.47 2.16 1.61 0.97 2.51 4.45 5.52 5.37 10.13 4.82
    Eu 1.40 1.39 0.60 0.23 0.68 0.94 0.02 0.07 0.44 0.30 0.17 0.45 0.64 1.11 0.96 1.84 1.02
    Gd 6.53 7.04 2.61 1.08 3.38 4.79 0.41 0.40 1.97 1.53 0.88 2.32 4.26 4.67 4.60 8.28 4.19
    Tb 1.02 1.19 0.41 0.16 0.52 0.74 0.06 0.06 0.27 0.21 0.13 0.33 0.79 0.71 0.70 1.27 0.66
    Dy 5.91 6.67 2.29 0.92 3.07 4.40 0.36 0.34 1.48 1.19 0.73 1.93 5.19 3.86 4.21 7.08 3.85
    Ho 1.18 1.41 0.43 0.19 0.64 0.91 0.07 0.07 0.29 0.24 0.15 0.38 1.15 0.80 0.83 1.33 0.76
    Er 3.03 3.42 1.04 0.46 1.62 2.33 0.19 0.20 0.75 0.63 0.37 0.99 3.40 2.10 2.25 3.38 2.05
    Tm 0.40 0.44 0.13 0.06 0.21 0.32 0.03 0.03 0.10 0.09 0.05 0.14 0.51 0.30 0.33 0.48 0.30
    Yb 2.34 2.40 0.71 0.32 1.11 1.91 0.22 0.19 0.64 0.58 0.31 0.85 3.44 1.91 2.12 3.02 1.86
    Lu 0.33 0.33 0.10 0.05 0.15 0.27 0.04 0.03 0.10 0.09 0.05 0.13 0.54 0.29 0.33 0.48 0.29
    Y 43.70 59.00 20.20 8.70 28.60 37.00 2.40 2.40 9.70 8.30 5.20 12.50 31.40 22.80 23.70 35.40 21.20
    REE+Y 173.04 171.03 75.50 26.79 85.94 122.64 11.49 13.22 58.40 47.58 29.86 72.36 214.80 154.83 156.46 258.09 146.39
    La/La* 1.13 1.21 1.13 1.27 1.29 1.19 1.09 0.91 0.93 1.23 1.22 1.12 0.98 1.02 0.88 0.82 1.06
    Ce/Ce* 0.68 0.68 0.76 0.73 0.68 0.68 0.86 0.97 0.98 0.92 0.95 0.95 0.90 0.94 0.91 1.00 0.93
    Eu/Eu* 1.02 1.00 1.11 1.12 1.01 0.96 0.22 0.76 1.00 0.90 0.87 0.88 0.69 1.03 0.91 0.95 1.07
    (La/Nd)N 0.77 0.69 0.84 0.80 0.78 0.73 0.79 0.73 0.85 0.96 0.92 0.81 1.62 0.85 0.87 0.69 0.91
    (La/Nd)N 0.67 1.23 2.78 13.75 40.00 5.38 2.00 - 4.17 2.43 1.71 4.08
    V/Ni 25.80 20.00 11.30 3.50 11.10 16.10 1.70 1.90 9.10 8.10 5.00 11.30 46.20 25.50 26.00 37.40 25.10
    Ni/Co 38.60 30.50 18.50 5.50 16.40 24.40 3.20 4.20 19.50 15.40 9.90 23.20 79.50 52.00 51.80 87.80 49.60
    Y/Ho 6.90 5.72 2.84 0.89 2.87 4.46 0.45 0.56 2.40 1.81 1.15 2.93 8.03 6.56 6.86 11.90 6.09
      注:La/La* = [La/(3×Pr−2×Nd)]N, Ce/Ce* = [3×Ce/(2×La+Pr)]N, Eu/Eu* = [2×Eu/(Sm+Gd)]N
    下载: 导出CSV

    表 6  磷矿石LA−ICP−MS测试结果(10−6

    Table 6.  LA−ICP−MS test results (10−6) of phosphate rock

    样品编号 矿物名称 La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Sc Y REE+Y
    D-WW1-1 胶磷矿 25.59 52.99 6.62 26.10 4.51 1.06 4.83 0.56 3.37 0.58 1.77 0.17 0.99 0.12 0.70 20.15 150.09
    D-WW1-2 胶磷矿 25.45 51.36 6.62 25.41 5.05 1.18 4.44 0.50 3.04 0.56 1.56 0.19 0.80 0.11 0.77 19.30 146.33
    D-WW1-3 胶磷矿 25.41 52.75 6.05 26.08 4.68 1.25 3.44 0.58 3.69 0.74 1.45 0.19 0.96 0.07 0.83 20.60 148.77
    D-WW1-4 方解石 1.46 1.77 0.11 2.21 0.11 0.34 0.06 0.22 0.54 1.73 8.55
    D-WW1-5 方解石 0.22 1.81 0.12 0.31 0.42 0.23 0.59 0.00 2.00 2.23 7.93
    D-WW1-6 方解石 0.22 1.32 0.19 0.17 0.19 0.43 0.65 3.17
    D-WW1-7 磷灰石 40.35 83.41 10.61 41.84 9.19 1.84 6.51 0.83 4.95 0.92 2.73 0.35 1.52 0.26 1.63 35.86 242.81
    D-WW1-8 磷灰石 55.05 111.24 14.45 55.95 10.92 2.41 11.30 1.47 7.86 1.44 4.00 0.47 3.16 0.32 2.03 49.36 331.45
    D-WW1-9 磷灰石 59.15 121.81 15.28 58.49 12.53 2.67 10.98 1.40 9.07 1.59 4.30 0.48 2.83 0.35 1.90 56.99 359.83
    D-HP4-1 磷灰石 35.13 63.64 7.91 28.72 5.02 1.01 4.07 0.45 3.13 0.55 1.55 0.16 0.71 0.05 0.85 16.47 169.44
    D-HP4-2 胶磷矿 30.80 57.15 7.61 25.00 5.46 1.10 4.25 0.64 3.85 0.71 1.67 0.16 1.12 0.11 2.05 17.23 158.90
    D-HP4-3 磷灰石 37.07 69.33 9.02 31.80 6.63 1.42 5.26 0.74 4.30 0.70 1.93 0.27 1.31 0.13 2.61 18.94 191.47
    D-HP4-4 磷灰石 40.54 89.30 10.72 38.31 7.40 1.94 6.18 0.73 5.00 0.89 2.18 0.18 1.46 0.14 2.67 24.89 232.53
    D-HP4-5 磷灰石 54.09 84.53 12.58 44.97 8.28 2.37 8.44 1.11 7.02 1.11 2.84 0.52 2.45 0.36 5.72 34.57 270.96
    D-HP4-6 磷灰石 46.39 74.64 10.00 34.47 6.38 1.50 4.26 0.71 3.15 0.62 1.79 0.22 0.87 0.13 1.55 19.52 206.21
    D-HP4-7 磷灰石 48.39 78.86 10.37 33.98 5.77 1.61 5.02 0.67 4.05 0.70 1.55 0.22 1.39 0.10 1.92 19.51 214.11
    D-DX1-1 磷灰石 13.75 23.55 2.82 11.36 2.40 0.51 2.90 0.23 1.94 0.33 0.98 0.09 0.49 0.09 0.52 12.82 74.77
    D-DX1-2 磷灰石 21.13 32.86 3.80 16.04 2.92 0.65 2.72 0.26 2.04 0.42 1.31 0.09 1.02 0.12 0.95 16.91 103.26
    D-DX1-3 磷灰石 43.31 63.43 8.10 35.23 6.54 1.52 6.44 0.84 5.31 0.96 3.10 0.33 1.67 0.20 1.48 38.74 217.22
    D-DX1-4 磷灰石 9.78 17.03 2.29 9.04 2.10 0.45 1.73 0.23 1.37 0.26 0.93 0.06 0.61 0.03 1.17 9.43 56.50
    下载: 导出CSV
  • [1]

    Abedini A, Calagari A A. 2017. REEs geochemical characteristics of Lower Cambrian phosphatic rocks in the Gorgan−Rasht Zone, northern Iran: Implications for diagenetic effects and depositional conditions[J]. Journal of African Earth Sciences, 135: 115−124. doi: 10.1016/j.jafrearsci.2017.08.018

    [2]

    Anderson R F, Fleisher M Q, LeHuray A P. 1989. Concentration, oxidation state, and particulate flux of uranium in the Black Sea[J]. Geochimica et Cosmochimica Acta, 53: 2215−2224. doi: 10.1016/0016-7037(89)90345-1

    [3]

    Bau M, Balan S, Schmidt K, Koschinsky A. 2010. Rare earth elements in mussel shells of the Mytilidae family as tracers for hidden and fossil high−temperature hydrothermal systems[J]. Earth and Planetary Science Letters, 299: 310−316. doi: 10.1016/j.jpgl.2010.09.011

    [4]

    Bau M, Möller P, Dulski P. 1997. Yttrium and lanthanides in eastern Mediterranean seawater and their fractionation during redox−cycling[J]. Marine Chemistry, 56: 123−131. doi: 10.1016/S0304-4203(96)00091-6

    [5]

    Boström K. 1983. Genesis of Ferromanganese Deposits−Diagnostic Criteria for Recent and Old Deposits. In: Rona P A, Boström K, Laubier L, Smith K L. (eds.). Hydrothermal Processes at Seafloor Spreading Centers [C]// NATO Conference Series, 12. Boston: Springer.

    [6]

    Breit G N, Wanty R B. 1991. Vanadium accumulation in carbonaceous rocks: A review of geochemical controls during deposition and diagenesis[J]. Chemical Geology, 91: 83−97. doi: 10.1016/0009-2541(91)90083-4

    [7]

    Cao J, Wu M, Chen Y, Hu K, Bian L, Wang L, Zhang Y. 2012. Trace and rare earth element geochemistry of Jurassic mudstones in the northern Qaidam Basin, northwest China[J]. Geochemistry, 72: 245−252. doi: 10.1016/j.chemer.2011.12.002

    [8]

    Chen Manzhi, Fu Yong, Xia Yong, Xie Zhuojun, Zhou Kelin, Zhang Peng. 2019. A prospective analysis on REE resources of the phosphorite−type REE ore deposits in China[J]. Acta Mineralogica Sinica, 39(4): 345−358 (in Chinese with English abstract).

    [9]

    Chen Wenxiang, Zheng Song, Yan Chunjie, Liang Dongyun, Hong Qiuyang, Li Bo, Meng Qingtian, Chen Yongke, Zuo Jiali. 2022. The occurrence of rare earth elements(REE) in the REE−bearing phosphate ores of the Damachang block in Zhijin County, Guizhou Province, China[J]. Acta Mineralogica Sinica, 42(2): 203−212 (in Chinese with English abstract).

    [10]

    Douville E, Bienvenu P, Charlou J L, Donval J P, Fouquet Y, Appriou P, Gamo T. 1999. Yttrium and rare earth elements in fluids from various deep−sea hydrothermal systems[J]. Geochimica et Cosmochimica Acta, 63: 627−643. doi: 10.1016/S0016-7037(99)00024-1

    [11]

    Duan Kaibo, Wang Denghong, Xiong Xianxiao, Lian Wei, Gao Peng, Wang Yinglin, Zhang Jason. 2014. A review of a preliminary quantitative study and genetic analysis for rare earth elements of ionic adsorption state in phosphate ore deposit in Zhijin, Guizhou Province[J]. Rock and Mineral Analysis, 33(1): 118−125 (in Chinese with English abstract).

    [12]

    Fan H, Wen H, Zhu X, Hu R, Tian S. 2013. Hydrothermal activity during Ediacaran–Cambrian transition: Silicon isotopic evidence[J]. Precambrian Research, 224: 23−35. doi: 10.1016/j.precamres.2012.09.004

    [13]

    Ferhaoui S, Kechiched R, Bruguier O, Sinisi R, Kocsis L, Mongelli G, Bosch D, Ameur−Zaimeche O, Laouar R. 2022. Rare earth elements plus yttrium (REY) in phosphorites from the Tébessa region (Eastern Algeria): Abundance, geochemical distribution through grain size fractions, and economic significance[J]. Journal of Geochemical Exploration, 241: 107058. doi: 10.1016/j.gexplo.2022.107058

    [14]

    Francois R. 1988. A study on the regulation of the concentrations of some trace metals (Rb, Sr, Zn, Pb, Cu, V, Cr, Ni, Mn and Mo) in Saanich Inlet Sediments, British Columbia, Canada[J]. Marine Geology, 83: 285−308. doi: 10.1016/0025-3227(88)90063-1

    [15]

    Huang S Q, Ning S Z, Zhang J Q, Zhang L, Liu K. 2021. REE characteristics of the coal in the Erlian Basin, Inner Mongolia, China, and its economic value[J]. China Geology, 4: 256−265.

    [16]

    Ilyin A V. 1998. Rare−earth geochemistry of “old” phosphorites and probability of syngenetic precipitation and accumulation of phosphate1In memory of Richard P. Sheldon[J]. Chemical Geology, 144: 243−256. doi: 10.1016/S0009-2541(97)00134-4

    [17]

    Jarvis I, Burnett W C, Nathan Y, Almbaydin F S M, Attia A K M, Castro L N, Flicoteaux R, Hilmy M E, Husain V, Qutawnah A A, Serjani A, Zanin Y N. 1994. Phosphorite geochemistry: State−of−the−art and environmental concerns[J]. Eclogae Geologicae Helvetiae, 87: 643−700.

    [18]

    Jiang Xunxiong, Feng Linyong, Wang Shengdong. 2012. Study on comprehensive recovery of associated rare earth in phosphate rock [C]//Proceedings of Symposium on Comprehensive Utilization of Rare Earth Resources and Environmental Protection in China (in Chinese with English abstract).

    [19]

    Jin Huixin, Wang Hua, Li Junqi. 2007. Research status on phosphorite resources and extracting of rare earth from phosporite[J]. Hydrometallurgy of China, 26(4): 179−183 (in Chinese with English abstract).

    [20]

    Jones B, Manning D A C. 1994. Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones[J]. Chemical Geology, 111: 111−129. doi: 10.1016/0009-2541(94)90085-X

    [21]

    Kidder D L, Krishnaswamy R, Mapes R H. 2003. Elemental mobility in phosphatic shales during concretion growth and implications for provenance analysis[J]. Chemical Geology, 198: 335−353. doi: 10.1016/S0009-2541(03)00036-6

    [22]

    Koopman C, Witkamp G J. 2000. Extraction of lanthanides from the phosphoric acid production process to gain a purified gypsum and a valuable lanthanide by−product[J]. Hydrometallurgy, 58: 51−60. doi: 10.1016/S0304-386X(00)00127-4

    [23]

    Lécuyer C, Reynard B, Grandjean P. 2004. Rare earth element evolution of Phanerozoic seawater recorded in biogenic apatites[J]. Chemical Geology, 204: 63−102. doi: 10.1016/j.chemgeo.2003.11.003

    [24]

    Lewan M D, Maynard J B. 1982. Factors controlling enrichment of vanadium and nickel in the bitumen of organic sedimentary rocks[J]. Geochimica et Cosmochimica Acta, 46: 2547−2560. doi: 10.1016/0016-7037(82)90377-5

    [25]

    Lewan M D. 1984. Factors controlling the proportionality of vanadium to nickel in crude oils[J]. Geochimica et Cosmochimica Acta, 48: 2231−2238. doi: 10.1016/0016-7037(84)90219-9

    [26]

    Li Tong. 1992. The statistical characteristics of the abundance of chemical elements in the Earth’s crust[J]. Geology and Prospecting, 28(10): 3−9 (in Chinese with English abstract).

    [27]

    Li Wei, Gao Hui, Luo Yingie, Gao Jun. 2015. Status, trends and suggestions of phosphorus ore resources at home and abroad[J]. China Mining Magazine, 24(6): 6−10 (in Chinese with English abstract).

    [28]

    Li Wenchang, Li Jianwei, Xie Guiqing, Zhang Xiangfei, Liu Hong. 2022. Critical minerals in China: Current status, research focus and resource strategic analysis[J]. Earth Science Frontiers, 29(1): 1−13 (in Chinese with English abstract).

    [29]

    Liang Kunping, He Mingqin, Tian Huanhuan, Zhang Feng, Zheng Maoyao. 2022. The geochemical characterics of rare earth elements in the Chuanyandong oreblock of the Wengfu Phosphorus deposit, Guizhou, China[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 41(3): 572−586 (in Chinese with English abstract).

    [30]

    Liu Ling, Cai Xiongwei. 2018. Study on geological characteristics and ore characteristics of Ph13 phosphate deposits in Yinjiagou mining area at Yulinxi ore section of Yichang phosphate mine[J]. Resources, Environment and Engineering, 32(2): 181−188 (in Chinese with English abstract).

    [31]

    Liu Shirong, Hu Ruizhong, Yao Linbo, Zhou Guofu. 2006. Independent rare earth minerals were first discovered in Xinhua phosphate deposit, Zhijjin, Guizhou[J]. Acta Mineralogica Sinica, (1): 118 (in Chinese).

    [32]

    Liu Shirong, Hu Ruizhong, Zhou Guofu, Gong Guohong, Jin Zhisheng, Zheng Wenqin. 2008. Study on the mineral compostion of the clastic phosphate in Zhijin phosphate deposttion, China[J]. Acta Mineralogica Sinica, (3): 244−250 (in Chinese with English abstract).

    [33]

    Liu Yi, Chen Ting, Zheng Song, Chen Wenxiang, Yan Chunjie, Wang Hongquan, Zhou Sen, Zhang Sheng, Mudenda Chipenzi, Lu Hongjun, Yang Xiang. 2019. Mode occurrence of REE and flotation processing of the low phosphorous phosphorite−type REE ore in the Zhijin deposit, Guizhou[J]. Acta Mineralogica Sinica, 39: 397−402 (in Chinese with English abstract).

    [34]

    McArthur J M, Walsh J N. 1984. Rare−earth geochemistry of phosphorites[J]. Chemical Geology, 47: 191−220. doi: 10.1016/0009-2541(84)90126-8

    [35]

    Michard A, Albarède F, Michard G, Minster J F, Charlou J L. 1983. Rare−earth elements and uranium in high−temperature solutions from East Pacific Rise hydrothermal vent field (13 °N)[J]. Nature, 303: 795−797. doi: 10.1038/303795a0

    [36]

    Pan Jiayong, Zhang Qian, Ma Dongsheng, Li Chaoyang. 2001. Characteristics of silicecous rocks and their relationship with mineralization in Xucla copper deposit, westerm Yunnan[J]. Science China (Series D: Earth Science), (1): 10−16 (in Chinese).

    [37]

    Picard S, Lécuyer C, Barrat J A, Garcia J P, Dromart G, Sheppard S M F. 2002. Rare earth element contents of Jurassic fish and reptile teeth and their potential relation to seawater composition (Anglo−Paris Basin, France and England)[J]. Chemical Geology, 186: 1−16. doi: 10.1016/S0009-2541(01)00424-7

    [38]

    Ptáček P. 2016. Apatites and Their Synthetic Analogues [M]. Rijeka: IntechOpen.

    [39]

    Ross D J K, Bustin R M. 2006. Sediment geochemistry of the Lower Jurassic Gordondale Member, northeastern British Columbia[J]. Bulletin of Canadian Petroleum Geology, 54: 337−365. doi: 10.2113/gscpgbull.54.4.337

    [40]

    Salama W, Khirekesh Z, Amini A, Bafti B S. 2018. Diagenetic evolution of the Upper Devonian phosphorites, Alborz Mountain Range, northern Iran[J]. Sedimentary Geology, 376: 90−112. doi: 10.1016/j.sedgeo.2018.08.001

    [41]

    Shi Chunhua, Hu Ruizhong, Wang Guozhi. 2006. Element geochemistry of Zhijin phosphorites, Guizhou Province[J]. Acta Mineralogica Sinica, 26(2): 169−174 (in Chinese with English abstract).

    [42]

    Shields G A, Webb G E. 2004. Has the REE composition of seawater changed over geological time?[J]. Chemical Geology, 204: 103−107. doi: 10.1016/j.chemgeo.2003.09.010

    [43]

    Shields G, Stille P. 2001. Diagenetic constraints on the use of cerium anomalies as palaeoseawater redox proxies: An isotopic and REE study of Cambrian phosphorites[J]. Chemical Geology, 175: 29−48. doi: 10.1016/S0009-2541(00)00362-4

    [44]

    Song Shengqiong, LI Shibin, Guan Yongsheng, Ran Qiyang, Zhen Fang, Zhu Yiqing, Sun Yali, Zeng Zhaoxia. 2020. Problems and suggestions on the development and utilization of phosphate ores and associated ores in Guizhou Province[J]. China Mining Magazine, 29: 24−28 (in Chinese with English abstract).

    [45]

    Sun S S, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes [J]. Geological Society, London, Special Publications, 42: 313−345.

    [46]

    Sverjensky D A. 1984. Europium redox equilibria in aqueous solution[J]. Earth and Planetary Science Letters, 67: 70−78. doi: 10.1016/0012-821X(84)90039-6

    [47]

    Taylor S R, McLennan S M. 1985. The Continental Crust: Its Composition and Evolution[M]. Oxford: Blackwell Scientific Publications.

    [48]

    USGS. 2022. Mineral Commodity Summaries 2022[M]. Reston: U. S. Geological Survey.

    [49]

    Valetich M, Zivak D, Spandler C, Degeling H, Grigorescu M. 2022. REE enrichment of phosphorites: An example of the Cambrian Georgina Basin of Australia[J]. Chemical Geology, 588: 120654. doi: 10.1016/j.chemgeo.2021.120654

    [50]

    Wang Shengdong, Jiang Kaixi, Jiang Xunxiong, Feng Lingyong, Fan Yanqing, Jiang Wei. 2012. Leaching REEs from phosphorite with returning acid[J]. Nonferrous Metals (Extractive Metallurgy), (11): 33−36 (in Chinese with English abstract).

    [51]

    Wang Wei, Liu Lin, Liu Hongzhao, Zhang Bo, Cao Yaohua, Wang Hongliang. 2020. Progress and trend of rare earth resources extraction technology[J]. Conservation and Utilization of Mineral Resources, 40(5): 32−36 (in Chinese with English abstract).

    [52]

    Wang Y, Guo C H, Zhuang S R, Chen, X J, Jia L Q, Chen Z Y, Xia Z L, Wu Z. 2021. Major contribution to carbon neutrality by China’s geosciences and geological technologies[J]. China Geology, 4: 329−352.

    [53]

    Wright J, Schrader H, Holser W T. 1987. Paleoredox variations in ancient oceans recorded by rare earth elements in fossil apatite[J]. Geochimica et Cosmochimica Acta, 51: 631−644. doi: 10.1016/0016-7037(87)90075-5

    [54]

    Wu Jian, Zhang Wensheng, Jiang Xunxiong, Jin Xianyu. 2015. Experimental study on rare earth separation of Zhijin phosphate rock[J]. Phosphate and Compound Fertilizer, (4): 33−34 (in Chinese with English abstract).

    [55]

    Xie Jun, Zhang Qin, Mao Song. 2020. Study on the occurrence state of rare earth element Y in Guizhou Zhijin phosphorite[J]. Journal of Guizhou University (Natural Sciences), 37(1): 4l−47 (in Chinese with English abstract).

    [56]

    Yang Gangzhong, Liao Zongming, Li Fanghui, Liu Shengde. 2008. Geological characteristics and Bonanza distribution of the Middle Phosphorite Layer(Ph2) in the north of Yichang phosphorite deposit[J]. Resources Environment and Engineering, (4): 406−411 (in Chinese with English abstract).

    [57]

    Yang Gangzhong, Song Yinqiao, Nie Kaihong, Li Fuxi, Luo Hong, Liao Zongming. 2010. Analysis on metallogenetic geological features and deep prospecting model for Yichang phosphate ore field[J]. Journal of Mineralogy and Petrology, 30(2): 50−59 (in Chinese with English abstract).

    [58]

    Yang H, Zhao Z, Xia Y, Xiao J. 2021. REY enrichment mechanisms in the Early Cambrian phosphorite from South China[J]. Sedimentary Geology, 426: 106041. doi: 10.1016/j.sedgeo.2021.106041

    [59]

    Yang Haiying, Xiao Jiafei, Hu Ruizhong, Xia Yong, He Hongxi. 2020. Formation environment and metallogenic mechanism of Weng'an phosphorite in the Early Sinian, Central Guizhou Province[J]. Journal of Palaeogeography (Chinese Edition), 22: 929−946 (in Chinese with English abstract).

    [60]

    Yang R, Wang W, Zhang X, Liu L, Wei H, Bao M, Wang J. 2008. A new type of rare earth elements deposit in weathering crust of Permian basalt in western Guizhou, NW China[J]. Journal of Rare Earths, 26: 753−759. doi: 10.1016/S1002-0721(08)60177-5

    [61]

    Ye Mingfu, Wang Miaomiao, Yang Gang, Zhang Wenxing, Chen Guochang, Xu Lixin. 2020. Research on separation and enrichment of rare earth from acidic leaching solution of Zhijin phosphorite[J]. Rare Metals and Cemented Carbides, 48: 1−4,17 (in Chinese with English abstract).

    [62]

    Yi Haisheng, Peng Jun, Xia Wenjie. 1995. The Late Precambrian paleo−ocean evolution of the southeast Yangtze continental margin: REE record[J]. Acta Sedimentologica Sinica, (4): 131−137 (in Chinese with English abstract).

    [63]

    Zhang J F, Zhai G Y, Wang D M, Bao S J, Chen K, Li H H, Song T, Wang P, Zhou Z. 2020. Tectonic evolution of the Huangling dome and its control effect on shale gas preservation in the north margin of the Yangtze Block, South China[J]. China Geology, 3: 28−37. doi: 10.31035/cg2020025

    [64]

    Zhang Jie, Zhang Qin, Chen Dailiang. 2003. REE geochemistry of the ore−bearing REE in Xinhua phosphorite, Zhijin, Guizhou[J]. Journal of Mineralogy and Petrology, 23(3): 35−38 (in Chinese with English abstract).

    [65]

    Zhang K, Jin W, Lin H, Dong C, Wu S. 2018. Major and trace elemental compositions of the Upper Carboniferous Batamayineishan mudrocks, Wulungu area, Junggar Basin, China: Implications for controls on the formation of the organic−rich source rocks[J]. Marine and Petroleum Geology, 91: 550−561. doi: 10.1016/j.marpetgeo.2018.01.003

    [66]

    Zhang Qu, Teng Geer, Zhang Zhirong, Qin Jianzhong. 2007. Oil source of oil seepage and solid bitumen in the Kaili−Majiang area[J]. Acta Geologica Sinica, (8): 1118−1124 (in Chinese with English abstract).

    [67]

    Zhang Wenxing, Zheng Song, Chen Wenxiang, Zhang Zhouwei, Huang Yuanling, Ye Taiping, Yang Gang, Wu Haiqin. 2019. Study on the REE leaching regularity of siliceous phosphorite−type REE ores of the Zhijin deposit in Guizhou Province[J]. Acta Mineralogica Sinica, 39: 389−396 (in Chinese with English abstract).

    [68]

    Zhang Yanbin, Gong Meiling, Li Hua. 2007. Occurrence of REE in rare earth phosphorite in Zhijin Area, Guizhou[J]. Journal of Earth Sciences and Environment, (4): 362−368 (in Chinese with English abstract).

    [69]

    Zhang Yueyue. 2015. The Rare Earth Elements Characteristics and the Comprehensive Utilization Research of Devonian Shifang Phosphate Deposit[M]. Mianyang: Southwest University of Science and Technology (in Chinese with English abstract).

    [70]

    Zhao Lijun, Nie Dengpan, He Hao, Wang Zhenjie, Xue An, Wu Subin. 2014. Study on leaching of Rare Earth from Middle−low grade collophanite with hydrochloric acid[J]. Nonferrous Metals (Extractive Metallurgy), (4): 45−47 (in Chinese with English abstract).

    [71]

    Zhen Haifei, Hao Ruixiao. 2007. General Geochemistry [M]. Beijing: Peking University Press (in Chinese with English abstract).

    [72]

    Zheng Rongcai, Liu Meiqing. 1999. Study on palaeosalinity of Chang 6 oil reservoir set in Ordos Basin[J]. Oil and Gas Geology, (1): 22−27 (in Chinese with English abstract).

    [73]

    陈满志, 付勇, 夏勇, 谢卓君, 周克林, 张鹏. 2019. 中国磷块岩型稀土矿资源前景分析[J]. 矿物学报, 39(4): 345−358.

    [74]

    陈文祥, 郑松, 严春杰, 梁冬云, 洪秋阳, 李波, 孟庆田, 陈永科, 左佳丽. 2022. 贵州省织金县打麻厂矿区含稀土磷矿中稀土元素赋存规律[J]. 矿物学报, 42(2): 203−212.

    [75]

    段凯波, 王登红, 熊先孝, 连卫, 高鹏, 王英林, 张杨. 2014. 贵州织金磷矿床中离子吸附型稀土的存在及初步定量[J]. 岩矿测试, 33(1): 118−125.

    [76]

    蒋训雄, 冯林永, 汪胜东. 2012. 磷矿中伴生稀土综合回收研究[C]∥中国稀土资源综合利用与环境保护研讨会论文集.

    [77]

    金会心, 王华, 李军旗. 2007. 磷矿资源及从磷矿中提取稀土的研究现状[J]. 湿法冶金, 26(4): 179−183.

    [78]

    黎彤. 1992. 地壳元素丰度的若干统计特征[J]. 地质与勘探, 28(10): 3−9.

    [79]

    李维, 高辉, 罗英杰, 高骏. 2015. 国内外磷矿资源利用现状、趋势分析及对策建议[J]. 中国矿业, 24(6): 6−10.

    [80]

    李文昌, 李建威, 谢桂青, 张向飞, 刘洪. 2022. 中国关键矿产现状、研究内容与资源战略分析[J]. 地学前缘, 29(1): 1−13.

    [81]

    梁坤萍, 何明勤, 田欢欢, 张丰, 郑茂尧. 2022. 瓮福磷矿穿岩洞矿段磷块岩稀土元素地球化学特征[J]. 矿物岩石地球化学通报, 41(3): 572−586.

    [82]

    刘林, 蔡雄威. 2018. 宜昌磷矿殷家沟矿区鱼林溪矿段地质特征及Ph13磷矿层矿石特征研究[J]. 资源环境与工程, 32(2): 181−188.

    [83]

    刘世荣, 胡瑞忠, 姚林波, 周国富. 2006. 贵州织金新华磷矿床首次发现独立的稀土矿物[J]. 矿物学报, (1): 118.

    [84]

    刘世荣, 胡瑞忠, 周国富, 龚国洪, 金志升, 郑文勤. 2008. 织金新华磷矿碎屑磷灰石的矿物成分研究[J]. 矿物学报, (3): 244−250.

    [85]

    刘意, 陈婷, 郑松, 陈文祥, 严春杰, 王洪权, 周森, 张生, Chipenzi M, 陆红军, 杨祥. 2019. 贵州织金低磷层磷矿稀土赋存状态与磷矿浮选工艺研究[J]. 矿物学报, 39: 397−402.

    [86]

    潘家永, 张乾, 马东升, 李朝阳. 2001. 滇西学拉铜矿区硅质岩特征及与成矿的关系[J]. 中国科学(D辑:地球科学), (1): 10−16.

    [87]

    施春华, 胡瑞忠, 王国芝. 2006. 贵州织金磷矿岩元素地球化学特征[J]. 矿物学报, 26(2): 169−174.

    [88]

    宋生琼, 李士彬, 管永胜, 冉启洋, 曾芳, 朱宜清, 孙亚莉, 曾朝霞. 2020. 贵州省磷矿及伴生矿种开发利用面临的问题与对策建议[J]. 中国矿业, 29: 24−28.

    [89]

    汪胜东, 蒋开喜, 蒋训雄, 冯林永, 范艳青, 蒋伟. 2012. 返酸浸出磷矿中的稀土[J]. 有色金属(冶炼部分), (11): 33−36.

    [90]

    王威, 柳林, 刘红召, 张博, 曹耀华, 王洪亮. 2020. 稀土资源提取技术进展及趋势[J]. 矿产保护与利用, 40(5): 32−36.

    [91]

    吴健, 张文胜, 蒋训雄, 金先煜. 2015. 织金磷矿稀土分离试验研究[J]. 磷肥与复肥, (4): 33−34.

    [92]

    谢俊, 张覃, 卯松. 2020. 贵州织金磷块岩中稀土元素Y赋存状态研究[J]. 贵州大学学报(自然科学版), 37(1): 4l−47.

    [93]

    杨刚忠, 廖宗明, 李方会, 刘圣德. 2008. 宜昌磷矿北部地区中磷层(Ph22)地质特征及富矿带展布[J]. 资源环境与工程, (4): 406−411.

    [94]

    杨刚忠, 宋银桥, 聂开红, 李福喜, 罗洪, 廖宗明. 2010. 宜昌磷矿田成矿地质特征及深部找矿模式探析[J]. 矿物岩石, 30(2): 50−59.

    [95]

    杨海英, 肖加飞, 胡瑞忠, 夏勇, 何洪茜. 2020. 黔中瓮安早震旦世磷块岩的形成环境及成因机制[J]. 古地理学报, 22: 929−946.

    [96]

    叶明富, 王苗苗, 杨刚, 张文兴, 陈国昌, 许立信. 2020. 织金磷矿酸浸液分离富集稀土研究[J]. 稀有金属与硬质合金, 48: 1−4,17.

    [97]

    伊海生, 彭军, 夏文杰. 1995. 扬子东南大陆边缘晚前寒武纪古海洋演化的稀土元素记录[J]. 沉积学报, (4): 131−137.

    [98]

    张杰, 张覃, 陈代良. 2003. 贵州织金新华含稀土磷矿床稀土元素地球化学及生物成矿基本特征[J]. 矿物岩石, 23(3): 35−38.

    [99]

    张渠, 腾格尔, 张志荣, 秦建中. 2007. 凯里—麻江地区油苗与固体沥青的油源分析[J]. 地质学报, (8): 1118−1124. doi: 10.3321/j.issn:0001-5717.2007.08.011

    [100]

    张文兴, 郑松, 陈文祥, 张周位, 黄苑龄, 叶太平, 杨刚, 吴海琴. 2019. 贵州织金硅质磷块岩型稀土矿稀土浸出规律[J]. 矿物学报, 39: 389−396.

    [101]

    张彦斌, 龚美菱, 李华. 2007. 贵州织金地区稀土磷块岩矿床中稀土元素赋存状态[J]. 地球科学与环境学报, (4): 362−368.

    [102]

    张跃跃. 2015. 泥盆纪什邡式磷矿稀土元素特征及综合利用研究[M]. 绵阳: 西南科技大学.

    [103]

    赵丽君, 聂登攀, 何灏, 王振杰, 薛安, 吴素彬. 2014. 盐酸浸出中低品位胶磷矿中稀土的研究[J]. 有色金属(冶炼部分), (4): 45−47.

    [104]

    郑海飞, 郝瑞霞. 2007. 普通地球化学[M]. 北京: 北京大学出版社.

    [105]

    郑荣才, 柳梅青. 1999. 鄂尔多斯盆地长6油层组古盐度研究[J]. 石油与天然气地质, (1): 22−27. doi: 10.11743/ogg19990105

  • 加载中

(12)

(6)

计量
  • 文章访问数:  903
  • PDF下载数:  36
  • 施引文献:  0
出版历程
收稿日期:  2022-10-27
修回日期:  2023-03-05
刊出日期:  2024-03-25

目录