Development status of underground space energy storage at home and abroad and geological survey suggestions
-
摘要:
研究目的 在现代能源体系中,能源储备占有举足轻重的地位,强化能源储备体系,保障能源稳定供应,处理好国际国内能源市场上各种突发事件的影响,这是中国能源发展中的一个重要课题。
研究方法 本文从地下空间储备设施类型出发,并结合全球的地下空间储备设施建设与相关研究实验,深入对比分析世界和中国在储油、储气等方面的发展现状,由此提出保障能源安全的合理化建议。
研究结果 (1)利用地下空间进行储能是未来能源储备维护的重要方向。这是天然气调峰、可再生能源可持续供应、大规模高效利用氢气的有效途径。发展地下空间储能是实现中国碳中和和能源结构升级的关键问题;(2)全球地下空间储能设施主要分为五类:盐穴、水封洞库、含水层、枯竭油气藏和废弃矿坑;(3)国外开展地下空间储能设施建设比较早,在地下储能电站、地下储氢设施建设、石油储备和天然气储备等方面都要领先。
结论 在复杂的国际背景下,中国能源安全面临严峻挑战。开展地下空间储能能力调查、建立更多的地下空间储备设施和与相关企业共同开展全国地下储库规划势在必行。
Abstract:This paper is the result of geological survey engineering.
Objective In the modern energy system, energy reserve plays an important role. Strengthening the energy reserve system, ensuring stable energy supply, and handling the impact of various emergencies in the international and domestic energy markets are an important topic in China's energy development.
Methods Based on the types of underground space storage facilities, combined with the construction of global underground space storage facilities and related research experiments, this paper deeply compares and analyzes the development status of oil and gas storage in the world and China, so as to put forward reasonable suggestions to ensure energy security.
Results (1) The utilization of underground space for energy storage is an important direction of future energy storage maintenance. This is an effective way to peak regulation of natural gas, sustainable supply of renewable energy and efficient use of hydrogen on a large scale. The development of underground space energy storage is a key issue to achieve carbon neutrality and upgrade China's energy structure; (2) Global underground space energy storage facilities can be divided into five categories: salt cavern, water-sealed cavern, aquifer, depleted oil and gas reservoir and abandoned mine; (3) The construction of underground space energy storage facilities was carried out earlier in foreign countries, which should take the lead in the construction of underground energy storage power stations, underground hydrogen storage facilities, oil reserves and natural gas reserves.
Conclusions In the complex international background, China's energy security faces severe challenges. It is imperative to investigate the energy storage capacity of underground space, establish more underground space storage facilities and carry out national underground storage planning together with related enterprises.
-
图 1 地下空间中潜在的储库主要有盐穴、含水层、枯竭油气藏和废弃矿坑(据Crotogino et al., 2018修改)
Figure 1.
图 2 地下水封洞库储油原理(据王梦恕和杨会军,2008修改)
Figure 2.
图 3 含水层地下储气库基本结构示意图(据贾善坡等,2016修改)
Figure 3.
表 1 中国储气库(群)主要设计参数(数据来源于朱健颖等,2021)
Table 1. Chinese gas storage main design parameters (data from Zhu Jianying et al., 2021)
序号 储气库(群) 地理位置 库容
/亿m3工作气量
/亿m3形成调峰能力
/亿m3主管企业 1 大庆群库 黑龙江大庆 4.3 2.7 0.5 中国石油 2 辽河双6 辽宁盘锦 55.2 30.0 20.5 3 辽河雷61 辽宁盘锦 5.3 3.4 0.5 4 双驼子 吉林松原 11.2 5.1 0.3 5 华北苏桥 河北永清 67.0 23.0 10.0 6 大港板南 天津滨海 7.8 4.3 2.0 7 长庆峡224 陕西靖边 10.4 5.0 3.3 8 长庆苏东39-61 陕西靖边 19.2 8.0 0.1 9 长庆榆37 陕西靖边 6.0 2.7 0.1 10 新疆呼图壁 新疆呼图壁 117.0 45.0 29.0 11 西南相国寺 重庆市渝北区 43.0 23.0 23.0 12 中原文96 河南濮阳 5.9 3.0 3.0 中国石化 13 江苏金坛 江苏金坛 11.8 7.2 1.5 14 江汉黄场 湖北潜江 2.3 1.4 0.5 15 大港库群 天津大港 69.0 30.4 19.0 国家管网 16 华北库群 河北永清 18.7 7.5 7.5 17 江苏金坛 江苏金坛 26.0 17.1 7.8 18 江苏刘庄 江苏刘庄 4.6 2.5 2.5 19 中原文23 河南濮阳 84.3 32.7 22.0 20 金坛 江苏金坛 12.0 7.0 1.7 港华储气有限公司 合计 581 261 154.8 表 2 中国建成及在建压缩空气储能项目情况
Table 2. Energy storage projects built and under construction of compressed air in China
建成年份 并网年份 地点 示范工程项目 压缩空气储能技术 发电装机量 系统效率 投资额 2013 — 河北廊坊 1.5 MW级非补燃超临界压缩空气储能系统示范工程 超临界压缩空气储能 1.5 MW 52.1% — 2014 — 安徽芜湖 500 kW非补燃压缩空气储能示范工程 绝热压缩空气储能 500 kW 40% 3000万 2016 — 青海西宁 100 kW光热复合压缩空气储能实验电站 绝热压缩空气储能 100 kW 51% — 2017 2021.10 贵州毕节 10 MW先进压缩空气储能示范平台 液态空气储能 10 MW 60.20% — 2018 — 江苏苏州 国网江苏同里综合能源服务中心内500 kW液态空气储能示范项目 液态空气储能 500 kW — — 2021 2021.09 山东肥城 盐穴先进压缩空气储能调峰电站一期10 MW示范电站 绝热压缩空气储能 10 MW 60.70% 1亿 2021 2021.12 河北张家口 国际首套100 MW/400 MW·h先进压缩空气储能国家示范项目 液态空气储能 100 MW 70.40% 8.4亿 2021 2022.05 江苏金坛 中盐金坛盐穴压缩空气储能电站国家示范工程一期60 MW/300 MW·h项目 绝热压缩空气储能 60 MW 60%以上 4.3亿 2022年6月开工 河南平顶山市叶县 200 MW盐穴先进压缩空气储能电站 绝热压缩空气储能 200 MW — 15亿 2022年7月通过可行性评审,待开工 江苏淮安 苏盐集团465 MW/2600 MW·h盐穴压缩空气储能项目 绝热压缩空气储能 465 MW — — 数据来源:据文贤馗等, 2018;吴皓文等, 2021综合整理。“—”表示数据未知。 表 3 世界目前正在运行的地下储氢设施
Table 3. The underground hydrogen storage facilities currently in operation in the world
序号 盐穴项目名称 位置 开始运行
时间容量
/万m3基准深度/m 压力/105 Pa 储氢量/t 储能量/(GW·h) 1 ClemensDome 美国德克萨斯州 1986年 58 1000 70~137 2400 81 2 Mass Bluss 美国德克萨斯州 2007年 56.6 1200 55~152 3690 123 3 Spindletop 美国德克萨斯州 2014年 90.6 1340 68~202 8230 274 4 Teesside 英国英格兰东北部 1972年 21 365 45 810 27 -
[1] Allen R D, Doherty T J, Fossum A F. 1982. Geotechnical issues and guidelines for storage of compressed air in excavated hard rock caverns[J]. Pacific Northwest Laboratory Operated for the U. S. Department of Energy by Battelle Memorial Institute, PNL–4180.
[2] Bachu S, Dusseault M. 2005. Underground injection of carbon dioxide in salt beds[J]. Developments in Water Science, 52(5): 637−648.
[3] Bai M, Song K, Sun Y, He M, Li Y, Sun J. 2014. An overview of hydrogen underground storage technology and prospects in China[J]. Journal of Petroleum Science & Engineering, 124: 132–136.
[4] Chang Le, Zhang Minji, Liang Jia, Sun Yangzhou. 2012. The role of energy storage in ensuring energy security[J]. Sino–Global Energy, 17(2): 29−35 (in Chinese with English abstract).
[5] Chen Haisheng, Liu Jinchao, Guo Huan, Xu Yujie, Tan Chunqing. 2013. Technical principle of compressed air energy storage system[J]. Energy Storage Science and Technology, 2(2): 146−151 (in Chinese with English abstract).
[6] Crotogino F, Schneider G S, Evans D J. 2018. Renewable energy storage in geological formations[J]. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 232(1): 100–114.
[7] Fan J, Xie H, Chen J, Jiang D, Li C, Tiedeu W N, Ambre J. 2020. Preliminary feasibility analysis of a hybrid pumped–hydro energy storage system using abandoned coal mine goafs[J]. Applied Energy, 258: 114007. doi: 10.1016/j.apenergy.2019.114007
[8] Fu Pan, Luo Miao, Xia Yan, Li Guotao, Ban Fansheng. 2020. Research on status and difficulties of hydrogen underground storage technology[J]. China Well and Rock Salt, 51(6): 19−23 (in Chinese with English abstract).
[9] Guo Chaobin, Wang Zhihui, Liu Kai, Li Cai. 2019. The application and research progress of special underground space[J]. Geology in China, 46(3): 482−492 (in Chinese with English abstract).
[10] Guo Pingye, Wang Meng, Sun Xiaoming, He Manchao. 2022. Study on off–season cyclic energy storage in underground space of abandoned mine[J]. Journal of China Coal Society, 47(6): 2193−2206 (in Chinese with English abstract).
[11] Jia Shanpo, Jin Fengming, Zheng Dewen, Meng Qingchun, Zhang Hui, Lin Jianpin, Wei Qiang. 2015. Evaluation indices and classification criterion of aquifer site for gas storage[J]. Chinese Journal of Rock Mechanics and Engineering, 34(8): 1628−1640 (in Chinese with English abstract).
[12] Jia Shanpo, Zheng Dewen, Jin Fengming, Zhang Hui, Meng Qingchun, Lin Jianpin, Wei Qiang. 2016. Evaluation system of selected target sites for aquifer underground gas storage[J]. Journal of Central South University (Science and Technology), 47(3): 857−867 (in Chinese with English abstract).
[13] Knepper G A. 1997. Underground storage operations[J]. Journal of Petroleum Technology, 49(10): 1112−1114. doi: 10.2118/39101-JPT
[14] Knott L, Cross K G. 1992. Gas storage caverns in East Yorkshire Zechstein salt: Some geological and engineering aspects of site selection[J]. In SPE Annual Technical Conference and Exhibition, 24923: 691−692.
[15] Li Jianjun. 2022. Development status and prospect of underground gas storage in China[J]. Oil & Gas Storage and Transportation, 41(7): 780−786 (in Chinese with English abstract).
[16] Liu Kailin, Shang Peipei. 2021. Measurement and spatial correlation of high–quality development level of China’s city clusters[J]. Journal of Northeast University of Finance and Economics, (3): 37−46 (in Chinese with English abstract).
[17] Liu W, Zhang Z, Chen J, Jiang D, Wu F, Fan J, Li Y. 2020. Feasibility evaluation of large–scale underground hydrogen storage in bedded salt rocks of China: A case study in Jiangsu Province[J]. Energy, 198(May 1): 117348.1–117348.16.
[18] Lord A S, Kobos P H, Borns D J. 2014. Geologic storage of hydrogen: Scaling up to meet city transportation demands[J]. International Journal of Hydrogen Energy, 39(28): 15570−15582. doi: 10.1016/j.ijhydene.2014.07.121
[19] Lu Jiamin, Xu Junhui, Wang Weidong, Wang Hao, Xu Zijun, Chen Liuping. 2022. Development of large–scale underground hydrogen storage technology[J]. Energy Storage Science and Technology, 11(11): 3699−3707 (in Chinese with English abstract).
[20] Ma Xinhua, Zheng Dewen, Wei Guoqi, Ding Guosheng, Zheng Shaojing. 2022. Development directions of major scientific theories and technologies for underground gas storage[J]. Natural Gas Industry, 42(5): 93−99 (in Chinese with English abstract).
[21] Matos C R, Carneiro J F, Silva P P. 2019. Overview of large–scale underground energy storage technologies for integration of renewable energies and criteria for reservoir identification[J]. Journal of Energy Storage, 21: 241−258. doi: 10.1016/j.est.2018.11.023
[22] Mei Shengwei, Gong Maoqiong, Qin Guoliang, Tian Fang, Xue Xiaodai, Li Rui. 2017. Advanced adiabatic compressed air energy storage system with salt cavern air storage and its application prospects[J]. Power System Technology, 41(10): 3392−3399 (in Chinese with English abstract).
[23] Shi Xilin, Wei Xinxing, Yang Chunhe, Ma Hongling, Li Yinping. 2023. Problems and countermeasures for construction of China’s salt cavern type strategic oil storage[J]. Bulletin of Chinese Academy of Sciences, 38(1): 99−111 (in Chinese with English abstract).
[24] Sovacool B K, Mukherjee I. 2011. Conceptualizing and measuring energy security: A synthesized approach[J]. Energy, 36(8): 5343−5355. doi: 10.1016/j.energy.2011.06.043
[25] Su Jian, Liang Yingbo, Ding Lin, Zhang Guosheng, Liu He. 2021. Research on China's energy development strategy under carbon neutrality[J]. Bulletin of Chinese Academy of Sciences, 36(9): 1001−1009 (in Chinese with English abstract).
[26] Su Zhan. 2021. Research on the development trend of global underground gas storage and its enlightenment to the construction of gas storage and peak shaving system in China[J]. Quality and Market, (7): 143−145 (in Chinese with English abstract).
[27] Subject Information Team of Wuhan Literature and Information Center, Chinese Academy of Sciences, Li Nana, Zhao Yanqiang, Wang Tongtao, Yang Chunhe. 2021. Trend observation: International salt cavern energy storage strategy and technology development trend analysis[J]. Bulletin of Chinese Academy of Sciences, 36(10): 1248−1252 (in Chinese with English abstract).
[28] Tarkowski R. 2019. Underground hydrogen storage: Characteristics and prospects[J]. Renewable and Sustainable Energy Reviews, 105: 86−94. doi: 10.1016/j.rser.2019.01.051
[29] Taylor J B, Alderson J E, Kalyanam K M, Lyle A B, Phillips L A. 1986. Technical and economic assessment of methods for the storage of large quantities of hydrogen[J]. International Association for Hydrogen Energy, 2(1): 5−22.
[30] Tian Q N, Yao S Q, Shao M J, Zhang W, Wang H H. 2022. Origin, discovery, exploration and development status and prospect of global natural hydrogen under the background of “Carbon Neutrality”[J]. China Geology, 5(4): 722−733.
[31] US Department of Energy (USDE). 2019. Office of Fossil Energy and Carbon Management[N]. SPR Storage Sites. https://www.energy.gov/fecm/strategic–petroleum–reserve–4.
[32] Van Gessel S, Leynet A, Mulder A, Koorneef J, Harcouet–Menou V. 2014. ESTMAP Technical Support Document: Subsurface Data Specification. EC Project no[R].
[33] Wang Baohui, Yan Xianzhen, Yang Xiujuan, Feng Yaorong. 2012. Natural gas dynamic migration in an underground gas storage in aquifer beds[J]. Acta Petrolei Sinica, 33(2): 327−331 (in Chinese with English abstract).
[34] Wang Mengshu, Yang Huijun. 2008. Basic principles for design and construction of underground water–sealed hydrocarbon–storage rock caverns[J]. Engineering Science of China, (4): 11−16, 28 (in Chinese with English abstract).
[35] Wang Y, Guo C H, Chen X J, Jia L Q, Guo X N, Chen R S, Wang H D. 2021. Carbon peak and carbon neutrality in China: Goals, implementation path and prospects[J]. China Geology, 4(4): 720−746.
[36] Wen Xiankui, Zhang shihai, Wang Suobin. 2018. Summary of compressed air energy storage technology and demonstration projects[J]. Application of Energy Technology, (3): 43−48 (in Chinese with English abstract).
[37] Wu Haowen, Wang Jun, Gong Yingli, Yang Hairui, Zhang Man, Huang Zhong. 2021. Development status and application prospect analysis of energy storage technology[J]. Journal of Electric Power, 36(5): 434−443 (in Chinese with English abstract).
[38] Xue Huifeng, Zhou Yichen. 2009. China's energy reserve strategy under the slowdown of global economic growth[J]. Environmental Protection, (2): 64−66 (in Chinese with English abstract).
[39] Yang C, Wang T, Chen H. 2022. Theoretical and technological challenges of deep underground energy storage in China[J]. Engineering, 25(6): 168−181.
[40] Zhang Senqi, Guo Jianqiang, Diao Yujie, Zhang Hui, Jia Xiaofeng, Zhang Yang. 2011. Technical method for selection of CO2 geological storage project sites in deep saline aquifers[J]. Geology in China, 38(6): 1640−1651 (in Chinese with English abstract).
[41] Zhou Qingfan, Zhang Junfa. 2022. Review of underground hydrogen storage technology[J]. Oil Gas and New Energy, 34(4): 1−6 (in Chinese with English abstract).
[42] Zhu Jianying, Qian Bin, Zhao Yunsong, Li Jingjiang. 2021. Advantages of applying cluster well technology to construct salt cavern gas storage[J]. Gas & Heat, 41(5): 1−3, 17, 44 (in Chinese with English abstract).
[43] Zong Shi, Liu Shiqi, Xu Hui, Wang Wenkai, Cao Bo, Huang Fansheng. 2023. Numerical simulation of CO2 storage in bedded salt rock storage cavern in Subei Basin[J]. Coal Geology & Exploration, 51(3): 27−36 (in Chinese with English abstract).
[44] 常乐, 张敏吉, 梁嘉, 孙洋洲. 2012. 储能在能源安全中的作用[J]. 中外能源, 17(2): 29−35.
[45] 陈海生, 刘金超, 郭欢, 徐玉杰, 谭春青. 2013. 压缩空气储能技术原理[J]. 储能科学与技术, 2(2): 146−151.
[46] 付盼, 罗淼, 夏焱, 李国韬, 班凡生. 2020. 氢气地下存储技术现状及难点研究[J]. 中国井矿盐, 51(6): 19−23.
[47] 郭朝斌, 王志辉, 刘凯, 李采. 2019. 特殊地下空间应用与研究现状[J]. 中国地质, 46(3): 482−492.
[48] 郭平业, 王蒙, 孙晓明, 何满潮. 2022. 废弃矿井地下空间反季节循环储能研究[J]. 煤炭学报, 47(6): 2193−2206.
[49] 贾善坡, 金凤鸣, 郑得文, 孟庆春, 张辉, 林建品, 魏强. 2015. 含水层储气库的选址评价指标和分级标准及可拓综合判别方法研究[J]. 岩石力学与工程学报, 34(8): 1628−1640.
[50] 贾善坡, 郑得文, 金凤鸣, 张辉, 孟庆春, 林建品, 魏强. 2016. 含水层构造改建地下储气库评价体系[J]. 中南大学学报(自然科学版), 47(3): 857−867.
[51] 李建君. 2022. 中国地下储气库发展现状及展望[J]. 油气储运, 41(7): 780−786.
[52] 刘楷琳, 尚培培. 2021. 中国城市群高质量发展水平测度及空间关联性[J]. 东北财经大学学报, (3): 37−46.
[53] 陆佳敏, 徐俊辉, 王卫东, 王浩, 徐孜俊, 陈留平. 2022. 大规模地下储氢技术研究展望[J]. 储能科学与技术, 11(11): 3699−3707.
[54] 马新华, 郑得文, 魏国齐, 丁国生, 郑少婧. 2022. 中国天然气地下储气库重大科学理论技术发展方向[J]. 天然气工业, 42(5): 93−99.
[55] 梅生伟, 公茂琼, 秦国良, 田芳, 薛小代, 李瑞. 2017. 基于盐穴储气的先进绝热压缩空气储能技术及应用前景[J]. 电网技术, 41(10): 3392−3399.
[56] 施锡林, 尉欣星, 杨春和, 马洪岭, 李银平. 2023. 中国盐穴型战略石油储备库建设的问题及对策[J]. 中国科学院院刊, 38(1): 99−111.
[57] 苏健, 梁英波, 丁麟, 张国生, 刘合. 2021. 碳中和目标下我国能源发展战略探讨[J]. 中国科学院院刊, 36(9): 1001−1009.
[58] 苏展. 2021. 全球地下储气库发展趋势研究及对我国储气调峰体系建设的启示[J]. 质量与市场, (7): 143−145.
[59] 王保辉, 闫相祯, 杨秀娟, 冯耀荣. 2012. 含水层型地下储气库天然气动态运移规律[J]. 石油学报, 33(2): 327−331.
[60] 王梦恕, 杨会军. 2008. 地下水封岩洞油库设计、施工的基本原则[J]. 中国工程科学, (4): 11−16, 28.
[61] 文贤馗, 张世海, 王锁斌. 2018. 压缩空气储能技术及示范工程综述[J]. 应用能源技术, (3): 43−48.
[62] 吴皓文, 王军, 龚迎莉, 杨海瑞, 张缦, 黄中. 2021. 储能技术发展现状及应用前景分析[J]. 电力学报, 36(5): 434−443.
[63] 薛惠锋, 周奕琛. 2009. 全球经济增长减缓下的中国能源储备策略[J]. 环境保护, (2): 64−66.
[64] 张森琦, 郭建强, 刁玉杰, 张徽, 贾小丰, 张杨. 2011. 规模化深部咸水含水层CO2地质储存选址方法研究[J]. 中国地质, 38(6): 1640−1651.
[65] 中国科学院武汉文献情报中心学科情报团队, 中国科学院武汉岩土力学研究所油气地下储备与开发研究中心团队, 李娜娜, 赵晏强, 王同涛, 杨春和. 2021. 趋势观察: 国际盐穴储能战略与科技发展态势分析[J]. 中国科学院院刊, 36(10): 1248−1252.
[66] 周庆凡, 张俊法. 2022. 地下储氢技术研究综述[J]. 油气与新能源, 34(4): 1−6.
[67] 朱健颖, 钱彬, 赵云松, 李敬江. 2021. 应用丛式井技术建设盐穴储气库的优势[J]. 煤气与热力, 41(5): 1−3, 17, 44.
[68] 宗师, 刘世奇, 徐辉, 王文楷, 曹泊, 皇凡生. 2023. 苏北盆地层状盐穴储气库CO2封存数值模拟研究[J]. 煤田地质与勘探, 51(3): 27−36.