中国地质调查局 中国地质科学院主办
科学出版社出版

废弃煤矿山地热资源开发利用研究

张发旺, 赵淼, 李胜涛, 谭现锋, 么红超, 崔俊艳. 2024. 废弃煤矿山地热资源开发利用研究[J]. 中国地质, 51(6): 1883-1894. doi: 10.12029/gc20230418002
引用本文: 张发旺, 赵淼, 李胜涛, 谭现锋, 么红超, 崔俊艳. 2024. 废弃煤矿山地热资源开发利用研究[J]. 中国地质, 51(6): 1883-1894. doi: 10.12029/gc20230418002
ZHANG Fawang, ZHAO Miao, LI Shengtao, TAN Xianfeng, YAO Hongchao, CUI Junyan. 2024. Development and utilization of geothermal resources in abandoned coal mines[J]. Geology in China, 51(6): 1883-1894. doi: 10.12029/gc20230418002
Citation: ZHANG Fawang, ZHAO Miao, LI Shengtao, TAN Xianfeng, YAO Hongchao, CUI Junyan. 2024. Development and utilization of geothermal resources in abandoned coal mines[J]. Geology in China, 51(6): 1883-1894. doi: 10.12029/gc20230418002

废弃煤矿山地热资源开发利用研究

  • 基金项目: 国家自然科学基金重点项目(41130637)资助。
详细信息
    作者简介: 张发旺,男,1965年生,研究员,主要从事矿山水文地质、环境地质等方面研究;E-mail:zfawang@mail.cgs.gov.cn
  • 中图分类号: TK521; P314

Development and utilization of geothermal resources in abandoned coal mines

  • Fund Project: Supported by Key Project of the National Natural Science Foundation of China (No.41130637).
More Information
    Author Bio: ZHANG Fawang, male, born in 1965, researcher, engaged in mining hydrogeology, mining geothermal energy, and mining environmental geology research; E-mail: zfawang@mail.cgs.gov.cn .
  • 研究目的

    随着中国能源结构调整的逐步进行和煤炭去产能政策的实施,近年来关闭/废弃煤矿数量有所增加。常规地热开采通常面临着投资成本大、易诱发地质环境灾害等问题,而关闭/废弃煤矿含有丰富的热水以及空间资源,有效降低地热资源开发风险与投资成本。矿山地热不同于常规的浅层地热和中深层水热,也不同于油田地热,有其自身的特征,因此,需要采用不同的地热开发利用技术。

    研究方法

    本文通过文献综述法,总结了中国煤矿山地热资源分布特征。在分析矿山地热资源开发利用方法的基础上,提出将矿山地热能及造成的热害转变为地热资源有效加以利用的方式,论述了矿井地热开发理论在实际案例中的运用,对矿山地热资源开发利用的多种方式进行可行性的探索分析。

    研究结果

    (1)矿井水地热资源利用方法大致分为两大类:地热回收闭式系统和地热回收开式系统;(2)中国26个主要产煤省份,高地温矿井分布在河南、江苏、山东等13个省份。主要赋煤区地热资源热储量为1.12×1019 kJ,折合标煤3795.39亿t,其中74.66%的煤矿地热资源量位于华北;(3)以山东唐口煤矿为例建立地热资源利用模型,探讨了中国煤矿山地热资源利用的可行性方案;(4)提出了多种矿井水地热发展方向,建立“煤−水−热”的联动联采研究以及智能化的监控系统、探索矿井水中提取锂等价值高的元素、利用地热将废弃煤矿改造成地下农场等。

    结论

    碳减排是应对气候变化的关键挑战之一。利用废弃煤矿山中的地热资源,可以减少对传统化石燃料的依赖,降低二氧化碳和其他温室气体的排放量,为碳减排目标做出积极贡献。但中国矿山水文地质条件复杂,不可照搬国外典型矿山地热资源开发利用经验,应当积极探索适用于中国的废弃矿井地热应用新模式。

  • 加载中
  • 图 1  废弃矿井地热提取利用模式 (据Banks et al., 2019

    Figure 1. 

    图 2  地热回收混合式系统示意图

    Figure 2. 

    图 3  约克郡煤矿现场示意图 (据Faraldo Sanchez, 2007

    Figure 3. 

    图 4  使用燃气、电力和热泵加热系统的效率和碳排放量比较(据Athresh et al.,2015

    Figure 4. 

    图 5  唐口煤矿地热资源利用方案简化示意图

    Figure 5. 

    表 1  中国各赋煤区地热资源量(据汪集旸等, 2023

    Table 1.  Geothermal resources in various coal mining areas in China (after Wang Jiyang et al., 2023)

    赋煤区煤炭资源比例/%热储量可采热储量地热资源比例/%
    热量/1018kJ折合标煤/亿t热量/1017kJ折合标煤/亿t
    东北赋煤区23.8%0.86284.071.2542.617.48
    华北赋煤区东区11.5%2.89985.164.33147.7725.96
    西区>46%5.411848.518.25277.2848.70
    华南赋煤区7%1.24421.892.1563.2811.12
    西北赋煤区11.7%0.75255.761.0838.366.74
    滇藏赋煤区<1%
    合计10011.203795.3917.1569.31100.00
    下载: 导出CSV

    表 2  中国部分矿山地热情况统计(据吴洪国, 2017; 万志军等, 2018

    Table 2.  Statistics of geothermal conditions in some mines in China (after Wu Hongguo, 2017; Wan Zhijun et al., 2018)

    区域 矿井名称 采深/m 最高气温/℃ 最高岩温/℃ 地温梯度/(℃ ·hm−1 最高水温/℃
    江苏 徐州张双楼矿 1000 35.0 40.6 4.00 30
    徐州三河尖矿 1010 36 46.8 3.24 50
    徐州大屯矿 1015 37 40.4 2.36~2.42 26
    徐州旗山矿 1100 30.0 41.9 2.60
    徐州夹河矿 1200 36.0 40.0 2.21 30
    徐州张小楼矿 1200 33.5 42.0 1.64
    徐州张集矿 1260 51.5 2.65

    安徽
    淮南新集一矿 550 33.6 36.4 3.20 35
    淮南潘一矿 650 36.0 40.0 3.00
    淮南顾桥矿 800 36 40.1 3.08
    淮南潘三矿 810 40.0 43.0 3.42
    淮南丁集矿 826 40.0 43.0 2.52~4.02
    淮北涡北矿 700 36.0 35.5 1.00~4.20 25
    阜阳谢桥矿 720 33.0 41.1 2.00~2.50
    阜阳刘庄矿 900 34.0 38.5 3.00
    山东 兖州东滩矿 660 31.0 33.0 2.30
    汶上阳城煤矿 1100 36 1.86
    兖州赵楼矿 840 35.0 45.0 2.20
    济宁三号井 838 33.0 35.3 2.44~2.96 29
    枣庄朝阳矿 880 32.0 34.2 2.11
    淄博唐口矿 1025 35.0 37.0 2.00
    新汶协庄矿 1010 34.0 37.0 3.00 45
    新汶孙村矿 1500 35.0 48.0 2.70 45
    新汶新巨龙煤矿 900 39.0 44.7 3.23 47
    新汶华恒煤矿 1200 37.0 2.61
    新汶潘西煤矿 740 42.5 35 1.6~2 36
    河南 平顶山四矿 840 30.0 40.0 4.00
    平顶山五矿 909 35.0 50.0 3.60
    平顶山六矿 900 35.0 53.0 4.10
    平顶山八矿 660 35.0 43.0 3.00 62
    平顶山十矿 960 32.0 39.0 4.00
    平顶山十三矿 750 31.0 40.0 4.50
    新政赵家寨矿 610 31.0 3.50 32
    义马跃进矿 960 32.0 2.00
    许昌梁北矿 680 30.0 37.0 2.87 42
    永城城郊矿 750 33.0 39.0 2.62 35
    河北 邯郸梧桐庄矿 680 30.0 35.0 2.90 45
    邯郸磁西矿 1200 30.0 37.0 3.00
    开滦钱家营矿 860 33.0 46.0 3.00~5.90
    辽宁 抚顺老虎台矿 715 33.0 42.0 3.60~4.30 48~51
    抚顺东风矿 800 33.0 30.0 2.70~4.60 48~51
    鸡西东海矿 1100 34.0 39.0 3.70
    沈阳红阳三矿 1050 38.0 43.0 4.30
    沈阳大强矿 1242 41.0 43.0 3.42
    宁夏 宁东羊场湾矿 1100 32.0 37.0 3.36
    灵武市梅花井矿 450 33.0 38.0 3.12
    贵州 遵义东山矿 975 29.5 35.0 3.50
    湖南 郴州周源山矿 1000 33.0 42.7 4.20
    下载: 导出CSV

    表 3  开闭式系统对比(据浦海等, 2021

    Table 3.  Comparison of open-loop and closed-loop systems (after Pu Hai et al., 2021)

    类型 系统优点 系统缺点
    开式系统 (a)适用于大型用户
    (b)运行水压相对更加稳定
    (c)设备简单,操作方便,初始投资小
    (d)热量交换效率高
    (e)可获得丰富水资源
    (a)不适用于小型住宅
    (b)对水质要求高
    (c)容易产生结垢、腐蚀、藻类或微生物滋长等现象
    (d)法律许可监管严格
    (e)受当地天气影响
    闭式系统 (a)投资增加,运行管理较复杂
    (b)环境友好
    (c)适用于污染矿井水
    (d)取热不取水,法律监管较宽松
    (e)设备工作寿命长
    (a)能量转换效率低
    (b)初始投资相对大
    (c)系统需要额外的浸没式热交换器
    (d)热载体流体泄漏风险
    (e)系统运行不稳定
    下载: 导出CSV

    表 4  水质情况

    Table 4.  Water quality

    总硬度 pH Na+/(mg/L) Ca2+/(mg/L) Mg2+/(mg/L) Cl/(mg/L) SO42−/(mg/L) HCO3/(mg/L)
    1400 7.9 291 42.5 2.43 73 1670 170
    下载: 导出CSV
  • [1]

    Adams C, Monaghan A, Gluyas J. 2019. Mining for heat[J]. Geoscientist, 29(4): 10−15.

    [2]

    Athresh A P, Al−Habaibeh A, Parker K. 2015. Innovative approach for heating of buildings using water from a flooded coal mine through an open loop based single shaft GSHP system[J]. Energy Procedia, 75: 1221−1228. doi: 10.1016/j.egypro.2015.07.162

    [3]

    Bailey M, Gandy C, Watson I, Wyatt L, Jarvis A. 2016. Heat recovery potential of mine water treatment systems in Great Britain[J]. International Journal of Coal Geology, 164: 77−84. doi: 10.1016/j.coal.2016.03.007

    [4]

    Banks D, Athresh A, Al−Habaibeh A, Burnside N. 2019. Water from abandoned mines as a heat source: Practical experiences of open−and closed−loop strategies, United Kingdom[J]. Sustainable Water Resources Management, 5: 29−50. doi: 10.1007/s40899-017-0094-7

    [5]

    Bi Shike, Wan Zhijun, Zhang Hongwei, Wang Mingkai, Wang Jingchao, Liu Zhi. 2018. Research on development and utilization of geothermal resources in Tangkou Coal Mine[J]. Coal Science and Technology, 46(4): 208−214 (in Chinese with English abstract).

    [6]

    Bracke R, Bussmann G, Eicker T, Ignacy R, Jagert F, Danowski−Buhren C, Schmidt B. 2018. Potential Study on Warm Mine Water[R]. North Rhine−Westphalia (Germany): State Office for Nature, Environment and Consumer Protection.

    [7]

    Burnside N, Banks D, Boyce A. 2016. Sustainability of thermal energy production at the flooded mine workings of the former Caphouse Colliery, Yorkshire, United Kingdom [J]. International Journal of Coal Geology, 164: 85−91.

    [8]

    Dai Baohua. 2017. Thoughts on the development, utilization and strategic layout of geothermal resources in China[J]. Green Petroleum & Petrochemicals, 2(1): 6−12 (in Chinese).

    [9]

    Faraldo Sánchez M. 2007. Thermal Balance of Mine−Water Treatment Lagoons and Wetlands[D]. Callaghan: University of Newcastle.

    [10]

    Guo Pingye, Bu Mohua, Zhang Ping, He Manchao. 2022. Research progress on the prevention and utilization of mine geothermal energy[J]. Chinese Journal of Engineering, 44(10): 1632−1651 (in Chinese with English abstract).

    [11]

    Guo Qiang. 2018. Technical progress of underground mine water treatment and zero discharge ofwaste water[J]. Clean Coal Technology, 24(1): 33−37 (in Chinese with English abstract).

    [12]

    Jardón S, Ordóez A, Álvarez R, Cienfuegos P, Loredo J. 2013. Mine water for energy and water supply in the central coal basin of Asturias (Spain)[J]. Mine Water & the Environment, 32(2): 139−151.

    [13]

    Kruse N S, Younger P L. 2009. Sinks of iron and manganese in underground coal mine workings[J]. Environmental Geology, 57: 1893−1899.

    [14]

    Li W, Wang D H, Li H J. 2019. Environmental engineering issues induced by abandoned coal mine hidden disasters[C]//IOP Conference Series Earth and Environmental Science, 237(2): 022039.

    [15]

    Loredo C Ordóñez A, Garcia−Ordiales E, Álvarez R, Roqueñi N, Cienfuegos P, Peña A, Burnside N. 2017. Hydrochemical characterization of a mine water geothermal energy resource in NW Spain[J]. Science of the Total Environment, 576: 59−69. doi: 10.1016/j.scitotenv.2016.10.084

    [16]

    Luo Huogen, Liu Haishuang, Huangtao. 2023. Experiment on the influence of mine water on anchor cable corrosion inShendong mining area[J]. Coal Engineering, 55(3): 156−160.

    [17]

    Pang Zhonghe, Hu Shengbiao, Wang Jiyang. 2012. A roadmap to geothermal energy development in China[J]. Science & Technology Review, 30(32): 18−24 (in Chinese with English abstract).

    [18]

    Pu Hai, Bian Zhengfu, Zhang Jixiong, Xu Junce. 2021. Research on a reuse mode of geothermal resources in abandoned coal mines[J]. Journal of China Coal Society, 46(2): 677−687 (in Chinese with English abstract).

    [19]

    Spears D A, Tewalt S J. 2009. The geochemistry of environmentally important trace elements in UK coals, with special reference to the Parkgate Coal in the Yorkshire–Not tinghamshire Coalfield, UK[J]. International Journal of Coal Geology, 80(3/4): 157−166.

    [20]

    Walls D B, Banks D, Boyce A J, Burnside N M. 2021. A review of the performance of minewater heating and cooling systems[J]. Energies, 14(19): 1−33.

    [21]

    Wan Zhijun, Bi Shike, Zhang Yuan, Wang Junhui, Wu Dong, Wan Jingchao. 2018. Framework of the theory and technology for simultaneous extraction of coal and geothermal resources[J]. Journal of China Coal Society, 43(8): 2099−2106 (in Chinese with English abstract).

    [22]

    Wang Guiling, Zhang Wei, Liang Jiyun, Lin Wenjing, Liu Zhiming, Wang Wanli. 2017. Evaluation of geothermal resource potential in China[J]. Acta Geologica Sinica, 38(4): 449−450 (in Chinese with English abstract).

    [23]

    Wang Jiyang, Kong Yanlong, Duan Zhongfeng, Zhang Jixiong , Luo Xilian, Huang Yonghui, Luo Naning, Cheng Yuanzhi, Zhou Nan, Zhang Weizun, Pang Zhonghe. 2023. Geothermal energy exploitation and storage in coal field under the dual carbon goal[J]. Coal Geology & Exploration, 51(2): 1−11 (in Chinese with English abstract).

    [24]

    Wang Zhijun. 2006. Study on Earth Temperature Distribution Law and Earth Temperature Assessment System in High Temperature Mine [D]. Qingdao: Shandong University of Science and Technology, 1−92 (in Chinese with English abstract).

    [25]

    Waters C N, Davies S J. 2006. Carboniferous: Extensional Basins, advancing deltas and coal swamps[C]//The Geology of England and Wales, Second ed. The Geological Society, 173−223.

    [26]

    Wu Hongguo. 2017. The technology research and application of heat harm control of Yangcheng[J]. Coal Mine Coal Mine Modernization, (4): 52−54 (in Chinese with English abstract).

    [27]

    Xie Heping. 2017. Research framework and anticipated results of deep rock mechanics and mining theory[J]. Advanced Engineering Sciences, 49(2): 1−16 (in Chinese with English abstract).

    [28]

    Yuan Liang. 2017. Strategic Studies of High−efficient and Energy−effective Coal Extractions in China [M]. Beijing: Science Press (in Chinese with English abstract).

    [29]

    Zhang Chuanyuan, Pan Zhongde. 2012. Gas control in the Dafosi coal mine area of Binchang Mining Area[J]. Hydraulic Coal Mining and Pipeline Transportation, 122(3): 47−49 (in Chinese).

    [30]

    Zhang Zhiqiang, Zhang Shanshan, Yao Haiqing, Liu Xia, Zhang Wenke. 2022. Research and development of geothermal resources utilization in abandoned mine[J]. District Heating, (4): 45−55 (in Chinese with English abstract).

    [31]

    毕世科, 万志军, 张洪伟, 王明凯, 王靖超, 刘志. 2018. 唐口煤矿地热资源开发及利用研究[J]. 煤炭科学技术, 46(4): 208−214.

    [32]

    戴宝华. 2017. 我国地热资源开发利用与战略布局思考[J]. 石油石化绿色低碳, 2(1): 6−12. doi: 10.3969/j.issn.2095-0942.2017.01.003

    [33]

    郭平业, 卜墨华, 张鹏, 何满潮. 2022. 矿山地热防控与利用研究进展[J]. 工程科学学报, 44(10): 1632−1651. doi: 10.3321/j.issn.1001-053X.2022.10.bjkjdxxb202210003

    [34]

    郭强. 2018. 煤矿矿井水井下处理及废水零排放技术进展[J]. 洁净煤技术, 24(1): 33−37,56.

    [35]

    罗伙根, 刘海双, 黄涛. 2023. 神东矿区矿井水对锚索腐蚀影响实验研究[J]. 煤炭工程, 55(3): 156−160.

    [36]

    庞忠和, 胡圣标, 汪集旸. 2012. 中国地热能发展路线图[J]. 科技导报, 30(32): 18−24. doi: 10.3981/j.issn.1000-7857.2012.32.001

    [37]

    浦海, 卞正富, 张吉雄, 许军策. 2021. 一种废弃矿井地热资源再利用系统研究[J]. 煤炭学报, 46(2): 477−487.

    [38]

    万志军, 毕世科, 张源, 王骏辉, 吴栋, 王靖超. 2018. 煤−热共采的理论与技术框架[J]. 煤炭学报, 43(8): 2099−2106.

    [39]

    汪集旸, 孔彦龙, 段忠丰, 张吉雄, 罗昔联, 黄永辉, 罗娜宁, 程远志, 周楠, 张伟尊, 庞忠和. 2023. “双碳”目标下煤田区地热资源开发利用与储能技术[J]. 煤田地质与勘探, 51(2): 1−11. doi: 10.12363/issn.1001-1986.23.02.0104

    [40]

    王贵玲, 张薇, 梁继运, 蔺文静, 刘志明, 王婉丽. 2017. 中国地热资源潜力评价[J]. 地球学报, 38(4): 449−459. doi: 10.3975/cagsb.2017.04.02

    [41]

    王志军. 2006. 高温矿井地温分布规律及其评价系统研究[D]. 青岛: 山东科技大学, 1−92.

    [42]

    吴洪国. 2017. 阳城煤矿井下热害治理技术研究及应用[J]. 煤矿现代化, (4): 52−54. doi: 10.3969/j.issn.1009-0797.2017.04.020

    [43]

    谢和平. 2017. “深部岩体力学与开采理论”研究构想与预期成果展望[J]. 工程科学与技术, 49(2): 1−16.

    [44]

    袁亮. 2017. 我国煤炭资源高效回收及节能战略研究[M]. 北京: 科学出版社.

    [45]

    章传源, 潘忠德. 2012. 彬长矿区大佛寺煤矿区域瓦斯治理[J]. 水力采煤与管道运输, 122(3): 47−49.

    [46]

    张志强, 张珊珊, 姚海清, 刘霞, 张文科. 2022. 废弃矿井地热资源利用的研究与发展[J]. 区域供热, (4): 45−55.

  • 加载中

(5)

(4)

计量
  • 文章访问数:  187
  • PDF下载数:  9
  • 施引文献:  0
出版历程
收稿日期:  2023-04-18
修回日期:  2023-07-14
刊出日期:  2024-11-25

目录