中国地质调查局 中国地质科学院主办
科学出版社出版

全球锂矿床的分类、外生锂矿成矿作用与提取技术

郑绵平, 邢恩袁, 张雪飞, 黎明明, 车东, 卜令忠, 韩佳欢, 叶传永. 2023. 全球锂矿床的分类、外生锂矿成矿作用与提取技术[J]. 中国地质, 50(6): 1599-1620. doi: 10.12029/gc20231025002
引用本文: 郑绵平, 邢恩袁, 张雪飞, 黎明明, 车东, 卜令忠, 韩佳欢, 叶传永. 2023. 全球锂矿床的分类、外生锂矿成矿作用与提取技术[J]. 中国地质, 50(6): 1599-1620. doi: 10.12029/gc20231025002
ZHENG Mianping, XING Enyuan, ZHANG Xuefei, LI Mingming, CHE Dong, BU Lingzhong, HAN Jiahuan, YE Chuanyong. 2023. Classification and mineralization of global lithium deposits and lithium extraction technologies for exogenetic lithium deposits[J]. Geology in China, 50(6): 1599-1620. doi: 10.12029/gc20231025002
Citation: ZHENG Mianping, XING Enyuan, ZHANG Xuefei, LI Mingming, CHE Dong, BU Lingzhong, HAN Jiahuan, YE Chuanyong. 2023. Classification and mineralization of global lithium deposits and lithium extraction technologies for exogenetic lithium deposits[J]. Geology in China, 50(6): 1599-1620. doi: 10.12029/gc20231025002

全球锂矿床的分类、外生锂矿成矿作用与提取技术

  • 基金项目:
    国家自然科学基金重大研究计划项目“西藏扎布耶锂盐湖矿集区成矿机制与规律”(91962219),西藏自治区科技重大专项课题“西藏高原条件下锂盐湖原卤提锂方法研究”(XZ202201ZD0004G01)及中国地质调查局项目(DD20230037)联合资助
详细信息
    通讯作者: 郑绵平,男,1934年生,中国工程院院士,从事盐类资源勘查评价与开发研究工作;E-mail: zhengmp2010@126.com 邢恩袁, 男, 1982年生, 高级工程师, 从事锂钾资源调查评价工作;E-mail: xingenyuan2022@126.com
  • 中图分类号: P314

Classification and mineralization of global lithium deposits and lithium extraction technologies for exogenetic lithium deposits

  • Fund Project: Supported by the major research program of National Natural Science Foundation of China "Metallogenic Mechanisms and Regularity of the Lithium Ore Concentration Area in the Zabuye Salt Lake, Tibet" (No.91962219), major science and technology project of Tibet Autonomous Region "Research on extraction of lithium by raw brine from lithium salt lake in Tibet Plateau" (No.XZ202201ZD0004G01) and the project of China Geological Survey (No.DD20230037)
More Information
    Corresponding authors: ZHENG Mianping, male, born in 1934, academician of the Chinese Academy of Engineering, engaged in the research on exploration, evaluation and exploitation of salinology; E-mail: zhengmp2010@126.com XING Enyuan, male, born in 1982, senior engineer, engaged in the investigation and evaluation of lithium and potassium resources; E-mail: xingenyuan2022@126.com
  • 研究目的

    为明确锂矿的找矿方向与勘查部署重点工作,矿床类型的合理划分非常重要。

    研究方法

    本文按照锂资源赋存性质,对其详加厘定和划分,尝试把锂矿床(资源)按内、外生成因进行划分。

    研究结果

    将全球锂矿床按照内外生成因划分为10种类型和5个亚类。

    结论

    国外已查明新生代外生锂矿床的形成与分布主要受控于板块碰撞带,主要物质来源与深部洋壳重熔岩浆有关,形成时代主要在中新世和古近纪后期;具有偏酸性的岩浆专属性,盐湖型、地热型、火山沉积型锂矿与含锂凝灰岩和热水密切相关,且锂盐湖具有趋低性迁聚,超常富集机制,但对晚古生代黏土亚型和深部卤水物质来源,有待进一步查明;由于锂矿床(资源)类型多,成因复杂,它们是在多圈层相互作用形成的,建议要用构造地球化学、古大气环流和盐类学相结合研究的路线,开展外生锂矿床(资源)成矿作用研究。

  • 加载中
  • 图 1  全球新生代外生锂资源分带与矿产分布略图(构造背景引自ОЗОЛ, 1987

    Figure 1. 

    图 2  扎布耶碳酸盐含锂矿物镜下照片

    Figure 2. 

    图 3  色卡执地区火山沉积分布情况与沉积剖面图

    Figure 3. 

    图 4  扎布耶锂盐湖矿集区钙华分布图(据郑绵平等, 1989b, 补充钙华分布数据)

    Figure 4. 

    图 5  扎布耶钙华岛的钙华与硅华产出分布图(据郑绵平等, 1989b, 补充2021年调查数据)

    Figure 5. 

    图 6  扎布耶钙华岛硅华手标本与显微镜下的矿物结构特征

    Figure 6. 

    图 7  青藏高原盐湖资源及其分布特征示意图(据孙鸿烈和郑度,1998修改)

    Figure 7. 

    图 8  西藏高原含锂盐湖平面分布图

    Figure 8. 

    图 9  扎布耶锂盐湖矿集区锂盐比分布图

    Figure 9. 

    图 10  扎布耶湖链富集成矿机制(红色数字为各湖水锂盐比)

    Figure 10. 

    图 11  西藏扎布耶盐湖SZK02孔128 ka以来古气候记录(郑绵平等,2007Zheng et al., 2007马志邦等,2010Ling et al., 2017

    Figure 11. 

    图 12  扎布耶盐田的盐类沉积层

    Figure 12. 

    图 13  南美“锂三角”主要锂盐湖资源特征及其分布

    Figure 13. 

    图 14  南美锂盐湖“多级成矿”示意图

    Figure 14. 

    图 15  酸法提锂基本流程

    Figure 15. 

    图 16  黏土锂矿提取方法

    Figure 16. 

    图 17  盐梯度太阳池提锂流程图(据Ding et al., 2023

    Figure 17. 

    图 18  太阳池提锂技术发明专利证书

    Figure 18. 

    图 19  西藏扎布耶盐湖产业化实景图

    Figure 19. 

    表 1  全球主要锂资源分类

    Table 1.  Classification of the world's primary lithium resources

    下载: 导出CSV

    表 2  固体锂矿工业指标

    Table 2.  Industrial indices of solid lithium deposits

    下载: 导出CSV

    表 3  雄巴区钙华24~135 ka BP Li、B含量情况

    Table 3.  Lithium and boron content in travertine in the Xiongba area (24~135 ka BP)

    下载: 导出CSV

    表 4  扎布耶盐湖盐田现场实验和气象温度观测结果

    Table 4.  Results of field experiments and meteorological temperature observations in the Zabuye Salt Lake

    下载: 导出CSV

    表 5  南美锂三角主要含锂盐湖资源与分布

    Table 5.  Resources and distribution of major lithium-bearing salt lakes in South America's Lithium Triangle

    下载: 导出CSV

    表 6  扎布耶盐湖原卤化学组分

    Table 6.  Chemical composition of raw brine in the Zabuye Salt Lake

    下载: 导出CSV
  • AGU Fall Meeting. 2018. V14B: Lithium resources in continental brines, pegmatites, and lacustrine sediments[EB/OL]. https://agu.confex.com/agu/fm18/meetingapp.cgi/Session/51511.

    Arne S K, Johan W S. 1941. Method of recovering lithium salts from lithium-containing minerals: US24041638A[P]. 1941-01-28.

    Barbosa L I, González J A, Ruiz M D C. 2015. Extraction of lithium from β- spodumene using chlorination roasting with calcium chloride[J]. Thermochimica Acta, 605: 63-67. doi: 10.1016/j.tca.2015.02.009

    Barbosa L I, Valente G, Orosco R P. 2014. Lithium extraction from beta- spodumene through chlorination with chlorine gas[J]. Minerals Engineering, 56: 29-34. doi: 10.1016/j.mineng.2013.10.026

    Barbosa L I, Valente N G, González J A. 2013. Kinetic study on the chlorination of β-spodumene for lithium extraction with Cl2 gas[J]. Thermochimica Acta, 557: 61-67. doi: 10.1016/j.tca.2013.01.033

    Benson T R, Coble M A, Dilles J H. 2023. Hydrothermal enrichment of lithium in intracaldera illite- bearing claystones[J]. Science Advances, 9(35): eadh8183. doi: 10.1126/sciadv.adh8183

    Benson T R, Coble M A, Rytuba J J, Gail A M. 2017. Lithium enrichment in intracontinental rhyolite magmas leads to Li deposits in caldera basins[J]. Nature Communications, 8(1): 270-278. doi: 10.1038/s41467-017-00234-y

    Bradley D C, Mccauley A D, Stillings L L. 2017a. Mineral- deposit model for lithium cesium tantalum pegmatites[R]. U. S.: U. S. Geological Survey, 1‒48.

    Bradley D C, Stillings L L, Jaskula B W, Munk L A, McCauley A D. 2017b. Lithium, chap. K[R]. Schulz K J, DeYoung J H, Seal R R, Bradley D C (eds.). Critical Mineral Resources of the United States- Economic and Environmental Geology and Prospects for Future Supply: U. S. Geological Survey Professional Paper 1802, K1-K21.

    Chen Ping, Chai Donghao. 1997. Sedimentary Geochemistry of Carboniferous Bauxite Deposite in Shanxi[M]. Taiyuan: Shanxi Science and Technology Press, 1‒194 (in Chinese with English Abstract).

    Choubey P K, Kim M S, Srivastava R R, Lee J C. 2016. Advance review on the exploitation of the prominent energy- storage element: Lithium (Ⅰ): From mineral and brine resources[J]. Minerals Engineering, 89: 119-137. doi: 10.1016/j.mineng.2016.01.010

    Christmann P, Gloaguen E, Labbé J F, Melleton J, Piantone P. 2015. Chapter 1-Global Lithium Resources and Sustainability Issues[C]// Chagnes A., Światowska J (eds.). Lithium Process Chemistry. Elsevier, Amsterdam, 1‒40.

    Davis J R, Vine J D. 1979. Stratigraphic and Tectonic Setting of the Lithium Brine Field, Clayton Valley, Nevada[C]//Rocky Mountain Association of Geologists, 421‒432.

    Deng Feiyue, Yin Taoxiu, Gan Wenwen, He Xiaoyan. 1999. Comprehensive utilization of potassium, rubidium, and cesium in mother liquor after extracting lithium from lepidoliter[J]. Mining and Metallurgy Engineering, 19(1): 50-52 (in Chinese with English abstract).

    Ding T, Zheng M P, Peng S P, Lin Y H, Zhang X F, Li M M. 2023. Lithium extraction from salt lakes with different hydrochemical types in the Tibet Plateau[J]. Geoscience Frontiers, 14: 101485. doi: 10.1016/j.gsf.2022.101485

    Ferrell J E. 1985. Lithium[M]. Chapter in Minerals Facts and Problems. United States Bureau of Mine Bulletin, 675: 461‒470.

    Gao T M, Fan N, Chen W, Dai T. 2023. Lithium extraction from hard rock lithium ores (spodumene, lepidolite, zinnwaldite, petalite): Technology, resources, environment and cost[J]. China Geology, 6(1): 137-153. doi: 10.31035/cg2022088

    Garrett D E. 2004. Handbook of Lithium and Natural Calcium Chloride[M]. Oxford: Academic Press, 1‒476.

    Gruber P W, Medina P A, Keoleian G A. 2011. Global lithium availability: A constraint for electric vehicles[J]. Journal of Industrial Ecology, 15(5): 760‒775. doi: 10.1111/j.1530-9290.2011.00359.x

    Kesler S E, Gruber P W, Medina P A. 2012. Global lithium resources: Relative importance of pegmatite, brine and other deposits[J]. Ore Geology Reviews, 48(5): 55-69.

    Koltsov V, Novikov P Y, Sarychev G A, Tananaev I G. 2016. Experimental investigations during the technology development of sulfuric acid processing of spodumene concentrate[J]. Tsvetnye Metally, (4): 18-22.

    Kunasz I A. 1974. Lithium occurrence in the brines of Clayton Valley Esmeralda County, Nevada[C]//Coogan A H (eds). Fourth International Symposium on Salt, Houston, 57-66.

    Li Boyang, Jiang Dawei, Fu Xu, Wang Lei, Gao Shuqi, Fan Zhiyong, Wang Kexiang, Huge Jiletu. 2018. Geological characteristics and prospecting significance of Weilasituo li polymetallic deposit, Inner Mongolia[J]. Mineral Exploraton, 9(6): 1185-1191 (in Chinese with English abstract).

    Li Jiankang, Liu Xifang, Wang Denghong. 2014. The metallogenetic regularity of lithium deposit in China[J]. Acta Geologica Sinica, 88 (12): 2269-2283 (in Chinese with English abstract).

    Ling Y, Zheng M P, Sun Q, Dai X Q. 2017. Last deglacial climatic variability in Tibetan Plateau as inferred from n- alkanes in a sediment core from Lake Zabuye[J]. Quaternary International, 15‒24.

    Liu Lijun, Wang Denghong, Liu Xifang, Li Jiankang, Dai Hongzhang, Yan Weidong. 2017. The main types, distribution features and present situation of exploration and development for domestic and foreign lithium mine[J]. Geology in China, 44(2): 263-278 (in Chinese with English abstract).

    Lowe J J, Walker M J C. 1984. Reconstructing Quaternary Environments[M]. London: Longman, 1‒404.

    Ma Zhibang, Ma Nina, Zhang Xuefei, Wang Yu. 2010. 230Th/238U chronology of Late Pleistocene lacustrine depositsin Zabuye salt Lake, Tibet[J]. Acta Geologica Sinica, 84(11): 1641-1651 (in Chinese with English abstract).

    Man Zhimin. 2009. Research on Climate Change during the Historical Period of China[M]. Jinan: Shandong Education Press, 1‒504(in Chinese).

    McQuarrie N, Horton B K, Zandt G. 2005. Lithospheric evolution of the Andean fold-thrust belt, Bolivia, and the origin of the central Andean plateau[J]. Tectonophysics, 399(1/4): 15-37.

    Meshram P, Pandey B D, Mankhand T R. 2014. Extraction of lithium from primary and secondary sources by pre- treatment, leaching and separation: A comprehensive review[J]. Hydrometallurgy, 150: 192-208. doi: 10.1016/j.hydromet.2014.10.012

    ОЗОЛ А А. 1987. Sedimentary and Volcanic Sedimentary Boron Deposits[M]. Qin G X, Liu J C, translated. Beijing: Geological Publishing House, 1‒222 (in Chinese).

    Ren Fangtao, Zhang Jie. 2013. Chemical separation and enrichment of lithium in aluminous rock in central Guizhou[J]. Inorganic Chemicals Industry, 45(3): 19-21 (in Chinese with English abstract). doi: 10.3969/j.issn.1006-4990.2013.03.006

    Sarchi C, Lucassen F, Meixner A, Caffe P J, Becchio R, Kasemann S A. 2023. Lithium enrichment in the Salar de Diablillos, Argentina, and the influence of Cenozoic volcanism in a basin dominated by Paleozoic basement[J]. Mineralium Deposita, 58: 1351-1370. doi: 10.1007/s00126-023-01181-z

    Shu Liangshu, Zhu Wenbin, Xu Zhiqin. 2021. Geological settings and metallogenic conditions of the granite- type lithium ore deposits in South China[J]. Acta Geologica Sinica, 95(10): 3099-3114 (in Chinese with English abstract). doi: 10.3969/j.issn.0001-5717.2021.10.011

    Stanley C J, Jones G C, Rumsey M S. 2007. Jadarite, LiNaSiB3O7 (OH), a new mineral species from the Jadar Basin, Serbia[J]. European Journal of Mineralogy, 19(4): 575-580. doi: 10.1127/0935-1221/2007/0019-1741

    Sun Honglie, Zheng Du. 1998. Formation, Evolution and Development of the Qinghai-Xizang Plateau[M]. Guangzhou: Guangdong Science and Technology Press, 1‒350(in Chinese with English abstract).

    Swain B. 2016. Recovery and recycling of lithium: A review[J]. Separation & Purification Technology, 172: 388-403.

    USGS. 2019. Minerals commodity summaries: Lithium[EB/OL]. Geological Survey: 1-2. https://pubs.usgs.gov/periodicals/mcs2019/mcs2019-lithium.pdf.

    USGS. 2020. Minerals commodity summaries: Lithium[EB/OL]. Geological Survey: 1-2. https://pubs.usgs.gov/periodicals/mcs2020/mcs2020-lithium.pdf.

    USGS. 2021. Minerals commodity summaries: Lithium[EB/OL]. Geological Survey: 1-2. https://pubs.usgs.gov/periodicals/mcs2021/mcs2021-lithium.pdf.

    USGS. 2022. Minerals commodity summaries: Lithium[EB/OL]. Geological Survey: 1-2. https://pubs.usgs.gov/periodicals/mcs2022/mcs2022-lithium.pdf.

    USGS. 2023. Minerals commodity summaries: Lithium[EB/OL]. Geological Survey: 1-2. https://pubs.usgs.gov/periodicals/mcs2023/mcs2023-lithium.pdf.

    Vine J D, Dooley J R. 1980. Where on Earth is all the lithium? with a section on uranium isotope studies[R]. USGS, 1‒114.

    Wang C G, Zheng M P. 2019. Hydrochemical characteristics and evolution of hot fluids in the Gudui geothermal field in Comei County, Himalayas[J]. Geothermics, 81(SEP.): 243-258.

    Wang Denghong, Dai Hongzhang, Liu Shanbao, Li Jiankang, Wang Chenhui, Lou Debo, Yang Yueqing, Li Peng. 2022. New progress and trend in ten aspects of lithium exploration practice and theoretical research in China in the past decade[J]. Journal of Geomechanics, 28(5): 743-764 (in Chinese with English abstract).

    Wang Denghong, Li Peigang, Qu Wenjun, Lei Zhiyuan, Liao Youchang. 2013. Discovery and preliminary study of the high tungsten and lithium contents in the Dazhuyuan bauxite deposit, Guizhou, China[J]. Science China: Earth Sciences, 56: 145-152 (in Chinese with English abstract). doi: 10.1007/s11430-012-4504-2

    Wang Qiushu, Yuan Chunhua, Xu Hong. 2015. Analysis of the global lithium resource distribution and potential[J]. China Mining Magazine, 24(2): 10-17 (in Chinese with English abstract).

    Wu Xishun, Huang Wenbin, Du Xiaohui, Li Li. 2014. Study on metallogenic types and models of lithium deposits in the world[J]. Deposit Geology, 33(S1), 1197-1198 (in Chinese with English abstract).

    Xiao M S, Wang S H, Zhang Q F, Zhang J W. 1997. Leaching mechanism of the spodumene sulphuric acid process[J]. Rare Metals, 16(1): 37-45.

    Xu S S, Song J F, Bi Q Y, Chen Q, Zhang W M, Qian Z X, Zhang L, Xu S A, Tang N, He T. 2021. Extraction of lithium from Chinese salt-lake brines by membranes: Design and practice[J]. Journal of Membrane Science, 635: 119441. doi: 10.1016/j.memsci.2021.119441

    Yu Feng, Wang Denghong, Yu Yang, Liu Zhu, Gao Juanqin, Zhong Jiaai, Qin Yan. 2019. The distribution and exploration status of domestic and foreign sedimentary-type Lithium deposits[J]. Rock and Mineral Analysis, 38(3): 354-364 (in Chinese with English abstract).

    Zhang Yingli, Chen Lei, Wang Kunming, Wang Gang, Guo Xianqing, Nie Xiao, Pang Xuyong. 2022. Metallogenic characteristics of sedimentary lithium resources[J]. Mineral Deposits, 41(5): 1073-1092 (in Chinese with English abstract).

    Zhao Lei, Wang Xibo, Dai Shifeng. 2022. Lithium resources in coal-bearing strata; Occurrence, mineralization and resource potential[J]. Journal of China Coal Society, 47(5): 1750-1760 (in Chinese with English abstract).

    Zhao Yuanyi, Fu Jiajun, Li Yun. 2015. Super large lithium and boron deposit in Jadar Basin, Serbia[J]. Geological Review, 61(1): 34-44 (in Chinese with English abstract).

    Zheng Mianping. 1995. A New Type of Hydrothermal Deposit Cesium- bearing Geyserite in Tibet[M]. Beijing: Geological Publishing House, 1-114(in Chinese).

    Zheng Mianping, Chen Wenxi, Qi Wen. 2016. New findings and perspective analysis of prospecting for volcanic sedimentary boron deposits in the Tibetan Plateau[J]. Acta Geoscientica Sinica, 37(4): 407-418 (in Chinese with English abstract).

    Zheng Mianping, Liu Wengao. 1987. A new lithium mineral-Zabuyeite[J]. Geological Review, 79(4): 365-368 (in Chinese with English abstract).

    Zheng Mianping, Lü Yuanyuan. 2018. The 'Nuclear Boron Ore' Viewed from the Angle of Geochemistry[J]. Acta Geoscientica Sinica, (2): 250-256 (in Chinese with English abstract).

    Zheng Mianping, Wang Qiuxia, Duo Ji. 1989a. A New Type of Hydrothermal Deposit: Cesium‒bearing Geyserite in Tibtet[M]. Beijing: Geological Publishing House, 1‒114 (in Chinese with English abstract).

    Zheng Mianping, Xiang Jun, Wei Xinjun, Zheng Yuan. 1989b. Saline Lake on the Qinghai-Xizang (Tibet) Plateau[M]. Beijing: Science Press, 1‒431 (in Chinese with English abstract).

    Zheng M P, Yuan H R, Liu J Y, Li Y H, Ma Z B, Sun Q. 2007. Sedimentary characteristics and paleoenvironmental records of Zabuye Salt Lake, Tibetan Plateau, since 128 ka BP[J]. Acta Geologica Sinica-English Edition, 81(5): 861-874. doi: 10.1111/j.1755-6724.2007.tb01008.x

    Zheng Mianping, Yuan Heran, Liu Junying, Li Yanhe, Ma Zhibang, Sun Qing. 2007. Sedimentary characteristics and paleoenvironmental records of Zabuye Salt Lake, Tibetan Plateau, since 128 ka BP[J]. Acta Geologica Sinica, 81(12): 1608-1617, 1779-1781.

    Zheng Mianping, Yuan Heran, Zhao Xitao, Liu Xifang. 2006. The Quaternary Pan-lake (Overflow) period and paleoclimate on the Qinghai-Tibet Plateau[J]. Acta Geologica Sinica, 80(2): 169-180 (in Chinese with English abstract).

    陈平, 柴东浩. 1997. 山西地块石炭纪铝土矿沉积地球化学研究[M]. 太原: 山西科学技术出版社, 1‒194.

    邓飞跃, 尹桃秀, 甘文文, 河晓燕. 1999. 锂云母提锂母液中钾铷铯的综合利用[J]. 矿冶工程, (1): 52‒54.

    李泊洋, 姜大伟, 付旭, 王磊, 高树起, 樊志勇, 王可祥, 胡格吉乐吐. 2018. 内蒙古维拉斯托矿区锂多金属矿床地质特征及找矿意义[J]. 矿产勘查, 9(6): 1185‒1191.

    李建康, 刘喜方, 王登红. 2014. 中国锂矿成矿规律概要[J]. 地质学报, 88(12): 2269‒2283.

    刘丽君, 王登红, 刘喜方, 李建康, 代鸿章, 闫卫东. 2017. 国内外锂矿主要类型、分布特点及勘查开发现状[J]. 中国地质, 44(2): 263‒278. http://geochina.cgs.gov.cn/cn/article/doi/10.12029/gc20170204

    马志邦, 马妮娜, 张雪飞, 王宇. 2010. 西藏扎布耶湖晚更新世沉积物230Th/238U年代学研究[J]. 地质学报, 84(11): 1641‒1651.

    满志敏. 2009. 中国历史时期气候变化研究[M]. 山东: 山东教育出版社, 1‒504.

    ОЗОЛ А А. 1987. 沉积和火山沉积硼矿[M]. 北京: 地质出版社, 1‒222.

    任方涛, 张杰. 2013. 黔中地区铝质岩中锂的化学分离富集研究[J]. 无机盐工业, 45(3): 19-21.

    舒良树, 朱文斌, 许志琴. 2021. 华南花岗岩型锂矿地质背景与成矿条件[J]. 地质学报, 95(10): 3099‒3114.

    孙鸿烈, 郑度. 1998. 青藏高原形成演化与发展[M]. 广州: 广东科技出版社, 1‒350.

    王登红, 代鸿章, 刘善宝, 李建康, 王成辉, 娄德波, 杨岳清, 李鹏. 2022. 中国锂矿十年来勘查实践和理论研究的十个方面新进展新趋势[J]. 地质力学学报, 28(5): 743‒764.

    王登红, 李沛刚, 屈文俊, 雷志远, 廖友常. 2013. 贵州大竹园铝土矿中钨和锂的发现与综合评价[J]. 中国科学: 地球科学, 43(1): 44‒51.

    王秋舒, 元春华, 许虹. 2015. 全球锂矿资源分布与潜力分析[J]. 中国矿业, 24(2): 10‒17.

    吴西顺, 黄文斌, 杜晓慧, 李莉. 2014. 世界锂矿床成矿类型及模式研究[J]. 矿床地质, 33(S1): 1197‒1198.

    于沨, 王登红, 于扬, 刘铸, 高娟琴, 仲佳爱, 秦燕. 2019. 国内外主要沉积型锂矿分布及勘查开发现状[J]. 岩矿测试, 38(3): 354‒364.

    张英利, 陈雷, 王坤明, 王刚, 郭现轻, 聂潇, 庞绪勇. 2022. 沉积型锂资源成矿作用特征[J]. 矿床地质, 41(5): 1073‒1092.

    赵蕾, 王西勃, 代世峰. 2022. 煤系中的锂矿产: 赋存分布、成矿与资源潜力[J]. 煤炭学报, 47(5): 1750‒1760.

    赵元艺, 符家骏, 李运. 2015. 塞尔维亚贾达尔盆地超大型锂硼矿床[J]. 地质论评, 61(1): 34‒44.

    郑绵平. 1995. 水热成矿新类型——西藏铯硅华矿床[M]. 北京: 地质出版社, 1-114.

    郑绵平, 陈文西, 齐文. 2016. 青藏高原火山-沉积硼矿找矿的新发现与远景分析[J]. 地球学报, 37(4): 407‒418.

    郑绵平, 刘文高. 1987. 一种锂的新矿物—扎布耶石[J]. 地质论评, 79(4): 365‒368.

    郑绵平, 吕苑苑. 2018. 从地球化学角度看"核用硼矿"[J]. 地球学报, 39(2): 250‒256.

    郑绵平, 王秋霞, 多吉. 1989a. 水热成矿新类型[M]. 北京: 地质出版社, 1‒114.

    郑绵平, 向军, 魏新俊, 郑元. 1989b. 青藏高原盐湖[M]. 北京: 科学技术出版社, 1‒431.

    郑绵平, 袁鹤然, 刘俊英, 李延河, 马志邦, 孙青. 2007. 西藏高原扎布耶盐湖128 ka以来沉积特征与古环境记录[J]. 地质学报, 81(12): 1608-1617, 1779-1781.

    郑绵平, 袁鹤然, 赵希涛, 刘喜方. 2006. 青藏高原第四纪泛湖期与古气候[J]. 地质学报, (2): 169‒180.

  • 加载中

(19)

(6)

计量
  • 文章访问数:  2711
  • PDF下载数:  94
  • 施引文献:  0
出版历程
收稿日期:  2023-10-25
修回日期:  2023-11-07
刊出日期:  2023-12-25

目录