考虑土体抗拉强度的边坡永久位移极限分析

刘炎, 张迎宾, 何毅, 夏逍, 王新宇. 考虑土体抗拉强度的边坡永久位移极限分析[J]. 地质力学学报, 2018, 24(6): 855-862. doi: 10.12090/j.issn.1006-6616.2018.24.06.089
引用本文: 刘炎, 张迎宾, 何毅, 夏逍, 王新宇. 考虑土体抗拉强度的边坡永久位移极限分析[J]. 地质力学学报, 2018, 24(6): 855-862. doi: 10.12090/j.issn.1006-6616.2018.24.06.089
Yan LIU, Yingbin ZHANG, Yi HE, Xiao XIA, Xinyu WANG. LIMIT ANALYSIS OF PERMANENT DISPLACEMENT FOR SLOPE CONSIDERING THE TENSILE STRENGTH OF SOIL[J]. Journal of Geomechanics, 2018, 24(6): 855-862. doi: 10.12090/j.issn.1006-6616.2018.24.06.089
Citation: Yan LIU, Yingbin ZHANG, Yi HE, Xiao XIA, Xinyu WANG. LIMIT ANALYSIS OF PERMANENT DISPLACEMENT FOR SLOPE CONSIDERING THE TENSILE STRENGTH OF SOIL[J]. Journal of Geomechanics, 2018, 24(6): 855-862. doi: 10.12090/j.issn.1006-6616.2018.24.06.089

考虑土体抗拉强度的边坡永久位移极限分析

  • 基金项目:
    国家自然科学基金(51608454,51609204);中央高校基金(2682015CX092,2682016CX084)
详细信息
    作者简介: 刘炎(1994-), 男, 在读硕士, 主要从事地震边坡稳定性分析。E-mail:lhh@my.swjtu.edu.cn
    通讯作者: 何毅(1985-), 男, 副教授, 博士, 主要从事滑坡体-结构相互作用机理及边坡三维稳定性分析方法的研究。E-mail:dell811@163.com
  • 中图分类号: TU43

LIMIT ANALYSIS OF PERMANENT DISPLACEMENT FOR SLOPE CONSIDERING THE TENSILE STRENGTH OF SOIL

More Information
  • 通过野外观测与室内试验发现,边坡后缘往往存在拉应力区。拉应力区的存在会影响边坡的稳定性,而地震荷载的存在会放大这种影响。分析拉应力区对边坡稳定性的影响,当前主要采用的方式为:对强度准则中抗拉强度进行折减(即张拉截断)。文章通过极限分析上限原理和拟静力法,推导出边坡临界加速度计算方程。以边坡在不同参数组合下的位移系数为基础,输入实测地震波,采用改进的Newmark法对边坡进行位移分析。文章算例的结果表明:拉应力区的存在会大大降低边坡临界加速度,土体在完全张拉截断下的临界加速度对边坡可能会产生超过50%的折减。拉应力区的存在也可以使永久位移达到传统的摩尔库伦理论计算值的2倍之多。文中所有的结果皆以图表形式展示,非常便于理解以及读取数据。
  • 加载中
  • 图 1  不同破坏机制下的土体包络线

    Figure 1. 

    图 2  土体受张拉截断影响的边坡

    Figure 2. 

    图 3  不同参数下边坡临界加速度(张拉截断边坡中,抗拉强度系数ξ=0)

    Figure 3. 

    图 4  不同抗拉强度系数ξ对应的边坡临界加速度

    Figure 4. 

    图 5  二维张拉截断边坡旋转机制

    Figure 5. 

    图 6  不同抗拉强度系数ξ下的地震位移系数

    Figure 6. 

    图 7  El Centro Array站台记录Imperial Valley地震的水平分量

    Figure 7. 

    图 8  Imperial Valley地震的下的边坡永久位移

    Figure 8. 

    图 9  不同抗拉强度系数下的边坡永久位移

    Figure 9. 

  • Keefer D K. Statistical analysis of an earthquake-induced landslide distribution-The 1989 Loma Prieta, California event[J]. Engineering Geology, 2000, 58(3~4):231~249. doi: 10.1016/S0013-7952(00)00037-5

    Meehan C L, Vahedifard F. Evaluation of simplified methods for predicting earthquake-induced slope displacements in earth dams and embankments[J]. Engineering Geology, 2013, 152(1):180~193. doi: 10.1016/j.enggeo.2012.10.016

    Baker R, Shukha R, Operstein V, et al. Stability charts for pseudo-static slope stability analysis[J]. Soil Dynamics and Earthquake Engineering, 2006, 26(9):813~823. doi: 10.1016/j.soildyn.2006.01.023

    Zhang K, Cao P. Slope seismic stability analysis on kinematical element method and its application[J]. Soil Dynamics and Earthquake Engineering, 2013, 50:62~71. doi: 10.1016/j.soildyn.2013.03.002

    Zhao L H, Cheng X, Zhang Y B, et al. Stability analysis of seismic slopes with cracks[J]. Computers and Geotechnics, 2016, 77:77~90. doi: 10.1016/j.compgeo.2016.04.007

    Yang C W, Zhang J J, Fu X, et al. Improvement of pseudo-static method for slope stability analysis[J]. Journal of Mountain Science, 2014, 11(3):625~633. doi: 10.1007/s11629-013-2756-8

    Newmark N M. Effects of earthquakes on dams and embankments[J]. Géotechnique, 1965, 15(2):139~160. doi: 10.1680/geot.1965.15.2.139

    Rathje E M, Bray J D. Nonlinear coupled seismic sliding analysis of earth structures[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2015, 126(11):1002~1014. http://cn.bing.com/academic/profile?id=c25c5bb2f3233c92363ffd4b9cc9120d&encoded=0&v=paper_preview&mkt=zh-cn

    You L Z, Michalowski R L. Displacement charts for slopes subjected to seismic loads[J]. Computers and Geotechnics, 1999, 25(1):45~55. doi: 10.1016/S0266-352X(99)00016-6

    Utili S, Abd A H. On the stability of fissured slopes subject to seismic action[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2016, 40(5):785~806. doi: 10.1002/nag.v40.5

    Zhao L H, Cheng X, Dan H C, et al. Effect of the vertical earthquake component on permanent seismic displacement of soil slopes based on the nonlinear Mohr-Coulomb failure criterion[J]. Soils and Foundations, 2017, 57(2):237~251. doi: 10.1016/j.sandf.2016.12.002

    Zhao L H, Cheng X, Li L, et al. Seismic displacement along a log-spiral failure surface with crack using rock Hoek-Brown failure criterion[J]. Soil Dynamics and Earthquake Engineering, 2017, 99:74~85. doi: 10.1016/j.soildyn.2017.04.019

    尤明庆.均质土坡滑动面的变分法分析[J].岩石力学与工程学报, 2006, 25 http://d.old.wanfangdata.com.cn/Periodical/yslxygcxb2006z1021

    S1):2735~2745. YOU Mingqing. Study on landslide of homogeneous soil with calculus of variations[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(S1):2735~2745. (in Chinese with English abstract) http://d.old.wanfangdata.com.cn/Periodical/yslxygcxb2006z1021

    Duncan J M, Wright S G. Soil strength and slope stability[M]. Hoboken:Wiley, 2005.

    Utili S. Investigation by limit analysis on the stability of slopes with cracks[J]. Géotechnique, 2013, 63(2):140~154. doi: 10.1680/geot.11.P.068

    Michalowski R L. Stability of intact slopes with tensile strength cut-off[J]. Géotechnique, 2017, 67(8):720~727. doi: 10.1680/jgeot.16.P.037

    Kaniraj S R, Abdullah H. Effect of berms and tension crack on the stability of embankments on soft soils[J]. Soils and Foundations, 1993, 33(4):99~107. doi: 10.3208/sandf1972.33.4_99

    Baker R. Tensile strength, tension cracks, and stability of slopes[J]. Soils and Foundations, 1981, 21(2):1~17. doi: 10.3208/sandf1972.21.2_1

    Park D, Wang Z J, Michalowski R L. Consequences of seismic excitation on slopes in soils with a tensile strength cutoff[A]. Geotechnical Frontiers 2017[C]. Orlando, Florida: American Society of Civil Engineers, 2017: 304~313.

    Taylor D W. Fundamentals of soil mechanics[J]. Soil Science, 1948, 66(2):161. http://d.old.wanfangdata.com.cn/NSTLQK/10.1227-NEU.0b013e31822b8107/

    Chen W F. Limit analysis and soil plasticity[M]. Amsterdam:Elsevier, 1975.

    Chang C J, Chen W F, Yao J T P. Seismic displacements in slopes by limit analysis[J]. Journal of Geotechnical Engineering, 1984. 110(7):860~874. doi: 10.1061/(ASCE)0733-9410(1984)110:7(860)

    Michalowski R L, You L Z. Displacements of Reinforced Slopes Subjected to Seismic Loads[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2000, 126(8):685~694. doi: 10.1061/(ASCE)1090-0241(2000)126:8(685)

    Li X P, He S M, Wu Y. Seismic displacement of slopes reinforced with piles[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2010, 136(6):880~884. doi: 10.1061/(ASCE)GT.1943-5606.0000296

    Nadukuru S S, Michalowski R L. Three-dimensional displacement analysis of slopes subjected to seismic loads[J]. Canadian Geotechnical Journal, 2013, 50(6):650~661. doi: 10.1139/cgj-2012-0223

    He Y, Hazarika H, Yasufuku N, et al. Three-dimensional limit analysis of seismic displacement of slope reinforced with piles[J]. Soil Dynamics and Earthquake Engineering, 2015, 77:446~452. doi: 10.1016/j.soildyn.2015.06.015

    Zhang Y B, Chen G Q, Zheng L, et al. Effects of near-fault seismic loadings on run-out of large-scale landslide:A case study[J]. Engineering Geology, 2013, 166:216~236. doi: 10.1016/j.enggeo.2013.08.002

    Zhang Y B, Wang J M, Xu Q, et al. DDA validation of the mobility of earthquake-induced landslides[J]. Engineering Geology, 2015, 194:38~51. doi: 10.1016/j.enggeo.2014.08.024

    Zhang Y B, Zhang J, Chen G Q, et al. Effects of vertical seismic force on initiation of the Daguangbao landslide induced by the 2008 Wenchuan earthquake[J]. Soil Dynamics and Earthquake Engineering, 2015, 73:91~102. doi: 10.1016/j.soildyn.2014.06.036

  • 加载中

(9)

计量
  • 文章访问数:  2208
  • PDF下载数:  24
  • 施引文献:  0
出版历程
收稿日期:  2018-08-15
修回日期:  2018-10-08

目录