Abstract:
Through field observation and laboratory experiment, it is found that the stability of the slope is influenced by the existence of tensile stress zone in the back edge of the slope, while the influence is amplified by the existence of seismic load. To analyze the impact of tensile stress zone on the stability of slope, the main method used at present is to reduce the tensile strength in the strength criterion (i.e., tension cut-off). According to the upper limit principle of limit analysis and the quasi-static method, the calculation equation of the critical acceleration of the slope is derived. Based on the displacement coefficients of the slope under different parameter combinations, the measured seismic wave was input and the improved Newmark method was used to analyze the displacement of the slope. The results show that the critical acceleration of the slope can be greatly reduced by the existence of the tensile stress area, and the critical acceleration of the soil mass under the complete tension cut-off may produce more than 50% reduction of the slope. The existence of the tensile stress zone can also make the permanent displacement as much as twice the value calculated by the traditional Mohr-Coulomb yield criterion. All of the results in this article are presented in graphical form, which is very easy to understand and read.