PARTICLE-BASED MODELING OF CRACK PROPAGATION DURING PULL-APART BASIN DEVELOPMENT
-
摘要:
拉分盆地是一种与走滑断裂带密切相关的特殊拉张构造,因其重要的构造意义,及其与火山活动、中小地震群集、特殊的成矿作用间的伴生关系而受到研究者的高度重视。关于拉分盆地的形成演化过程,已有较多的研究成果,但是由于研究手段的限制,缺少对盆地演化中次级断裂扩展过程的研究。基于离散元的数值计算方法是研究断裂扩展方式的理想方法。本文采用基于离散元的颗粒流方法,揭示纯走滑拉分盆地发育过程中的断裂扩展和连接过程,为拉分盆地演化机理和断裂扩展提供新的研究方法。同时,根据主走滑断层与块体运动方向的夹角不同,建立不同的张扭性拉分盆地模型,系统研究张扭性盆地的断裂扩展和演化机理。将上述理论研究结果与死海盆地等经典拉分盆地实例相结合,探讨了死海盆地、土耳其Cinarcik盆地、哥伦比亚El Paraiso盆地等的形成演化机理和断裂扩展方式。
Abstract:Pull-apart basins are extensional structures which are closely related to strike-slip faults. Pull-apart basins have received considerable attention from geologists because of its significant tectonic meaning and the associations with volcanism, earthquake swarms, and special mineralization. Although numerous studies have contributed to the current understanding of pull-apart basin evolution, pull-apart basin development concentrating on crack propagation and coalescence is lacking because of the limitations of the previous methods. A particle-based approach, which is based on Discrete Element Method (DEM), can be successfully used to simulate crack propagation during pull-apart basin development for pure strike-slip. Transtensional models are also set up to investigate basin development and crack propagation in transtentional systems, with different angles between the master strike-slip faults and the motion direction in each system. Modeling results are compared with natural examples worldwide such as the Dead Sea basin, Cinarcik basin in Marmara Sea, and El Paraiso basin in SW Colombia et al. This research provides new method and view to study the evolution of pull-apart basins and the propagation and coalescence of the related strike-slip faults.
-
图 2 二维颗粒流模型(PFC2D)示意图[35]
Figure 2.
图 3 根据初始主断层几何学不同建立的三种纯走滑拉分盆地端元模型[35]
Figure 3.
图 5 三种纯走滑拉分盆地端元模型的断裂扩展和盆地演化过程[35]
Figure 5.
图 6 三种纯走滑拉分盆地端元模型的最大主应力(σ1)与相对位移(εx*)关系图[35]
Figure 6.
图 7 拉分盆地实例[35]
Figure 7.
图 8 三种纯走滑拉分盆地发育过程中的代表性节点及对盆地形成所需的最小位移和最小时间的估算示例[35]
Figure 8.
图 9 纯走滑拉分盆地和张扭性拉分盆地的断裂扩展和盆地演化过程对比图[40]
Figure 9.
图 10 土耳其Marmara海走滑拉分盆地系统构造简图(改编自Armijo等[43])
Figure 10.
-
FOSSEN H. Structural geology[M]. New York:Cambridge University Press, 2016:356-366.
MANN P, HEMPTON M R, BRADLEY D C, et al. Development of pull-apart basins[J]. The Journal of Geology, 1983, 91(5):529-554. doi: 10.1086/628803
AYDIN A, NUR A. Evolution of pull-apart basins and their scale independence[J]. Tectonics, 1982, 1(1):91-105. http://d.old.wanfangdata.com.cn/NSTLQK/10.1029-TC001i001p00091/
BAHAT D. New aspects of rhomb structures[J]. Journal of Structural Geology, 1983, 5(6):591-601. doi: 10.1016/0191-8141(83)90071-8
GVRBVZ A. Geometric characteristics of pull-apart basins[J]. Lithosphere, 2010, 2(3):199-206. doi: 10.1130/L36.1
WU J E, MCCLAY K, WHITEHOUSE P, et al. 4D analogue modelling of transtensional pull-apart basins[J]. Marine and Petroleum Geology, 2009, 26(8):1608-1623. doi: 10.1016/j.marpetgeo.2008.06.007
DOOLEY T P, MCCLAY K. Analog modeling of pull-apart basins[J]. AAPG Bulletin, 1997, 81(11):1804-1826. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=04a344b90f82ee11de8faca9e711fd45
RAHE B, FERRILL D A, MORRIS A P. Physical analog modeling of pull-apart basin evolution[J]. Tectonophysics, 1998, 285(1-2):21-40. doi: 10.1016/S0040-1951(97)00193-5
CORTI G, DOOLEY T P. Lithospheric-scale centrifuge models of pull-apart basins[J]. Tectonophysics, 2015, 664:154-163. doi: 10.1016/j.tecto.2015.09.004
RODGERS D A. Analysis of pull-apart basin development produced by En echelon strike-slip faults[M]//BALANCE P E, READING H G. Sedimentation in Oblique-Slip Mobile Zones. Oxford: International Association of Sedimentologists Special Publication.
GÖLKE M, CLOETINGH S, FUCHS K. Finite-element modelling of pull-apart basin formation[J]. Tectonophysics, 1994, 240(1-4):45-57. doi: 10.1016/0040-1951(94)90263-1
KATZMAN R, TEN BRINK U S, LIN J. Three-dimensional modeling of pull-apart basins:Implications for the tectonics of the Dead Sea Basin[J]. Journal of Geophysical Research:Solid Earth, 1995, 100(B4):6295-6312. doi: 10.1029/94JB03101
PETRUNIN A, SOBOLEV S V. What controls thickness of sediments and lithospheric deformation at a pull-apart basin?[J]. Geology, 2006, 34(5):389-392. doi: 10.1130/G22158.1
VAN WIJK J, AXEN G, ABERA R. Initiation, evolution and extinction of pull-apart basins:Implications for opening of the Gulf of California[J]. Tectonophysics, 2017, 719-720:37-50. doi: 10.1016/j.tecto.2017.04.019
BURCHFIEL B C, STEWART J H. "Pull-apart" origin of the central segment of Death Valley, California[J]. GSA Bulletin, 1966, 77(4):439-442. doi: 10.1130/0016-7606(1966)77[439:POOTCS]2.0.CO;2
WRIGHT L A, OTTON J K, TROXEL B W. Turtleback surfaces of Death Valley viewed as phenomena of extensional tectonics[J]. Geology, 1974, 2(2):53-54. http://www.researchgate.net/publication/238422066_Turtleback_Surfaces_of_Death_Valley_Viewed_as_Phenomena_of_Extensional_Tectonics
LALLEMAND S, JOLIVET L. Japan Sea:a pull-apart basin?[J]. Earth and Planetary Science Letters, 1986, 76(3-4):375-389. doi: 10.1016/0012-821X(86)90088-9
DENG Q D, WU D N, ZHANG P Z, et al. Structure and deformational character of strike-slip fault zones[J]. Pure and Applied Geophysics, 1986, 124(1-2):203-223. doi: 10.1007/BF00875726
邓起东, 张维岐, 张培震, 等.海原走滑断裂带及其尾端挤压构造[J].地震地质, 11(1):1-14. http://www.cnki.com.cn/Article/CJFDTotal-DZDZ198901000.htm
DENG Qidong, ZHANG Weiqi, ZHANG Peizhen, et al. Haiyuan strike-slip fault zone and its compressional structures of the end[J]. Seismology and Geology, 1989, 11(1):1-14. (in Chinese with English abstract) http://www.cnki.com.cn/Article/CJFDTotal-DZDZ198901000.htm
ZHANG P Z, BURCHFIEL B C, CHEN S F, et al. Extinction of pull-apart basins[J]. Geology, 1989, 17(9):814-817. doi: 10.1130/0091-7613(1989)017<0814:EOPAB>2.3.CO;2
国家地震局地质研究所, 宁夏回族自治区地震局.海原活动断裂带[M].北京:地震出版社, 1990:1-286.
Institute of Geology, State Seismological Bureau (IG), and Seismological Bureau of Ningxia Hui Autonomous Province (SBNHAP). Haiyuan active fault[M]. Beijing:Seismological Press, 1990:1-286. (in Chinese)
OKAY A İ, KAŞLlar-ÖZCAN A, IMREN C, et al. Active faults and evolving strike-slip basins in the Marmara Sea, northwest Turkey:a multichannel seismic reflection study[J]. Tectonophysics, 2000, 321(2):189-218. doi: 10.1016/S0040-1951(00)00046-9
ITOH Y. A Miocene pull-apart deformation zone at the western margin of the Japan Sea back-arc basin:implications for the back-arc opening mode[J]. Tectonophysics, 2001, 334(3-4):235-244. doi: 10.1016/S0040-1951(01)00068-3
施炜, 刘源, 刘洋, 等.青藏高原东北缘海原断裂带新生代构造演化[J].地学前缘, 2013, 20(4):1-17. http://d.old.wanfangdata.com.cn/Periodical/dxqy201304001
SHI Wei, LIU Yuan, LIU Yang, et al. Cenozoic evolution of the Haiyuan fault zone in the northeast margin of the Tibetan Plateau[J]. Earth Science Frontiers, 2013, 20(4):1-17. (in Chinese with English abstract) http://d.old.wanfangdata.com.cn/Periodical/dxqy201304001
QUENNELL A M. The structural and geomorphic evolution of the Dead Sea rift[J]. Quarterly Journal of the Geological Society, 1958, 114(1-4):1-24. doi: 10.1144/gsjgs.114.1.0001
CROWELL J C. Origin of late Cenozoic basins in southern California[M]//DOTT R H, SHAVER R H. Modern and Ancient Geosynclinal Sedimentation. Tulsa, Okla.: SEPM, 1958: 292-303.
GARFUNKEL Z. Internal structure of the Dead Sea leaky transform (rift) in relation to plate kinematics[J]. Tectonophysics, 1981, 80(1-4):81-108. doi: 10.1016/0040-1951(81)90143-8
KOIDE H, BHATTACHARJI S. Geometric patterns of active strike-slip faults and their significance as indicators for areas of energy release[M]//SAXENA S K, BHATTACHARJI S, ANNERSTEN H, et al. Energetics of Geological Processes. Berlin, Heidelberg: Springer, 1977: 46-66.
SMIT J, BRUN J P, CLOETINGH S, et al. Pull-apart basin formation and development in narrow transform zones with application to the Dead Sea Basin[J]. Tectonics, 2008, 27(6):TC6018. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=9b42a9f3ef8b7a54f1e05ab9f2e795b1
SUGAN M, WU J E L, MCCLAY K. 3D analogue modelling of transtensional pull-apart basins:comparison with the Cinarcik basin, Sea of Marmara, Turkey[J]. Bollettino di Geofisica Teorica ed Applicata, 2014, 55(4):599-716.
TEN BRINK U S, KATZMAN R, LIN J. Three-dimensional models of deformation near strike-slip faults[J]. Journal of Geophysical Research:Solid Earth, 1996, 101(B7):16205-16220. doi: 10.1029/96JB00877
BERTOLUZZA L, PEROTTI C R. A finite-element model of the stress field in strike-slip basins:implications for the Permian tectonics of the Southern Alps (Italy)[J]. Tectonophysics, 1997, 280(1-2):185-197. doi: 10.1016/S0040-1951(97)00140-6
Itasca. PFC2D (particle flow code in 2 dimensions) manual[M]. 4th ed. Minneapolis, Minnesota:ICG, 2004.
CUNDALL P A, STRACK O D L. A discrete numerical model for granular assemblies[J]. Géotechnique, 1979, 29(1):47-65. doi: 10.1680/geot.1979.29.1.47
LIU Y, KONIETZKY H. Particle-based modeling of pull-apart basin development[J]. Tectonics, 2018, 37(1):343-358. doi: 10.1002/2017TC004685
VELANDIA F, ACOSTA J, TERRAZA R, et al. The current tectonic motion of the northern Andes along the Algeciras Fault System in SW Colombia[J]. Tectonophysics, 2005, 399(1-4):313-329. doi: 10.1016/j.tecto.2004.12.028
GARFUNKEL Z, BEN-AVRAHAM Z. The structure of the Dead Sea Basin[J]. Tectonophysics, 1996, 266(1-4):155-176. doi: 10.1016/S0040-1951(96)00188-6
BANDEL K, KHOURY H. Lithostratigraphy of the Triassic in Jordan[J]. Facies, 1981, 4(1):1-26. doi: 10.1007/BF02536584
FREUND R. The Hope fault:a strike-slip fault in New Zealand[J]. New Zealand Geological Survey Bulletin, 1971, 86:1-49.
LIU Y, KONIETZKY H. Particle-based modeling of transtensional pull-apart basins[J]. Tectonics, 2018, 37(12):4700-4713. doi: 10.1029/2018TC004973
FODOR L. From transpression to transtension:Oligocene-Miocene structural evolution of the Vienna basin and the East Alpine-Western Carpathian junction[J]. Tectonophysics, 1995, 242(1-2):151-182. doi: 10.1016/0040-1951(94)00158-6
HINSCH R, DECKER K, PERESSON H. 3-D seismic interpretation and structural modeling in the Vienna Basin:implications for Miocene to recent kinematics[J]. Austrian Journal of Earth Sciences, 2005, 97:38-50.
ARMIJO R, MEYER B, NAVARRO S, et al. Asymmetric slip partitioning in the Sea of Marmara pull-apart:A clue to propagation processes of the North Anatolian fault?[J]. Terra Nova, 2002, 14(2):80-86. doi: 10.1046/j.1365-3121.2002.00397.x
FLERIT F, ARMIJO R, KING G C P, et al. Slip partitioning in the Sea of Marmara pull-apart determined from GPS velocity vectors[J]. Geophysical Journal International, 2003, 154(1):1-7. doi: 10.1046/j.1365-246X.2003.01899.x
MCCLUSKY S, BALASSANIAN S, BARKA A, et al. Global positioning system constraints on plate kinematics and dynamics in the eastern mediterranean and caucasus[J]. Journal of Geophysical Research:Solid Earth, 2000, 105(B3):5695-5719. doi: 10.1029/1999JB900351