雪峰山深孔水压致裂地应力测量及其意义

陈群策, 孙东生, 崔建军, 秦向辉, 张重远, 孟文, 李阿伟, 杨跃辉. 雪峰山深孔水压致裂地应力测量及其意义[J]. 地质力学学报, 2019, 25(5): 853-865. doi: 10.12090/j.issn.1006-6616.2019.25.05.070
引用本文: 陈群策, 孙东生, 崔建军, 秦向辉, 张重远, 孟文, 李阿伟, 杨跃辉. 雪峰山深孔水压致裂地应力测量及其意义[J]. 地质力学学报, 2019, 25(5): 853-865. doi: 10.12090/j.issn.1006-6616.2019.25.05.070
CHEN Qunce, SUN Dongsheng, CUI Jianjun, QIN Xianghui, ZHANG Chongyuan, MENG Wen, LI Awei, YANG Yuehui. HYDRAULIC FRACTURING STRESS MEASUREMENTS IN XUEFENGSHAN DEEP BOREHOLE AND ITS SIGNIFICANCE[J]. Journal of Geomechanics, 2019, 25(5): 853-865. doi: 10.12090/j.issn.1006-6616.2019.25.05.070
Citation: CHEN Qunce, SUN Dongsheng, CUI Jianjun, QIN Xianghui, ZHANG Chongyuan, MENG Wen, LI Awei, YANG Yuehui. HYDRAULIC FRACTURING STRESS MEASUREMENTS IN XUEFENGSHAN DEEP BOREHOLE AND ITS SIGNIFICANCE[J]. Journal of Geomechanics, 2019, 25(5): 853-865. doi: 10.12090/j.issn.1006-6616.2019.25.05.070

雪峰山深孔水压致裂地应力测量及其意义

  • 基金项目:
    国家科技重大专项(2016ZX05034003-002);中国地质调查局地质调查项目(DD20160082)
详细信息
    作者简介: 陈群策(1963-), 男, 研究员, 地质力学专业。E-mail:chenqunce@sina.com
  • 中图分类号: P315.727

  • 责任编辑:范二平

HYDRAULIC FRACTURING STRESS MEASUREMENTS IN XUEFENGSHAN DEEP BOREHOLE AND ITS SIGNIFICANCE

  • 利用最新研制的深孔水压致裂地应力测量设备在雪峰山2000 m科钻先导孔内开展了原地应力测量,在孔深170~2021 m范围内获得了16个测段的有效地应力测量数据,是国内首次利用水压致裂法获得的孔深超过2000 m深度的原地应力测量成果。测量结果表明,地应力随孔深增加而逐渐加大,对实测数据进行线性回归,得到最大和最小水平主应力随深度变化的关系分别为:SH=0.03328H+5.25408,Sh=0.0203H+4.5662,在孔深2021 m深度,其实测值分别为66.31 MPa和43.33 MPa。基于实测数据,结合钻孔成像测试和井温测试结果,对测点应力状态进行了综合分析。在170~800 m深度范围,三向主应力关系为SH > Sh > Sv,有利于逆断层活动;孔深1000~2021 m表现为SH > Sv > Sh,表明该区域深部应力结构属于走滑型。最大水平主应力方向为北西-北西西方向。基于实测地应力数据及莫尔-库伦破裂准则,对测区附近断层活动性进行了分析讨论,认为该区域断层处于稳定状态。

  • 加载中
  • 图 1  新型水压致裂地应力测量系统井下设备

    Figure 1. 

    图 2  雪峰山深孔周边区域地质构造简图[12]

    Figure 2. 

    图 3  水压致裂地应力测量地面压力和流量记录曲线(测段深度范围:170~1032 m)

    Figure 3. 

    图 4  水压致裂地应力测量地面压力和流量记录曲线(测段深度范围:1140~2021 m)

    Figure 4. 

    图 5  水压致裂地应力测量井下压力记录曲线(测段深度范围:170~2021 m)

    Figure 5. 

    图 6  雪峰山深孔1267 m测段地面与井下压力对比

    Figure 6. 

    图 7  雪峰山深孔地应力随孔深分布图

    Figure 7. 

    图 8  雪峰山深孔钻孔崩落图像

    Figure 8. 

    图 9  基于地应力测量数据进行走滑断层活动性分析的莫尔圆

    Figure 9. 

    图 10  雪峰山深孔井温随孔深分布图

    Figure 10. 

    表 1  雪峰山深孔水压致裂地应力测量压力参数取值结果(根据井下压力记录)

    Table 1.  Parameter values for hydraulic fracturing stress measurements in Xuefengshan deep borehole(according to downhole pressure record)

    序号测段中心
    深度/m
    Pb/
    MPa
    Pr/
    MPa
    Ps/MPa
    dp/dtdt/dpmaskat单切线平均值均方差
    1170.0028.9714.32////6.91/
    2278.0023.6410.677.767.767.647.567.680.1
    3368.0020.0914.5411.7911.8111.111.311.50.35
    4458.0019.9113.612.0411.8512.0211.9311.960.09
    5512.0025.4817.5814.5914.4114.5214.3514.470.11
    6655.0028.3822.7121.7720.5621.721.9321.490.63
    7763.0025.5820.7119.8119.3219.7319.6619.630.21
    81032.0032.7927.3425.4225.6225.4525.5725.520.1
    91140.0035.7731.529.8829.9630.0429.9929.970.07
    101175.0034.6627.4228.8728.8628.8928.8228.860.03
    111267.0041.6334.131.8532.6732.7132.8532.520.45
    121374.0045.7534.5235.8237.6537.7737.7137.240.95
    131482.0046.9240.4239.0340.2341.0241.1440.350.97
    141751.0042.8537.6138.4837.9237.9337.8138.030.3
    151760.0045.3538.9739.640.4140.7240.440.280.48
    162021.0047.4443.4742.7943.4243.7343.3743.330.39
    注:170 m测段在计算关闭压力时计算机自动取值出现异常,采用手动取值。P0为岩石原地破裂压力;Pr为破裂面重张压力;Ps为破裂面瞬时关闭压力
    下载: 导出CSV

    表 2  雪峰山深孔地应力测量结果(根据井下压力传感器记录)

    Table 2.  Results of in situ stress measurements of Xuefengshan deep borehole(according to downhole pressure record)

    序号测段中心
    深度/m
    压裂参数/MPa主应力值/MPa
    PoPbPrPsTSHShSv
    1170.001.7028.9714.3210.0014.6513.3010.004.51
    2278.002.7823.6410.677.6812.979.607.687.37
    3368.003.6820.0914.5411.505.5516.2811.509.75
    4458.004.5819.9113.611.966.3117.7011.9612.14
    5512.005.1225.4817.5814.477.9020.7114.4713.57
    6655.006.5528.3822.7121.495.6735.2121.4917.36
    7763.007.6325.5820.7119.634.8730.5519.6320.22
    81032.0010.3232.7927.3425.525.4538.8925.5227.35
    91140.0011.4035.7731.5029.974.2747.0129.9730.21
    101175.0011.7534.6627.4228.867.2447.4128.8631.14
    111267.0012.6741.6334.1032.527.5350.7932.5233.58
    121374.0013.74/34.5237.24/63.4637.2436.41
    131482.0014.82/40.4240.35/65.8240.3539.27
    141751.0017.5142.8537.6138.035.2458.9938.0346.40
    151760.0017.6045.3538.9740.286.3864.2740.2846.64
    162021.0020.2147.4443.4743.333.9766.3143.3353.56
    注:Pb为岩石原地破裂压力;Pr为破裂面重张压力;Ps为破裂面瞬时关闭压力;Po为孔隙压力;T为岩石抗拉强度;SH为最大水平主应力;Sh为最小水平主应力;Sv为根据上覆岩石埋深计算的垂向主应力(岩石容重取26.5 kN/m3)
    下载: 导出CSV

    表 3  对最大水平主应力上限值估算结果及参与计算的相关参数

    Table 3.  Results of the estimated upper limit of the maximum horizontal principal stress and related parameters

    深度
    /m
    Sh
    /MPa
    Po
    /MPa
    ΔP
    /MPa
    ΔT
    /℃
    αt
    /×10-6-1
    SH
    /MPa
    SH*
    /MPa
    103225.5210.322.0623.008.538.8946.04
    114029.9711.402.2826.008.547.0155.99
    117528.8611.752.3526.708.547.4151.65
    126732.5212.672.5328.008.550.7960.17
    注:SH*为最大水平主应力上限值估算结果。
    下载: 导出CSV
  • ZANG A, STEPHANSSON O. Stress field of the earth's crust[M]. Dordrecht:Springer, 2010.

    HAIMSON B C. The hydrofracturing stress measuring method and recent field results[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1978, 15(4):167-178. http://d.old.wanfangdata.com.cn/NSTLQK/10.1016-0148-9062(78)91223-8/

    HAIMSON B C. Crustal stress in the Michigan basin[J]. Journal of Geophysical Research:Solid Earth, 1978, 83(B12):5857-5863. doi: 10.1029/JB083iB12p05857

    ZOBACK M D, BARTON C A, BRUDY M, et al. Determination of stress orientation and magnitude in deep wells[J]. International Journal of Rock Mechanics and Mining Sciences, 2003, 40(7-8):1049-1076. doi: 10.1016/j.ijrmms.2003.07.001

    ZOBACK M D, APEL R, BAUMGÄRTNER J, et al. Upper-crustal strength inferred from stress measurements to 6 km depth in the KTB borehole[J]. Nature, 1993, 365(6447):633-635. doi: 10.1038/365633a0

    HSV K J, SUN S, LI J L, et al. Mesozoic overthrust tectonics in South China[J]. Geology, 1988, 16(5):418-421. doi: 10.1130/0091-7613(1988)016<0418:MOTISC>2.3.CO;2

    DONG S W, ZHANG Y Q, GAO R, et al. A possible buried Paleoproterozoic collisional orogen beneath central South China:evidence from seismic-reflection profiling[J]. Precambrian Research, 2015, 264:1-10. doi: 10.1016/j.precamres.2015.04.003

    颜丹平, 邱亮, 陈峰, 等.华南地块雪峰山中生代板内造山带构造样式及其形成机制[J].地学前缘, 2018, 25(1):1-13. http://d.old.wanfangdata.com.cn/Periodical/dxqy201801001

    YAN Danping, QIU Liang, CHEN Feng, et al. Structural style and kinematics of the Mesozoic Xuefengshan intraplate orogenic belt, South China Block[J]. Earth Science Frontiers, 2018, 25(1):1-13. (in Chinese with English abstract) http://d.old.wanfangdata.com.cn/Periodical/dxqy201801001

    褚杨, 林伟, FAURE M, 等.华南板块早中生代陆内造山过程——以雪峰山-九岭为例[J].岩石学报, 2015, 31(8):2145-2155. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201508003

    CHU Yang, LIN Wei, FAURE M, et al. Early Mesozoic intracontinental orogeny:example of the Xuefengshan-Jiuling Belt[J]. Acta Petrologica Sinica, 2015, 31(8):2145-2155. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201508003

    HAIMSON B C, CORNET F H. ISRM Suggested Methods for rock stress estimation-Part 3:hydraulic fracturing (HF) and/or hydraulic testing of pre-existing fractures (HTPF)[J]. International Journal of Rock Mechanics and Mining Sciences, 2003, 40(7-8):1011-1020. doi: 10.1016/j.ijrmms.2003.08.002

    王建军, 李方全, 陈群策, 等. DB/T 14-2000原地应力测量-水压致裂法和套芯解除法技术规范[S].北京: 科学出版社, 2001.

    WANG Jianjun, LI Fangquan, CHEN Qunce, et al. DB/T 14-2000 Code of hydraulic fracturing and overcoring method for in-situ stress measurement[S]. Beijing: Science Press, 2001. (in Chinese with English abstract)

    SHI W, DONG S W, ZHANG Y Q, et al.The typical large-scale superposed folds in the central South China:Implications for Mesozoic intracontinental deformation of the South China Block[J]. Tectonophysics, 2015, 664:50-66. doi: 10.1016/j.tecto.2015.08.039

    ZOBACK M D. Reservoir geomechanics[M]. Cambridge:Cambridge University Press, 2006.

    苏恺之, 李方全, 张伯崇, 等.长江三峡坝区地壳应力与孔隙水压力综合研究[M].北京:地震出版社, 1996.

    SU Kaizhi, LI Fangquan, ZHANG Bochong, et al. Integrated research on the stress field and pore pressure at The Three Gorges site[M]. Beijing:Seismological Press, 1996. (in Chinese)

    ITO T, EVANS K, KAWAI K, et al. Hydraulic fracture reopening pressure and the estimation of maximum horizontal stress[J]. International Journal of Rock Mechanics and Mining Sciences, 1999, 36(6):811-826. doi: 10.1016/S0148-9062(99)00053-4

    ITO T, IGARASHI A, KATO H, et al. Crucial effect of system compliance on the maximum stress estimation in the hydrofracturing method:theoretical considerations and field-test verification[J]. Earth, Planets and Space, 2006, 58(8):963-971. doi: 10.1186/BF03352601

    ITO T, FUNATO A, LIN W R, et al. Determination of stress state in deep subsea formation by combination of hydraulic fracturing in situ test and core analysis:a case study in the IODP Expedition 319[J]. Journal of Geophysical Research:Solid Earth, 2013, 118(3):1203-1215. doi: 10.1002/jgrb.50086

    王成虎, 宋成科, 邢博瑞.水压致裂应力测量系统柔性分析及其对深孔测量的影响[J].现代地质, 2012, 26(4):808-816. doi: 10.3969/j.issn.1000-8527.2012.04.024

    WANG Chenghu, SONG Chengke, XING Borui. Compliance of drilling-rod system for hydro-fracturing in situ stress measurement and its effect on measurements at great depth[J]. Geoscience, 2012, 26(4):808-816. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-8527.2012.04.024

    徐志英.岩石力学[M].北京:水利电力出版社, 1986.

    XU Zhiying. Rock mechanics[M]. Beijing:Water Resources and Electric Power Press, 1986. (in Chinese)

  • 加载中

(10)

(3)

计量
  • 文章访问数:  2141
  • PDF下载数:  34
  • 施引文献:  0
出版历程
收稿日期:  2019-08-30
修回日期:  2019-09-20
刊出日期:  2019-10-31

目录