HYDRAULIC FRACTURING STRESS MEASUREMENTS IN XUEFENGSHAN DEEP BOREHOLE AND ITS SIGNIFICANCE
-
摘要:
利用最新研制的深孔水压致裂地应力测量设备在雪峰山2000 m科钻先导孔内开展了原地应力测量,在孔深170~2021 m范围内获得了16个测段的有效地应力测量数据,是国内首次利用水压致裂法获得的孔深超过2000 m深度的原地应力测量成果。测量结果表明,地应力随孔深增加而逐渐加大,对实测数据进行线性回归,得到最大和最小水平主应力随深度变化的关系分别为:SH=0.03328H+5.25408,Sh=0.0203H+4.5662,在孔深2021 m深度,其实测值分别为66.31 MPa和43.33 MPa。基于实测数据,结合钻孔成像测试和井温测试结果,对测点应力状态进行了综合分析。在170~800 m深度范围,三向主应力关系为SH > Sh > Sv,有利于逆断层活动;孔深1000~2021 m表现为SH > Sv > Sh,表明该区域深部应力结构属于走滑型。最大水平主应力方向为北西-北西西方向。基于实测地应力数据及莫尔-库伦破裂准则,对测区附近断层活动性进行了分析讨论,认为该区域断层处于稳定状态。
Abstract:By use of the recently developed hydraulic fracturing in situ stress measurement system, valid data of 16 depth intervals at the borehole depth range of 170~2021 m in the Xuefengshan deep borehole were obtained, which are the first reported results obtained at the borehole depth deeper than 2000 m in China. The test results showed that the magnitude of the in situ stress increased with the depth of the borehole. By linear regression, the relationship of the maximum and minimum horizontal principal stresses with the depth of the test borehole respectively are SH=0.03328H+5.25408, and Sh=0.0203H+4.5662, and at the borehole depth of 2021 m, the magnitude of which are 66.31 MPa and 43.33 MPa respectively. Based on the hydraulic fracturing test data, combined with the BHTV and borehole temperature logging test results, the analysis on the stress state of the study area were carried out. In the range of 170~800 m borehole depth, the relationship of the three principal stresses are SH > Sh > Sv, which are favourable for reverse faulting; In the range of 1000~2021 m borehole depth, the relationship changes to SH > Sv > Sh, which implied that the deep stress regime of this area are strike-slip faulting. The direction of the maximum horizontal principal stress is in NW~NWW direction. According to Mohr-Coulomb criterion, the activity of the faults of the study area were discussed and the conclusion were obtained that the faults of this area are in stable state.
-
图 2 雪峰山深孔周边区域地质构造简图[12]
Figure 2.
表 1 雪峰山深孔水压致裂地应力测量压力参数取值结果(根据井下压力记录)
Table 1. Parameter values for hydraulic fracturing stress measurements in Xuefengshan deep borehole(according to downhole pressure record)
序号 测段中心
深度/mPb/
MPaPr/
MPaPs/MPa dp/dt dt/dp maskat 单切线 平均值 均方差 1 170.00 28.97 14.32 / / / / 6.91 / 2 278.00 23.64 10.67 7.76 7.76 7.64 7.56 7.68 0.1 3 368.00 20.09 14.54 11.79 11.81 11.1 11.3 11.5 0.35 4 458.00 19.91 13.6 12.04 11.85 12.02 11.93 11.96 0.09 5 512.00 25.48 17.58 14.59 14.41 14.52 14.35 14.47 0.11 6 655.00 28.38 22.71 21.77 20.56 21.7 21.93 21.49 0.63 7 763.00 25.58 20.71 19.81 19.32 19.73 19.66 19.63 0.21 8 1032.00 32.79 27.34 25.42 25.62 25.45 25.57 25.52 0.1 9 1140.00 35.77 31.5 29.88 29.96 30.04 29.99 29.97 0.07 10 1175.00 34.66 27.42 28.87 28.86 28.89 28.82 28.86 0.03 11 1267.00 41.63 34.1 31.85 32.67 32.71 32.85 32.52 0.45 12 1374.00 45.75 34.52 35.82 37.65 37.77 37.71 37.24 0.95 13 1482.00 46.92 40.42 39.03 40.23 41.02 41.14 40.35 0.97 14 1751.00 42.85 37.61 38.48 37.92 37.93 37.81 38.03 0.3 15 1760.00 45.35 38.97 39.6 40.41 40.72 40.4 40.28 0.48 16 2021.00 47.44 43.47 42.79 43.42 43.73 43.37 43.33 0.39 注:170 m测段在计算关闭压力时计算机自动取值出现异常,采用手动取值。P0为岩石原地破裂压力;Pr为破裂面重张压力;Ps为破裂面瞬时关闭压力 表 2 雪峰山深孔地应力测量结果(根据井下压力传感器记录)
Table 2. Results of in situ stress measurements of Xuefengshan deep borehole(according to downhole pressure record)
序号 测段中心
深度/m压裂参数/MPa 主应力值/MPa Po Pb Pr Ps T SH Sh Sv 1 170.00 1.70 28.97 14.32 10.00 14.65 13.30 10.00 4.51 2 278.00 2.78 23.64 10.67 7.68 12.97 9.60 7.68 7.37 3 368.00 3.68 20.09 14.54 11.50 5.55 16.28 11.50 9.75 4 458.00 4.58 19.91 13.6 11.96 6.31 17.70 11.96 12.14 5 512.00 5.12 25.48 17.58 14.47 7.90 20.71 14.47 13.57 6 655.00 6.55 28.38 22.71 21.49 5.67 35.21 21.49 17.36 7 763.00 7.63 25.58 20.71 19.63 4.87 30.55 19.63 20.22 8 1032.00 10.32 32.79 27.34 25.52 5.45 38.89 25.52 27.35 9 1140.00 11.40 35.77 31.50 29.97 4.27 47.01 29.97 30.21 10 1175.00 11.75 34.66 27.42 28.86 7.24 47.41 28.86 31.14 11 1267.00 12.67 41.63 34.10 32.52 7.53 50.79 32.52 33.58 12 1374.00 13.74 / 34.52 37.24 / 63.46 37.24 36.41 13 1482.00 14.82 / 40.42 40.35 / 65.82 40.35 39.27 14 1751.00 17.51 42.85 37.61 38.03 5.24 58.99 38.03 46.40 15 1760.00 17.60 45.35 38.97 40.28 6.38 64.27 40.28 46.64 16 2021.00 20.21 47.44 43.47 43.33 3.97 66.31 43.33 53.56 注:Pb为岩石原地破裂压力;Pr为破裂面重张压力;Ps为破裂面瞬时关闭压力;Po为孔隙压力;T为岩石抗拉强度;SH为最大水平主应力;Sh为最小水平主应力;Sv为根据上覆岩石埋深计算的垂向主应力(岩石容重取26.5 kN/m3) 表 3 对最大水平主应力上限值估算结果及参与计算的相关参数
Table 3. Results of the estimated upper limit of the maximum horizontal principal stress and related parameters
深度
/mSh
/MPaPo
/MPaΔP
/MPaΔT
/℃αt
/×10-6 ℃-1SH
/MPaSH*
/MPa1032 25.52 10.32 2.06 23.00 8.5 38.89 46.04 1140 29.97 11.40 2.28 26.00 8.5 47.01 55.99 1175 28.86 11.75 2.35 26.70 8.5 47.41 51.65 1267 32.52 12.67 2.53 28.00 8.5 50.79 60.17 注:SH*为最大水平主应力上限值估算结果。 -
ZANG A, STEPHANSSON O. Stress field of the earth's crust[M]. Dordrecht:Springer, 2010.
HAIMSON B C. The hydrofracturing stress measuring method and recent field results[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1978, 15(4):167-178. http://d.old.wanfangdata.com.cn/NSTLQK/10.1016-0148-9062(78)91223-8/
HAIMSON B C. Crustal stress in the Michigan basin[J]. Journal of Geophysical Research:Solid Earth, 1978, 83(B12):5857-5863. doi: 10.1029/JB083iB12p05857
ZOBACK M D, BARTON C A, BRUDY M, et al. Determination of stress orientation and magnitude in deep wells[J]. International Journal of Rock Mechanics and Mining Sciences, 2003, 40(7-8):1049-1076. doi: 10.1016/j.ijrmms.2003.07.001
ZOBACK M D, APEL R, BAUMGÄRTNER J, et al. Upper-crustal strength inferred from stress measurements to 6 km depth in the KTB borehole[J]. Nature, 1993, 365(6447):633-635. doi: 10.1038/365633a0
HSV K J, SUN S, LI J L, et al. Mesozoic overthrust tectonics in South China[J]. Geology, 1988, 16(5):418-421. doi: 10.1130/0091-7613(1988)016<0418:MOTISC>2.3.CO;2
DONG S W, ZHANG Y Q, GAO R, et al. A possible buried Paleoproterozoic collisional orogen beneath central South China:evidence from seismic-reflection profiling[J]. Precambrian Research, 2015, 264:1-10. doi: 10.1016/j.precamres.2015.04.003
颜丹平, 邱亮, 陈峰, 等.华南地块雪峰山中生代板内造山带构造样式及其形成机制[J].地学前缘, 2018, 25(1):1-13. http://d.old.wanfangdata.com.cn/Periodical/dxqy201801001
YAN Danping, QIU Liang, CHEN Feng, et al. Structural style and kinematics of the Mesozoic Xuefengshan intraplate orogenic belt, South China Block[J]. Earth Science Frontiers, 2018, 25(1):1-13. (in Chinese with English abstract) http://d.old.wanfangdata.com.cn/Periodical/dxqy201801001
褚杨, 林伟, FAURE M, 等.华南板块早中生代陆内造山过程——以雪峰山-九岭为例[J].岩石学报, 2015, 31(8):2145-2155. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201508003
CHU Yang, LIN Wei, FAURE M, et al. Early Mesozoic intracontinental orogeny:example of the Xuefengshan-Jiuling Belt[J]. Acta Petrologica Sinica, 2015, 31(8):2145-2155. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201508003
HAIMSON B C, CORNET F H. ISRM Suggested Methods for rock stress estimation-Part 3:hydraulic fracturing (HF) and/or hydraulic testing of pre-existing fractures (HTPF)[J]. International Journal of Rock Mechanics and Mining Sciences, 2003, 40(7-8):1011-1020. doi: 10.1016/j.ijrmms.2003.08.002
王建军, 李方全, 陈群策, 等. DB/T 14-2000原地应力测量-水压致裂法和套芯解除法技术规范[S].北京: 科学出版社, 2001.
WANG Jianjun, LI Fangquan, CHEN Qunce, et al. DB/T 14-2000 Code of hydraulic fracturing and overcoring method for in-situ stress measurement[S]. Beijing: Science Press, 2001. (in Chinese with English abstract)
SHI W, DONG S W, ZHANG Y Q, et al.The typical large-scale superposed folds in the central South China:Implications for Mesozoic intracontinental deformation of the South China Block[J]. Tectonophysics, 2015, 664:50-66. doi: 10.1016/j.tecto.2015.08.039
ZOBACK M D. Reservoir geomechanics[M]. Cambridge:Cambridge University Press, 2006.
苏恺之, 李方全, 张伯崇, 等.长江三峡坝区地壳应力与孔隙水压力综合研究[M].北京:地震出版社, 1996.
SU Kaizhi, LI Fangquan, ZHANG Bochong, et al. Integrated research on the stress field and pore pressure at The Three Gorges site[M]. Beijing:Seismological Press, 1996. (in Chinese)
ITO T, EVANS K, KAWAI K, et al. Hydraulic fracture reopening pressure and the estimation of maximum horizontal stress[J]. International Journal of Rock Mechanics and Mining Sciences, 1999, 36(6):811-826. doi: 10.1016/S0148-9062(99)00053-4
ITO T, IGARASHI A, KATO H, et al. Crucial effect of system compliance on the maximum stress estimation in the hydrofracturing method:theoretical considerations and field-test verification[J]. Earth, Planets and Space, 2006, 58(8):963-971. doi: 10.1186/BF03352601
ITO T, FUNATO A, LIN W R, et al. Determination of stress state in deep subsea formation by combination of hydraulic fracturing in situ test and core analysis:a case study in the IODP Expedition 319[J]. Journal of Geophysical Research:Solid Earth, 2013, 118(3):1203-1215. doi: 10.1002/jgrb.50086
王成虎, 宋成科, 邢博瑞.水压致裂应力测量系统柔性分析及其对深孔测量的影响[J].现代地质, 2012, 26(4):808-816. doi: 10.3969/j.issn.1000-8527.2012.04.024
WANG Chenghu, SONG Chengke, XING Borui. Compliance of drilling-rod system for hydro-fracturing in situ stress measurement and its effect on measurements at great depth[J]. Geoscience, 2012, 26(4):808-816. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-8527.2012.04.024
徐志英.岩石力学[M].北京:水利电力出版社, 1986.
XU Zhiying. Rock mechanics[M]. Beijing:Water Resources and Electric Power Press, 1986. (in Chinese)